
Rev.5 EM15XS3086F

EPSON RC+ 6.0

SPEL+ Language
Reference

Ver.6.2

EP
SO

N
 R

C
+ 6.0 (V

er.6.2) S
PL

+ Language R
eference R

ev.5

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 i

EPSON RC+ 6.0 (Ver.6.2)

USPEL+ Language Reference

Rev.5

Copyright 2011-2015 SEIKO EPSON CORPORATION. All rights reserved.

ii EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

FOREWORD
Thank you for purchasing our robot products.
This manual contains the information necessary for the correct use of the Manipulator.
Please carefully read this manual and other related manuals before installing the robot
system.
Keep this manual handy for easy access at all times.

WARRANTY

The robot and its optional parts are shipped to our customers only after being subjected to
the strictest quality controls, tests, and inspections to certify its compliance with our high
performance standards.

Product malfunctions resulting from normal handling or operation will be repaired free of
charge during the normal warranty period. (Please ask your Regional Sales Office for
warranty period information.)

However, customers will be charged for repairs in the following cases (even if they occur
during the warranty period):

1. Damage or malfunction caused by improper use which is not described in the manual,
or careless use.

2. Malfunctions caused by customers’ unauthorized disassembly.

3. Damage due to improper adjustments or unauthorized repair attempts.

4. Damage caused by natural disasters such as earthquake, flood, etc.

Warnings, Cautions, Usage:

1. If the robot or associated equipment is used outside of the usage conditions and product
specifications described in the manuals, this warranty is void.

2. If you do not follow the WARNINGS and CAUTIONS in this manual, we cannot be
responsible for any malfunction or accident, even if the result is injury or death.

3. We cannot foresee all possible dangers and consequences. Therefore, this manual
cannot warn the user of all possible hazards.

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 iii

TRADEMARKS
Microsoft, Windows, and Windows logo are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries. Other brand and
product names are trademarks or registered trademarks of the respective holders.

TRADEMARK NOTATION IN THIS MANUAL
Microsoft® Windows® XP Operating system
Microsoft® Windows® Vista Operating system
Microsoft® Windows® 7 Operating system
Throughout this manual, Windows XP, Windows Vista, and Windows 7 refer to above
respective operating systems. In some cases, Windows refers generically to Windows XP,
Windows Vista, and Windows 7.

NOTICE
No part of this manual may be copied or reproduced without authorization.
The contents of this manual are subject to change without notice.
Please notify us if you should find any errors in this manual or if you have any comments
regarding its contents.

INQUIRIES
Contact the following service center for robot repairs, inspections or adjustments.
If service center information is not indicated below, please contact the supplier office for
your region.

Please prepare the following items before you contact us.

- Your controller model and its serial number
- Your manipulator model and its serial number
- Software and its version in your robot system
- A description of the problem

SERVICE CENTER

iv EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

MANUFACTURER
 Seiko Epson Corporation
 Toyoshina Plant

Robotics Solutions Operations Division
6925 Toyoshina Tazawa,
Azumino-shi, Nagano, 399-8285
Japan

 TEL : +81-(0)263-72-1530
 FAX : +81-(0)263-72-1495

SUPPLIERS
 North & South America Epson America, Inc.
 Factory Automation/Robotics

18300 Central Avenue
Carson, CA 90746
USA

 TEL : +1-562-290-5900
 FAX : +1-562-290-5999
 E-MAIL : info@robots.epson.com

 Europe Epson Deutschland GmbH
 Factory Automation Division

Otto-Hahn-Str.4
D-40670 Meerbusch
Germany

 TEL : +49-(0)-2159-538-1391
 FAX : +49-(0)-2159-538-3170
 E-MAIL : robot.infos@epson.de

 China Epson (China) Co., Ltd.
 Factory Automation Division

7F, Jinbao Building No. 89, Jinbao Street,
Dongcheng District, Beijing,
China, 100005

 TEL : +86-(0)-10-8522-1199
 FAX : +86-(0)-10-8522-1120

 Taiwan Epson Taiwan Technology & Trading Ltd.
 Factory Automation Division

14F, No.7, Song Ren Road, Taipei 110,
Taiwan, ROC

 TEL : +886-(0)-2-8786-6688
 FAX : +886-(0)-2-8786-6677

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 v

 Korea Epson Korea Co., Ltd.
 Marketing Team (Robot Business)

27F DaeSung D-Polis A, 606
Seobusaet-gil, Geumcheon-gu, Seoul, 153-803
Korea

 TEL : +82-(0)-2-3420-6692
 FAX : +82-(0)-2-558-4271

 Southeast Asia Epson Singapore Pte. Ltd.
 Factory Automation System

1 HarbourFront Place, #03-02,
HarbourFront Tower One,
Singapore 098633

 TEL : +65-(0)-6586-5696
 FAX : +65-(0)-6271-3182

 India Epson India Pvt. Ltd.
 Sales & Marketing (Factory Automation)

12th Floor, The Millenia, Tower A, No. 1,
Murphy Road, Ulsoor, Bangalore,
India 560008

 TEL : +91-80-3051-5000
 FAX : +91-80-3051-5005

 Japan Epson Sales Japan Corporation
 Factory Automation Systems Department

Nishi-Shinjuku Mitsui Bldg. 6-24-1
Nishishinjuku, Shinjuku-ku, Tokyo 160-8324
Japan

 TEL : +81-(0)3-5321-4161

vi EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

SAFETY PRECAUTIONS

Installation of robots and robotic equipment should only be performed by qualified
personnel in accordance with national and local codes. Please carefully read this
manual and other related manuals when using this software.
Keep this manual in a handy location for easy access at all times.

WARNING

 This symbol indicates that a danger of possible serious
injury or death exists if the associated instructions are not
followed properly.

CAUTION

 This symbol indicates that a danger of possible harm to
people or physical damage to equipment and facilities
exists if the associated instructions are not followed
properly.

Table of Contents

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 vii

Summary of SPEL+ Commands 1

System Management Commands .. 1

Robot Control Commands .. 1

Torque Commands ... 5

Input / Output Commands ... 5

Point Management Commands .. 7

Coordinate Change Commands ... 7

Program Control Commands .. 8

Program Execution Commands .. 8

Pseudo Statements ... 9

File Management Commands ... 9

Fieldbus Commands .. 10

Numeric Value Commands ... 10

String Commands ... 10

Logical Operators .. 11

Variable Commands .. 11

Security Commands ... 11

Conveyor Tracking Commands .. 11

Force Sensing Commands .. 12

DB Commands .. 12

PG Commands .. 12

SPEL+ Language Reference 13

SPEL+ Error Messages 630

Precaution of EPSON RC+ 5.0 Compatibility 698

Overview ... 698

General Differences .. 699

Compatibility List of Commands ... 701

EPSON RC+ 6.2.0 List of New Commands ... 709

EPSON RC+ 6.1.0 List of New Commands ... 709

EPSON RC+ 6.0.0 List of New Commands .. 709

Commands from EPSON RC+ Ver.4.*

(Not supported in EPSON RC+ 5.0) ... 709

Table of Contents

viii EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Precaution of EPSON RC+ Ver.4.* Compatibility 710

Overview .. 710

General Differences ... 711

Compatibility List of Commands .. 713

List of New Commands .. 722

Summary of SPEL+ Commands

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 1

Summary of SPEL+ Commands

The following is a summary of SPEL+ commands.

System Management Commands

Reset Resets the controller.

SysConfig Displays controller setup.
SysErr Returns the latest error status or warning status.

Date Sets the system date.
Time Sets system time.
Date$ Returns the system date as a string.
Time$ Returns system time as a string.

Hour Displays / returns controller operation time.

Stat Returns controller status bits.
CtrlInfo Returns controller information.
RobotInfo Returns robot information.
RobotInfo$ Returns robot text information.
TaskInfo Returns task information.
TaskInfo$ Returns task text information.

DispDev Sets the current display device.
EStopOn Return the Emergency Stop status.
CtrlDev Returns the current control device number.
Cls Clears the EPSON RC+ 6.0 Run, Operator, or Command

window text area.
Clears the TP print panel.

Toff Turns off execution line display on the LCD.
Ton Specifies a task which shows a execution line on the LCD.

SafetyOn Return the Safety Door open status.

Eval Executes a Command window statement from a program and

returns the error status.

ShutDown Shuts down EPSON RC+ and optionally shuts down or restarts

Windows.
SetLCD Sets or displays how the controller's LCD panel displays data.

TeachOn Returns the Teach mode status.
WindowsStatus Returns the Windows startup status.

Robot Control Commands

AtHome Retuns if the current robot orientation is Home position or not.
Calib Replaces the current arm posture pulse values with the current

CalPls values.
CalPls Specifies and displays the position and orientation pulse values

for calibration.
Hofs Returns the offset pulses used for software zero point correction.

Summary of SPEL+ Commands

2 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

MCal Executes machine calibration for robots with incremental
encoders.

MCalComplete Returns status of MCal.
MCordr Specifies and displays the moving joint order for machine

calibration Mcal. Required only for robots with incremental
encoders.

Power Sets / returns servo power mode.
Motor Sets / returns motor status.
MHour Function Returns the accumulated MOTOR ON time of the robot motors.

SFree Removes servo power from the specified servo axis.
SLock Restores servo power to the specified servo axis.

SyncRobots Start the reserved robot motion.

Jump Jumps to a point using point to point motion.
Jump3 Jumps to a point using 3D gate motion.
Jump3CP Jumps to a point using 3D motion in continuous path.
Arch Sets / returns arch parameters for Jump motion.
LimZ Sets the upper Z limit for the Jump command.
Sense
JS Returns status of Sense operation.
JT Returns the status of the most recent Jump command for the

current robot.

Go Moves the robot to a point using point to point motion.
Pass Executes simultaneous four joint Point to Point motion, passing

near but not through the specified points.
Pulse Moves the robot to a position defined in pulses.
BGo Executes Point to Point relative motion, in the selected local

coordinate system.
BMove Executes linear interpolation relative motion, in the selected local

coordinate system.
TGo Executes Point to Point relative motion, in the current tool

coordinate system.
TMove Executes linear interpolation relative motion, in the selected tool

coordinate system.
Till Specifies motion stop when input occurs.
TillOn Returns the current Till status.
!…! Process statements during motion.

Speed Sets / returns speed for point to point motion commands.
Accel Sets / returns acceleration and deceleration for point to point

motion.

Inertia Specifies or displays the inertia settings of the robot arm.
Weight Specifies or displays the weight settings of the robot arm.

Arc Moves the arm using circular interpolation.
Arc3 Moves the arm in 3D using circular interpolation.
Move Moves the robot using linear interpolation.
Curve Defines the data and points required to move the arm along a

curved path. Many data points
can be defined in the path to improve precision of the path.

CV Move Performs the continuous spline path motion defined by the Curve
instruction.

SpeedS Sets / returns speed for linear motion commands.
AccelS Sets / returns acceleration and deceleration for linear motion.

SpeedR Sets / returns speed for tool rotation.

Summary of SPEL+ Commands

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 3

AccelR Sets / returns acceleration and deceleration for tool rotation.

AccelMax Returns maximum acceleration value limit available for Accel.

Brake Turns brake on or off for specified joint of the current robot.

Home Moves robot to user defined home position.
HomeClr Clears the home position definition.
HomeDef Returns status of home position definition.
HomeSet Sets user defined home position.
Hordr Sets motion order for Home command.

InPos Checks if robot is in position (not moving).
CurPos Returns current position while moving.
TCPSpeed Returns calculated current tool center point velocity.

Pallet Defines a pallet or returns a pallet point.

Fine Sets positioning error limits.
QP Sets / returns Quick Pause status.

QPDecelR Sets the deceleration speed of quick pause for the change of

tool orientation during the CP motion.
QPDecelS Sets the deceleration speed of quick pause in the CP motion.

CP Sets CP (Continuous Path) motion mode.

Box Specifies and displays the approach check area.
BoxClr Clears the definition of approach check area.
BoxDef Returns whether Box has been defined or not.

Plane Specifies and displays the approach check plane.
PlaneClr Clears (undefines) a Plane definition.
PlaneDef Returns the setting of the approach check plane.
InsideBox Displays a prompt in a dialog box, waits for the operator to input

text or choose a button, and returns the contents of the box.
InsidePlane Returns the check status of the approach check plane.
GetRobotInsideBox Returns a robot which is in the approach check area.
GetRobotInsidePlane Returns a robot which is in the approach check plane.

Find Specifies or displays the condition to store coordinates during

motion.
FindPos Returns a robot point stored by Fine during a motion command.
PosFound Returns status of Find operation.

WaitPos Waits for robot to decelerate and stop at position before

executing the next statement
while path motion is active.

Robot Selects the current robot.
RobotModel$ Returns the robot model name.
RobotName$ Returns the robot name.
RobotSerial$ Returns the robot serial number.
RobotType Returns the robot type.
TargetOK Returns a status indicating whether or not the PTP (Point to

Point) motion from the current
position to a target position is possible.

JRange Sets / returns joint limits for one joint.
Range Sets limits for all joints.

Summary of SPEL+ Commands

4 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

XYLim Sets or displays the permissible XY motion range limits for the

robot.
XYLimClr Clears the XYLim definition.
XYLimDef Returns whether XYLim has been defined or not.
XY Returns a point from individual coordinates that can be used in a

point expression.

Dist Returns the distance between two robot points.

PTPBoost Specifies or displays the acceleration, deceleration and speed

algorithmic boost
parameter for small distance PTP (point to point) motion.

PTPBoostOK Returns whether or not the PTP (Point to Point) motion from a
current position to a target
position is a small travel distance.

PTPTime Returns the estimated time for a point to point motion command
without executing it.

CX Sets / returns the X axis coordinate of a point.
CY Sets / returns the Y axis coordinate of a point.
CZ Sets / returns the Z axis coordinate of a point.
CU Sets / returns the U axis coordinate of a point.
CV Sets / returns the V axis coordinate of a point.
CW Sets / returns the W axis coordinate of a point.
CR Sets / returns the R axis coordinate of a point.
CS Sets / returns the S axis coordinate of a point.
CT Sets / returns the T axis coordinate of a point.
Pls Returns the pulse value of one joint.
Agl Returns joint angle at current position.
PAgl Return a joint value from a specified point.
JA Returns a robot point specified in joint angles.
AglToPls Converts robot angles to pulses.
DegToRad Converts degrees to radians.
RadToDeg Converts radians to degrees.

Joint Displays the current position for the robot in joint coordinates.
JTran Perform a relative move of one joint.
PTran Perform a relative move of one joint in pulses.

RealPls Returns the pulse value of the specified joint.
RealPose Returns the current position of the specified robot.

PPls Return the pulse position of a specified joint value from a

specified point.

LJM Function Returns the point data with the orientation flags converted to

enable least joint motion when moving to a specified point based
on the reference point.

AutoLJM Sets the Auto LJM
AutoLJM Function Returns the state of the Auto LJM
AvoidSingularity Sets the Singularity avoiding function
AvoidSingularity Function Returns the state of the Singularity avoiding function
SingularityAngle Sets the singularity neighborhood angle for the singularity

avoiding function
SingularityAngle Function Returns the singularity neighborhood angle for the singularity

avoiding function
SingularityDist Sets the singularity neighborhood distance necessary for the

singularity avoiding function.
SingularityDist Function Returns the singularity neighborhood distance necessary for the

singularity avoiding function.

Summary of SPEL+ Commands

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 5

SingularitySpeed Sets the singularity neighborhood speed for the singularity

avoiding function
SingularitySpeed Function Returns the singularity neighborhood speed for the singularity

avoiding function
AbortMotion Aborts a motion command and puts the running task in error

status.
Align Function Returns point data converted to align robot orientation with the

nearest coordinate axis in local coordinate system.
AlignECP Function Returns point data converted to align robot orientation with a

nearest coordinate axis in ECP coordinate system.

SoftCP Sets / displays SoftCP motion mode.
SoftCP Function Returns the status of SoftCP moton mode.

Here Teach a robot point at the current position.
Where Displays current robot position data.

Torque Commands

TC Returns the torque control mode setting and current mode.
TCSpeed Specifies the speed limit in the torque control.
TCLim Specifies the torque limit of each joint for the torque control

mode.
RealTorque Returns the current torque instruction value of the specified joint.

ATCLR Clears and intializes the average torque for one or more joints.
ATRQ Displays the average torque for the specified joint.
PTCLR Clears and intializes the peak torque for one or more joints.
PTRQ Displays the peak torque for the specified joint.

OLAccel Sets up the automatic adjustment of acceleration/deceleration

that is adjusted
OLRate Display overload rating for one or all joints for the current robot.

LimitTorque Sets / returns the upper torque value in High power mode.
LimitTorque Function Returns the LimitTorque setting value.

Input / Output Commands

On Turns an output on.
Off Turns an output off.
Oport Reads status of one output bit.
Sw Returns status of input.

In Reads 8 bits of inputs.
InW Returns the status of the specified input word port.
InBCD Reads 8 bits of inputs in BCD format.
InReal Reads an input data of 2 words (32 bits) as a floating-point data

(IEEE754 compliant) of 32 bits.
Out Sets / returns 8 bits of outputs.
OutW Simultaneously sets 16 output bits.
OpBCD Simultaneously sets 8 output bits using BCD format.

OutReal Output the output data of real value as the floating-point data

(IEEE754 compliant) of 32 bits to the output port 2 words (32
bits).

Summary of SPEL+ Commands

6 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

MemOn Turns a memory bit on.
MemOff Turns a memory bit off.
MemSw Returns status of memory bit.
MemIn Reads 8 bits of memory I/O.
MemOut Sets / returns 8 memory bits.
MemInW Returns the status of the specified memory I/O word port.

Each word port contains 16 memory I/O bits.
MemOutW Simultaneously sets 16 memory I/O bits.
Wait Wait for condition or time.
TMOut Sets default time out for Wait statement.
Tw Returns the status of the Wait condition and Wait timer interval.

Input Receives input data from the display device and stored in a

variable(s).
Print Display characters on current display window.
Line Input Input a string from the current display window.

Input # Allows string or numeric data to be received from a file,

communications port, or
database and stored in one or more variables.

Print # Outputs data to the specified file, communications port, database,
or device.

Line Input # Reads data of one line from a file, communication port, database,
or the device.

Lof Checks whether the specified RS-232 or TCP/IP port has any
lines of data in its buffer.

SetIn For Virtual IO, sets specified input port (8 bits) to the specified

value.
SetInW For Virtual IO, sets specified input word (16 bits) to the specified

value.
SetSw For Virtual IO, sets specified input bit to the specified value.

IOLabel$ Returns the I/O label for a specified input or output bit, byte, or

word.
IONumber Returns the I/O number of the specified I/O label.

OpenCom Open an RS-232 communication port.
OpenCom Function Acquires the task number that executes OpenCom.
CloseCom Close the RS-232C port that has been opened with OpenCom.
SetCom Sets or displays parameters for RS-232C port.
ChkCom Returns number of characters in the reception buffer of a

communication port

OpenNet Open a TCP/IP network port.
OpenNet Function Acquires the task number that executes OpenNet.
CloseNet Close the TCP/IP port previously opened with OpenNet.
SetNet Sets parameters for a TCP/IP port.
ChkNet Returns number of characters in the reception buffer of a

network port
WaitNet Wait for TCP/IP port connection to be established.

Read Reads characters from a file or communications port.
ReadBin Reads binary data from a file or communications port.
Write Writes characters to a file or communication port without end of

line terminator.
WriteBin Writes binary data to a file or communications port.

Summary of SPEL+ Commands

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 7

InputBox Displays a prompt in a dialog box, waits for the operator to input
text or choose a button, and returns the contents of the box.

MsgBox Displays a message in a dialog box and waits for the operator to
choose a button.

RunDialog Runs an EPSON RC+ 6.0 dialog from a SPEL+ program.

LatchEnable Enable / Disable the latch function for the robot position by the

R-I/O input.
LatchState Function Returns the latch state of robot position using the R-I/O.
LatchPos Function Returns the robot position latched using the R-I/O input signal.
SetLatch Sets the latch function of the robot position using the R-I/O input.

Point Management Commands

ClearPoints Clears all point data in memory.
LoadPoints Loads point data from a file in memory.
SavePoints Saves point data to a file in memory.
ImportPoints Imports a point file into the current project for the specified robot.
ExportPoints Exports a point file to the specified path in the PC.

P# Defines a specified point.
PDef Returns the definition status of a specified point.
PDel Deletes specified position data.
PLabel Defines a label for a specified point.
PLabel$ Returns the point label associated with a point number.
PNumber Returns the point number associated with a point label.
PList Displays point data in memory for the current robot.
PLocal Sets the local attribute for a point.

Coordinate Change Commands

Arm Sets / returns current arm.
ArmSet Defines an arm.
ArmDef Returns status of arm definition.
ArmClr Clears an arm definition.

Tool Sets / returns the current tool number.
TLSet Defines or displays a tool coordinate system.
TLDef Returns status of tool definition.
TLClr Clears a tool definition.

ECP Sets / returns the current ECP number
ECPSet Defines or displays an external control point.
ECPDef Returns status of ECP definition.
ECPClr Clears an ECP definition.

Base Defines and displays the base coordinate system.

Local Define a local coordinate system.
LocalDef Returns status of local definition.
LocalClr Clears (undefines) a local coordinate system.

Elbow Sets / returns elbow orientation of a point.
Hand Sets / returns hand orientation of a point.
Wrist Sets / returns wrist orientation of a point.
J4Flag Sets / returns the J4Flag setting of a point.
J6Flag Sets / returns the J6Flag orientation of a point.
J1Flag Sets / returns the J1Flag setting of a point.
J2Flag Sets / returns the J2Flag orientation of a point.
J1Angle Returns the J1Angle attribute of a point.

Summary of SPEL+ Commands

8 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

VxCalib Creates the calibration data.
VxCalDelete Deletes the calibration data.
VxCalInfo Returns the calibration completion status / calibration data.
VxCalLoad Loads the calibration data from the file.
VxCalSave Saves the calibration data to the file.
VxTrans Converts the pixel coordinates to the robot coordinates and

returns the converted the point data.

Program Control Commands

Function Declare a function.
For...Next Executes one or more statements for a specific count.
GoSub Execute a subroutine.
Return Returns from a subroutine.
GoTo Branch unconditionally to a line number or label.
Call Call a user function.
If..Then..Else..EndIf Conditional statement execution
Else Used with the If instruction to allow statements to be executed

when the condition used with the If instruction is False. Else is an
option for the If/Then instruction.

Select ... Send Executes one of several groups of statements, depending on the
value of an expression.

Do...Loop Do...Loop construct.

Declare Declares an external function in a dynamic link library (DLL).

Trap Specify a trap handler.
OnErr Defines an error handler.
Era Returns robot joint number for last error.
Erf$ Returns the function name for last error.
Erl Returns line number of error.
Err Returns error number.
Ert Returns task number of error.
ErrMsg$ Returns error message.
Signal Sends a signal to tasks executing WaitSig.
SyncLock Synchronizes tasks using a mutual exclusion lock.
SynUnlock Unlocks a sync ID that was previously locked with SyncLock.
WaitSig Waits for a signal from another task.

ErrorOn Returns the error status of the controller.
Error Generates a user error.
EResume Resumes execution after an error-handling routine is finished.
PauseOn Returns the pause status.

Exit Exits a loop construct or function.

Program Execution Commands

Xqt Execute a task.
Pause Pause all tasks that have pause enabled.
Cont Resumes the contoller after a Pause statement has been

executed and continues the execution of all tasks.
Halt Suspend a task.
Quit Quits a task.
Resume Resume a task in the halt state.
MyTask Returns current task.

TaskDone Returns the completion status of a task.

Summary of SPEL+ Commands

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 9

TaskState Returns the current state of a task.
TaskWait Waits to for a task to terminate.

Restart Restarts the current main program group.
Recover Executes safeguard position recovery and returns status.
RecoverPos Returns the position where a robot was in when safeguard was

open.

StartMain Executes the main function from a background task.

Pseudo Statements

#define Defines a macro.
#ifdef ... #endif Conditional compile.
#ifndef ... #endif Conditional compile.
#include Include a file.
#undef Undefines an identifier previously defined with #define.

File Management Commands

Dir Displays the contents of the specified directory.
ChDir Changes and displays the current directory.
ChDisk Sets the object disk for file operations.
MkDir Creates a subdirectory on a controller disk drive.
RmDir Removes an empty subdirectory from a controller disk drive.
RenDir Rename a directory.

FileDateTime$ Returns the date and time of a file.
FileExists Checks if a file exists.
FileLen Returns the length of a file.
FolderExists Checks if a folder exists.

Type Displays the contents of the specified file.
Del Deletes one or more files.
Copy Copies a file to another location.
Rename Renames a file.

AOpen Opens file in the appending mode.
BOpen Opens file in binary mode.
ROpen Opens a file for reading.
Uopen Opens a file for read / write access.
WOpen Opens a file for writing.
Input # Allows string or numeric data to be received from a file,

communications port, or database and stored in one or more
variables.

Print # Outputs data to the specified file, communications port, database,
or device.

Line Input # Reads data of one line from a file, communication port, database,
or the device.

Read Reads characters from a file or communications port.
ReadBin Reads binary data from a file or communications port.
Write Writes characters to a file or communication port without end of

line terminator.
WriteBin Writes binary data to a file or communications port.
Seek Changes position of file pointer for a specified file.
Close Closes a file.

Eof Returns end of file status.
ChDrive Changes the current disk drive for file operations.

Summary of SPEL+ Commands

10 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

CurDir$ Returns a string representing the current directory.
CurDrive$ Returns a string representing the current drive.
CurDisk$ Returns a string representing the current disk.

Flush Writes a file's buffer into the file.

Fieldbus Commands

FbusIO_GetBusStatus Returns the status of the specified Fieldbus.
FbusIO_GetDeviceStatus Returns the status of the specified Fieldbus device.
FbusIO_SendMsg Sends an explicit message to a Fieldbus device and returns the

reply.

Numeric Value Commands

Ctr Return the value of a counter.
CTReset Resets a counter.
Tmr Returns the value of a timer.
TmReset Resets a timer to 0.

Sin Returns the sine of an angle.
Cos Returns cosine of an angle.
Tan Returns the tangent of an angle.
Acos Returns arccosine.
Asin Returns arcsine.
Atan Returns arctangent.
Atan2 Returns arctangent based on X, Y position.
Sqr Returns the square root of a number.
Abs Returns the absolute value of a number.
Sgn Returns the sign of a number.

Int Converts a real number to an integer.

BClr Clear one bit in a number and return the new value
BSet Sets a bit in a number and returns the new value.
BTst Returns the status of 1 bit in a number.
Fix Returns the integer portion of a real number.
Hex Returns a string representing a specified number in hexadecimal

format.
Randomize Initializes the random-number generator.
Redim Redimension an array at run-time.

Rnd Return a random number.
UBound Returns the largest available subscript for the indicated

dimension of an array.

String Commands

Asc Returns the ASCII value of a character.
Chr$ Returns the character of a numeric ASCII value.

Left$ Returns a substring from the left side of a string.
Mid$ Returns a substring.
Right$ Returns a substring from the right side of a string.

Len Returns the length of a string.

Summary of SPEL+ Commands

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 11

LSet$ Returns a string padded with trailing spaces.
RSet$ Returns a string padded with leading spaces.
Space$ Returns a string containing space characters.

Str$ Converts a number to a string.
Val Converts a numeric string to a number.

LCase$ Converts a string to lower case.
UCase$ Converts a string to upper case.
LTrim$ Removes spaces from beginning of string.
RTrim$ Removes spaces from end of string.
Trim$ Removes spaces from beginning and end of string.
ParseStr Parse a string and return array of tokens.
FmtStr$ Format a number or string.

InStr Returns position of one string within another.
Tab$ Returns a string containing the specified number of tabs

characters.

Logical Operators

And Performs logical and bitwise AND operation.
Or Or operator.
LShift Shifts bits to the left.
Mod Modulus operator.
Not Not operator.
RShift Shifts bits to the right.
Xor Exclusive Or operator.
Mask Performs bitwise AND operation in Wait statements.

Variable commands

Boolean Declares Boolean variables.
Byte Declares byte variables.
Double Declares double variables.
Global Declares global variables.
Integer Declares integer variables.
Long Declares long integer variables.
Real Declares real variables.
String Declares string variables.

Security Commands

GetCurrentUser$ Returns the current EPSON RC+ user.
Login Log into EPSON RC+ 6.0 as another user.

Conveyor Tracking Commands

Cnv_AbortTrack Aborts tracking motion to a conveyor queue point.
Cnv_Accel Function Returns acceleration and deceleration for the conveyor
Cnv_Accel Sets acceleration and deceleration for the conveyor
Cnv_Downstream Returns the downstream limit for the specified conveyor.
Cnv_Fine Function Returns the current Cnv_Fine setting.
Cnv_Fine Sets the value of Cnv_Fine for one conveyor.
Cnv_Mode Sets the mode of the specified conveyor.
Cnv_Mode Function Returns the mode of the specified conveyor.
Cnv_Name$ Function Returns the name of the specified conveyor.

Summary of SPEL+ Commands

12 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Cnv_Number Function Returns the number of a conveyor specified by name.
Cnv_OffsetAngle Sets the offset value for the conveyor queue data.
Cnv_OffsetAngle Function Returns the offset value of the conveyor queue data.
Cnv_Point Function Returns a robot point in the specified conveyor's coordinate

system derived from sensor coordinates.
Cnv_PosErr Function Returns deviation in current tracking position compared to

tracking target.
Cnv_Pulse Function Returns the current position of a conveyor in pulses.
Cnv_QueAdd Adds a robot point to a conveyor queue.
Cnv_QueGet Function Returns a point from the specified conveyor's queue.
Cnv_QueLen Function Returns the number of items in the specified conveyor's queue.
Cnv_QueList Displays a list of items in the specified conveyor's queue.
Cnv_QueMove Moves data from upstream conveyor queue to downstream

conveyor queue.
Cnv_QueReject Sets and displays the queue reject distance for a conveyor.
Cnv_QueReject Function Returns the current part reject distance for a conveyor.
Cnv_QueRemove Removes items from a conveyor queue.
Cnv_QueUserData Sets and displays user data associated with a queue entry.
Cnv_QueUserData Function Returns the user data value associated with an item in a

conveyor queue.
Cnv_RobotConveyor Function Returns the conveyor being tracked by a robot.
Cnv_Speed Function Returns the current speed of a conveyor.
Cnv_Trigger Latches current conveyor position for the next Cnv_QueAdd

statement.
Cnv_Upstream Returns the upstream limit for the specified conveyor.

Force Sensing Commands

Force_Calibrate Sets zero offsets for all axes for the current force sensor.
Force_ClearTrigger Clears all trigger conditions for the current force sensor.
Force_GetForces Returns the forces and torques for all force sensor axes in an

array.
Force_GetForce Function Returns the force for a specified axis.
Force_Sensor Sets the current force sensor for the current task.
Force_Sensor Function Returns the current force sensor for the current task.
Force_SetTrigger Sets the force trigger for the Till command.

DB Commands

CloseDB Close the database that has been opened with the OpenDB
command and releases the file number.

OpenDB Opens a database or Excel workbook.
SelectDB Searches the data in the table in an opened database.

PG Commands

PG_FastStop Stop the PG axes immediately.
PG_LSpeed Sets the pulse speed of the time when the PG axis starts

accelerating and fishishes decelating.
PG_Scan Starts the continuous spinning motion of the PG robot axes.
PG_SlowStop Stops slowly the PG axis spinning continuously.

SPEL+ Language Reference

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 13

SPEL+ Language Reference
This section describes each SPEL+ command as follows:

Syntax

Syntax describes the format used for each command. For some
commands, there is more than one syntax shown, along with a
number that is referenced in the command description. Parameters
are shown in italics.

Parameters

Describes each of the parameters for this command.

Return Values

Describes any values that the command returns.

Description

Gives details about how the command works.

Notes

Gives additional information that may be important about this
command.

See Also

Shows other commands that are related to this command. Refer to
the Table of Contents for the page number of the related commands.

Example

Gives one or more examples of using this command.

SPEL+ Language Reference

14 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

SYMBOLS

This manual uses the following symbols to show what context the command can
be used in:

May be used from the command window.

May be used as a statement in a SPEL+ program.

May be used as a Function in a SPEL+ program.

>

S

F

!...! Parallel Processing

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 15

!...! Parallel Processing

Processes input/output statements in parallel with motion.

Syntax
motion cmd !statements !

Parameters
motion cmd Any valid motion command included in the following list: Arc, Arc3, Go, Jump,

Jump3, Jump3CP, Move, BGo, BMove, TGo, TMove.
statements Any valid parallel processing I/O statement(s) which can be executed during

motion. (See table below)
Description

Parallel processing commands are attached to motion commands to allow I/O statements to execute
simultaneously with the beginning of motion travel. This means that I/O can execute while the arm is
moving rather than always waiting for arm travel to stop and then executing I/O. There is even a facility
to define when within the motion that the I/O should begin execution. (See the Dn parameter described
in the table below.)

The table below shows all valid parallel processing statements. Each of these statements may be used
as single statements or grouped together to allow multiple I/O statements to execute during one
motion statement.

Dn

Used to specify %travel before the next parallel statement is executed. n is a
percentage between 0 and 100 which represents the position within the
motion where the parallel processing statements should begin. Statements
which follow the Dn parameter will begin execution after n% of the motion
travel has been completed.
When used with the Jump, Jump3, and Jump3CP commands, %travel does
not include the depart and approach motion. To execute statements after the
depart motion has completed, include D0 (zero) at the beginning of the
statement.
Dn may appear a maximum of 16 times in a parallel processing statement.

On / Off n Turn Output bit number n on or off.
MemOn / MemOff n Turns memory I/O bit number n on or off.
Out p,d
OpBCD p,q
OutW p,d

Outputs data d to output port p.

MemOut p, d
MemOutW p,d

Outputs data d to memory I/O port p

Signal s Generates synchronizing signal.

Wait t Delays for t seconds prior to execution of the next parallel processing
statement.

WaitSig s Waits for signal s before processing next statement.

Wait Sw(n) = j Delays execution of next parallel processing statement until the input bit n is
equal to the condition defined by j. (On or Off)

Wait MemSw(n) = j Delays execution of the next parallel processing statement until the memory
I/O bit n is equal to the condition defined by j. (On or Off)

Wait
other conditions

Wait other than the above two patterns is available. Refer to Wait Statement
for details.

Print Prints data to the display device.
Print # Prints data to the specified communications port.
External functions Executes the external functions declared with Decrare statement.

> S

!...! Parallel Processing

16 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Notes
When Motion is Completed before All I/O Commands are Complete

If, after completing the motion for a specific motion command, all parallel processing statement
execution has not been completed, subsequent program execution is delayed until all parallel
processing statements execution has been completed. This situation is most likely to occur with short
moves with many I/O commands to execute in parallel.

When the Till statement is used to stop the arm before completing the intended motion
If Till is used to stop the arm at an intermediate travel position, the system considers that the motion is
completed. The next statement execution is delayed until the execution of all parallel processing
statements has been completed.

Whem the AbortMotion statement or Trap is used to stop the arm before completing the motion
After the arm stops at an intermediate travel position, D statement cannot be executed.

Specifying n near 100% can cause path motion to decelerate
If a large value of n is used during CP motion, the robot may decelerate to finish the current motion.
This is because the position specified would normally be during deceleration if CP was not being used.
To avoid deceleration, consider placing the processing statement after the motion command. For
example, in the example below, the On 1 statement is moved from parallel processing during the jump
to P1 to after the jump.

CP On
Jump P1 !D96; On 1!
Go P2

CP On
Jump P1
On 1
Go P2

The Jump statement and Parallel Processing
It should be noted that execution of parallel processing statements which are used with the Jump
statement begins after the rising motion has completed and ends at the start of falling motion.

The Here statement and Parallel Processing
You cannot use both of the Here statement and parallel processing in one motion command like this:

Go Here :Z(0) ! D10; MemOn 1 !
Be sure to change the program like this:

P999 = Here
Go P999 Here :Z(0) ! D10; MemOn 1 !

See Also

Arc, Arc3, Go, Jump, Jump3, Jump3CP, Move, BGo, BMove, TGo, TMove

!...! Parallel Processing Example
The following examples show various ways to use the parallel processing feature with Motion
Commands:.

Parallel processing with the Jump command causes output bit 1 to turn on at the end of the Z joint
rising travel and when the 1st, 2nd, and 4th axes begin to move. Then output bit 1 is turned off again
after 50% of the Jump motion travel has completed.

Function test
 Jump P1 !D0; On 1; D50; Off 1!
Fend

Parallel processing with the Move command causes output bit 5 to turn on when the joints have
completed 10% of their move to the point P1. Then 0.5 seconds later turn output bit 5 off.

Function test2
 Move P1 !D10; On 5; Wait 0.5; Off 5!
Fend

#define

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 17

#define

Defines identifier to be replaced by specified replacement string.

Syntax
#define identifier [(parameter, [parameter])] string

Parameters
identifier Keyword defined by user which is an abbreviation for the string parameter. Rules for

identifiers are as follows:
- The first character must be alphabetic while the characters which follow may be

alphanumeric or an underscore (_).
- Spaces or tab characters are not allowed as part of the identifier .

parameter Normally used to specify a variable (or multiple variables) which may be used by the
replacement string. This provides for a dynamic define mechanism which can be used like
a macro. A maximum of up to 8 parameters may be used with the #define command.
However, each parameter must be separated by a comma and the parameter list must be
enclosed within parenthesis.

string This is the replacement string which replaces the identifier when the program is compiled.
Rules regarding replacement strings are as follows:

- Spaces or tabs are allowed in replacement strings.
- Identifiers used with other #define statements cannot be used as replacement strings.
- If the comment symbol (') is included, the characters following the comment symbol

will be treated as a comment and will not be included in the replacement string.
- The replacement string may be omitted. In this case the specified identifier is

replaced by "nothing" or the null string. This actually deletes the identifier from the
program

Description
The #define instruction causes a replacement to occur within a program for the specified identifier.
Each time the specified identifier is found the identifier is replaced with the replacement string prior to
compilation. However, the source code will remain with the identifier rather than the replacement
string. This allows code to become easier to read in many cases by using meaningful identifier names
rather than long difficult to read strings of code.

The defined identifier can be used for conditional compiling by combining with the #ifdef or #ifndef
commands.

If a parameter is specified, the new identifier can be used like a macro.

Notes
Using #define for variable declaration or label substitutions will cause an error:

It should be noted that usage of the #define instruction for variable declaration will cause an error.

See Also

#ifdef, #ifndef

S

#define

18 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

#define Example

' Uncomment next line for Debug mode.
' #define DEBUG

Input #1, A$
#ifdef DEBUG
 Print "A$ = ", A$
#endif
Print "The End"

#define SHOWVAL(x) Print "var = ", x

Integer a

a = 25

SHOWVAL(a)

#ifdef...#else...#endif

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 19

#ifdef...#else...#endif

Provides conditional compiling capabilities.

Syntax
#ifdef identifier
..put selected source code for conditional compile here.
[#else
...put selected source code for false condition here.]
#endif

Parameters
identifier Keyword defined by the user which when defined allows the source code defined

between #ifdef and #else or #endif to be compiled. Thus the identifier acts as the
condition for the conditional compile.

Description
#ifdef...#else...#endif allows for the conditional compiling of selected source code. The condition as to
whether or not the compile will occur is determined based on the identifier. #ifdef first checks if the
specified identifier is currently defined by #define. The #else statement is optional.

If defined, and the #else statement is not used, the statements between #ifdef and #endif are compiled.
Otherwise, if #else is used, then the statements between #ifdef and #else are compiled.

If not defined, and the #else statement is not used, the statements between #ifdef and #endif are
skipped without being compiled. Otherwise, if #else is used, then the statements between #else and
#endif are compiled.

See Also
#define, #ifndef

#ifdef Example
A section of code from a sample program using #ifdef is shown below. In the example below, the
printing of the value of the variable A$ will be executed depending on the presence or absence of the
definition of the #define DEBUG pseudo instruction. If the #define DEBUG pseudo instruction was
used earlier in this source, the Print A$ line will be compiled and later executed when the program is
run. However, the printing of the string "The End" will occur regardless of the #define DEBUG pseudo
instruction.

' Uncomment next line for Debug mode.
' #define DEBUG

Input #1, A$
#ifdef DEBUG
 Print "A$ = ", A$
#endif
Print "The End"

S

#ifndef...#endif

20 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

#ifndef...#endif

Provides conditional compiling capabilities.

Syntax
#ifndef identifier
..Put selected source code for conditional compile here.
[#else
...put selected source code for true condition here.]
#endif

Parameters
identifier Keyword defined by the user which when Not defined allows the source code defined

between #ifndef and #else or #endif to be compiled. Thus the identifier acts as the
condition for the conditional compile.

Description

This instruction is called the "if not defined" instruction. #ifndef...#else...#endif allow for the conditional
compiling of selected source code. The #else statement is optional.

If defined, and the #else statement is not used, the statements between #ifndef and #endif are not
compiled. Otherwise, if #else is used, then the statements between #else and #endif are compiled.

If not defined, and the #else statement is not used, the statements between #ifndef and #endif are
compiled. Otherwise, if #else is used, then the statements between #else and #endif are not compiled.

Notes
Difference between #ifdef and #ifndef

The fundamental difference between #ifdef and #ifndef is that the #ifdef instruction compiles the
specified source code if the identifier is defined. The #ifndef instruction compiles the specified source
code if the identifier is not defined.

See Also

#define, #ifdef

#ifndef Example
A section of code from a sample program using #ifndef is shown below. In the example below, the
printing of the value of the variable A$ will be executed depending on the presence or absence of the
definition of the #define NODELAY pseudo instruction. If the #define NODELAY pseudo instruction
was used earlier in this source, the Wait 1 line will Not be compiled along with the rest of the source
for this program when it is compiled. (i.e. submitted for running.) If the #define NODELAY pseudo
instruction was not used (i.e. NODELAY is not defined) earlier in this source, the Wait 1 line will be
compiled and later executed when the program is run. The printing of the string "The End" will occur
regardless of the #define NODELAY pseudo instruction.

' Comment out next line to force delays.
#define NODELAY 1

Input #1, A$
#ifndef NODELAY
 Wait 1
#endif
Print "The End"

S

#include

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 21

#include

Includes the specified file into the file where the #include statement is used.

Syntax
#include "fileName.INC"

Parameters
fileName fileName must be the name of an include file in the current project. All include files have

the INC extension. The filename specifies the file which will be included in the current file.

Description
#include inserts the contents of the specified include file with the current file where the #include
statement is used.

Include files are used to contain #define statements and global variable declarations.

The #include statement must be used outside of any function definitions.

An include file may contain a secondary include file. For example, FILE2 may be included within FILE1,
and FILE3 may be included within FILE2. This is called nesting.

See Also
#define, #ifdef, #ifndef

#include Example
Include File (Defs.inc)

#define DEBUG 1
#define MAX_PART_COUNT 20

Program File (main.prg)

#include "defs.inc"

Function main
 Integer i

 Integer Parts(MAX_PART_COUNT)

Fend

S

#undef

22 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

#undef

Undefines an identifier previously defined with #define.

Syntax
#undef identifier

Parameters
identifier Keyword used in a previous #define statement.

See Also

#define, #ifdef, #ifndef

S

AbortMotion

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 23

AbortMotion

Aborts a motion command and puts the running task in error status.
This command is for the experienced user and you need to understand the command
specification before use.

Syntax
AbortMotion {robotNumber | All }

Parameters
robotNumber Robot number that you want to stop the motion for.
All Aborts motion for all robots.

Description
Depending on the robot status when AbortMotion is executed, the result is different as follows.
In each case, hook an error and handle the error processing with OnErr to continue the processing.
Error 2999 can use the constant ERROR_DOINGMOTION.
Error 2998 can use the constant ERROR_NOMOTION.

Write a program not to execute AbortMotion more than twice before executing the continuous
execution (Cont).

When the robot is executing the motion command
The robot promptly pauses the arm motion immediately and cancels the remaining motions.
Error 2999 (ERROR_DOINGMOTION) occurs in the task which was running the motion command for
the robot.
For the following motion commands, the robot directly moves to the next position from the point where
it was paused.

When the robot has been paused immediately
When AbortMotion is executed, the remaining motion is canceled.
Error 2999 (ERROR_DOINGMOTION) occurs in the task which was running the motion command for
the robot when specifying the Cont statement.
For the following motion commands, the robot directly moves to the next position from the point where
it was paused.

When the robot is in WaitRecover status (Safeguard Open)
When AbortMotion is executed, the remaining motion is canceled.
The following motions can be selected with the Recover command flags.

When executing “Recover robotNumber, WithMove”, the robot motors turn on and the recovery
motion is executed.
When Cont is executed, error 2999 (ERROR_DOINGMOTION) occurs in the task which was
running the motion command for the robot.
For the following motion commands, the robot directly moves to the next position from the point
where it was paused.

When executing “Recover robotNumber, WithoutMove”, the robot motors turn on.
When Cont is executed, error 2999 (ERROR_DOINGMOTION) occurs in the task which was
running the motion command for the robot.
For the following motion commands, the robot directly moves to the next position from the point
where it was paused, without the recovery motion.

S

AbortMotion

24 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

When the robot is executing commands other than motion commands
Error 2998 (ERROR_NOMOTION) occurs in the task which was previously running the motion
command for the robot. When the task is waiting with Wait or Input commands, the task is aborted
promptly and error 2998 occurs.
When executing a motion command with CP On and a program has no more motion commands, error
2998 occurs even if the robot is running.

When the robot is not running from a program (task)
An error occurs.

See Also
OnErr, Recover, Till

AbortMotion Example
When memory I/O #0 turns on, AbortMotion is executed and the robot goes back to the home position.

Function main
 Motor On
 Xqt sub, NoEmgAbort
 OnErr GoTo errhandle

 Go P0
 Wait Sw(1)
 Go P1

 Quit sub
 Exit Function

errstart:
 Home
 Quit sub
 Exit Function

errhandle:
 Print Err
 If Err = ERROR_DOINGMOTION Then
 Print "Robot is moving" ‘ Executing Go P0 or Go P1
 EResume errstart
 ElseIf Err = ERROR_NOMOTION Then
 Print " Robot is not moving " ‘ Executes Wait Sw(1)
 EResume errstart
 EndIf

 Print "Error Stop" ‘ Other error occurs
 Quit All
Fend

Function sub
 MemOff 0
 Wait MemSw(0)
 AbortMotion 1
 MemOff 0
Fend

Abs Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 25

Abs Function

Returns the absolute value of a number.

Syntax
Abs(number)

Parameter
number Any valid numeric expression.

Return Values
The absolute value of a number.

Description
The absolute value of a number is its unsigned magnitude. For example, Abs(-1) and Abs(1) both
return 1.

See Also
Atan, Atan2, Cos, Int, Mod, Not, Sgn, Sin, Sqr, Str$, Tan, Val

Abs Function Example
The following examples are done from the command window using the Print instruction.

> print abs(1)
1
> print abs(-1)
1
> print abs(-3.54)
3.54
>

F

Accel Statement

26 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Accel Statement

Sets (or displays) the acceleration and deceleration rates for the point to point
motion instructions Go, Jump and Pulse.

Syntax
(1) Accel accel, decel [, departAccel, departDecel, approAccel, approDecel]
(2) Accel

Parameters
accel Integer expression 1 or more representing a percentage of maximum acceleration rate.
decel Integer expression 1 or more representing a percentage of the maximum deceleration

rate.
departAccel Depart acceleration for Jump. Valid Entries are 1 or more.

Optional. Available only with Jump command.
departDecel Depart deceleration for Jump. Valid Entries are 1 or more.

Optional. Available only with Jump command.
approAccel Approach acceleration for Jump. Valid Entries are 1 or more.

Optional. Available only with Jump command.
approDecel Approach deceleration for Jump. Valid Entries are 1 or more.

Optional. Available only with Jump command.

Return Values
When parameters are omitted, the current Accel parameters are displayed.

Description
 Accel specifies the acceleration and deceleration for all Point to Point type motions. This includes

motion caused by the Go, Jump and Pulse robot motion instructions.

Each acceleration and deceleration parameter defined by the Accel instruction may be an integer
value 1 or more. This number represents a percentage of the maximum acceleration (or
deceleration) allowed. Usually, the maximum value is 100. However, some robots allow setting
larger than 100. Use AccelMax function to get the maximum value available for Accel.

The Accel instruction can be used to set new acceleration and deceleration values or simply to
print the current values. When the Accel instruction is used to set new accel and decel values, the
first 2 parameters (accel and decel) in the Accel instruction are required.

The optional departAccel, departDecel, approAccel, and approDecel parameters are effective for
the Jump instruction only and specify acceleration and deceleration values for the depart motion at
the beginning of Jump and the approach motion at the end of Jump.

The Accel value initializes to the default values (low acceleration) when any one of the following
conditions occurs:

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

>

S

Accel Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 27

Notes
Executing the Accel command in Low Power Mode (Power Low)

If Accel is executed when the robot is in low power mode (Power Low), the new values are stored, but
the current values are limited to low values.

The current acceleration values are in effect when Power is set to High, and Teach mode is OFF.

Accel vs. AccelS
It is important to note that the Accel instruction does not set the acceleration and deceleration rates for
straight line and arc motion. The AccelS instruction is used to set the acceleration and deceleration
rates for the straight line and arc type moves.

Accel setting larger than 100
Usually, the maximum value is 100. However, some robots allow setting larger than 100.
In general use, Accel setting 100 is the optimum setting that maintains the balance of acceleration and
vibration when positioning. However, you may require an operation with high acceleration to shorten
the cycle time by decreasing the vibration at positioning. In this case, set the Accel to larger than 100.
Except in some operation conditions, the cycle time may not change by setting Accel to larger than
100.

See Also

AccelR, AccelS, Go, Jump, Jump3, Power, Pulse, Speed, TGo

Accel Statement Example
The following example shows a simple motion program where the acceleration (Accel) and speed
(Speed) is set using predefined variables.

Function acctest
 Integer slow, accslow, decslow, fast, accfast, decfast

 slow = 20 'set slow speed variable
 fast = 100 'set high speed variable
 accslow = 20 'set slow acceleration variable
 decslow = 20 'set slow deceleration variable
 accfast = 100 'set fast acceleration variable
 decfast = 100 'set fast deceleration variable

 Accel accslow, decslow
 Speed slow
 Jump pick
 On gripper
 Accel accfast, decfast
 Speed fast
 Jump place
 .
 .
 .
Fend

<Example 2>
Set the Z joint downward deceleration to be slow to allow a gentle placement of the part when using
the Jump instruction. This means we must set the Zdnd parameter low when setting the Accel values.

>Accel 100,100,100,100,100,35

>Accel
 100 100
 100 100
 100 35
>

Accel Function

28 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Accel Function

Returns specified acceleration value.

Syntax
Accel(paramNumber)

Parameter
paramNumber Integer expression which can have the following values:
 1: acceleration specification value
 2: deceleration specification value
 3: depart acceleration specification value for Jump
 4: depart deceleration specification value for Jump
 5: approach acceleration specification value for Jump
 6: approach deceleration specification value for Jump

Return Values
Integer 1% or more

See Also
Accel Statement

Accel Function Example
This example uses the Accel function in a program:

Integer currAccel, currDecel

' Get current accel and decel
currAccel = Accel(1)
currDecel = Accel(2)
Accel 50, 50
SRVJump pick
' Restore previous settings
Accel currAccel, currDecel

> F

AccelMax Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 29

AccelMax Function

Returns maximum acceleration value limit available for Accel.

Syntax
AccelMax(maxValueNumber)

Parameter
maxValueNumber Integer expression which can have the following values:
 1: acceleration maximum value
 2: deceleration maximum value
 3: depart acceleration maximum value for Jump
 4: depart deceleration maximum value for Jump
 5: approach acceleration maximum value for Jump
 6: approach deceleration maximum value for Jump

Return Values
Integer 1% or more

See Also
Accel

AccelMax Function Example
This example uses the AccelMax function in a program:

' Get maximum accel and decel
Print AccelMax(1), AccelMax(2)

> F

AccelR Statement

30 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

AccelR Statement

Sets or displays the acceleration and deceleration values for tool rotation control of
CP motion.

Syntax
(1) AccelR accel, [decel]
(2) AccelR

Parameters
accel Real expression in degrees / second2 (0.1 to 5000).
decel Real expression in degrees / second2 (0.1 to 5000).

Return Values
When parameters are omitted, the current AccelR settings are displayed.

Description
AccelR is effective when the ROT modifier is used in the Move, Arc, Arc3, BMove, TMove, and
Jump3CP motion commands.

The AccelR value initializes to the default values when any one of the following conditions occurs:

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

See Also

Arc, Arc3, BMove, Jump3CP, Power, SpeedR, TMove

AccelR Statement Example

AccelR 360, 200

> S

AccelR Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 31

AccelR Function

Returns specified tool rotation acceleration value.

Syntax
AccelR(paramNumber)

Parameter
paramNumber Integer expression which can have the following values:
 1: acceleration specification value
 2: deceleration specification value

Return Values
Real value in degrees / second2

See Also

AccelR Statement

AccelR Function Example

Real currAccelR, currDecelR

' Get current accel and decel
currAccelR = AccelR(1)
currDecelR = AccelR(2)

> F

AccelS Statement

32 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

AccelS Statement

Sets the acceleration and deceleration rates for the Straight Line and Continuous Path
robot motion instructions such as Move, Arc, Arc3, Jump3, etc.

Syntax
(1) AccelS accel, [decel], [departAccel], [departDecel], [approAccel], [approDecel]
(2) AccelS

Parameters
accel Real expression represented in mm/sec2 units to define acceleration and

deceleration values for straight line and continuous path motion. If decel is omitted,
then accel is used to specify both the acceleration and deceleration rates.

decel Optional. Real expression represented in mm/sec2 units to define the deceleration
value.

departAccel Optional. Real expression for depart acceleration value for Jump3, Jump3CP.
departDecel Optional. Real expression for depart deceleration value for Jump3, Jump3CP.
approAccel Optional. Real expression for approach acceleration value for Jump3, Jump3CP.
approDecel Optional. Real expression for approach deceleration value for Jump3, Jump3CP.
Valid entries range of the parameters

accel / decel departAccel / departDecel
approAccel / approDecel

0.1 to 25000 0.1 to 25000
 (mm/sec2)

Return Values
Displays Accel and Decel values when used without parameters

Description
AccelS specifies the acceleration and deceleration for all interpolated type motions including linear
and curved interpolations. This includes motion caused by the Move and Arc motion instructions.

The AccelS value initializes to the default values when any one of the following conditions occurs:

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

> S

AccelS Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 33

Notes
Executing the AccelS command in Low Power Mode (Power Low):

If AccelS is executed when the robot is in low power mode (Power Low), the new values are stored,
but the current values are limited to low values.

The current acceleration values are in effect when Power is set to High, and Teach mode is OFF.

Accel vs. AccelS:
It is important to note that the AccelS instruction does not set the acceleration and deceleration rates
for point to point type motion. (i.e. motions initiated by the Go, Jump, and Pulse instructions.) The
Accel instruction is used to set the acceleration and deceleration rates for Point to Point type motion.

See Also
Accel, Arc, Arc3, Jump3, Jump3CP, Power, Move, TMove, SpeedS

AccelS Example
The following example shows a simple motion program where the straight line/continuous path
acceleration (AccelS) and straight line/continuous path speed (SpeedS) are set using predefined
variables.

Function acctest
 Integer slow, accslow, fast, accfast

 slow = 20 'set slow speed variable
 fast = 100 'set high speed variable
 accslow = 200 'set slow acceleration variable
 accfast = 5000 'set fast acceleration variable
 AccelS accslow
 SpeedS slow
 Move P1
 On 1
 AccelS accfast
 SpeedS fast
 Jump P2
 .
 .
 .
Fend

AccelS Function

34 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

AccelS Function

Returns acceleration or deceleration for CP motion commands.

Syntax
AccelS(paramNumber)

Parameters
paramNumber Integer expression which can have the following values:
 1: acceleration value
 2: deceleration value
 3: depart acceleration value for Jump3, Jump3CP
 4: depart deceleration value for Jump3, Jump3CP
 5: approach acceleration value for Jump3, Jump3CP
 6: approach deceleration value for Jump3, Jump3CP

Return Values
Real value from 0 - 5000 mm/sec/sec

See Also
AccelS Statement, Arc3, SpeedS, Jump3, Jump3CP

AccelS Function Example

Real savAccelS

savAccelS = AccelS(1)

> F

Acos Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 35

Acos Function

Returns the arccosine of a numeric expression.

Syntax
Acos(number)

Parameters
number Numeric expression representing the cosine of an angle.

Return Values
Real value, in radians, representing the arccosine of the parameter number.

Description
Acos returns the arccosine of the numeric expression. Values range is from -1 to 1. The value
returned by Acos will range from 0 to PI radians. If number is < -1 or > 1, an error occurs.

To convert from radians to degrees, use the RadToDeg function.

See Also
Abs, Asin, Atan, Atan2, Cos, DegToRad, RadToDeg, Sgn, Sin, Tan, Val

Acos Function Example

Function acostest
 Double x

 x = Cos(DegToRad(30))
 Print "Acos of ", x, " is ", Acos(x)
Fend

F

Agl Function

36 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Agl Function

Returns the joint angle for the selected rotational joint, or position for the selected linear joint.

Syntax
Agl(jointNumber)

Parameters
jointNumber Integer expression representing the joint number. Values are from 1 to the

number of joints on the robot. The additional S axis is 8 and T axis is 9.

Return Values
The joint angle for selected rotational joint or position for selected linear joints.

Description
The Agl function is used to get the joint angle for the selected rotational joint or position for the
selected linear joint.

If the selected joint is rotational, Agl returns the current angle, as measured from the selected joint's 0
position, in degrees. The returned value is a real number.

If the selected joint is a linear joint, Agl returns the current position, as measured from the selected
joint's 0 position, in mm. The returned value is a real number.

If an auxiliary arm is selected with the Arm statement, Agl returns the angle (or position) from the
standard arm's 0 pulse position to the selected arm.

See Also
PAgl, Pls, PPls

Agl Function Example
The following examples are done from the command window using the Print instruction.

> print agl(1), agl(2)
 17.234 85.355

F

AglToPls Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 37

AglToPls Function

Converts robot angles to pulses.

Syntax
AglToPls(j1, j2, j3, j4 [, j5, j6], [j7], [j8, j9])

Parameters
j1 - j6 Real expressions representing joint angles.
j7 Real expresson representing the joint #7 angle. For the Joint type 7-axis robot.
j8 Real expression representing the additional S axis angle.
j9 Real expression representing the additional T axis angle.

Return Values
A robot point whose location is determined by joint angles converted to pulses.

Description
Use AglToPls to create a point from joint angles.

Note
Assignment to point can cause part of the joint position to be lost.

In certain cases, when the result of AglToPls is assigned to a point data variable, the arm moves to a
joint position that is different from the joint position specified by AglToPls.

For example:

P1 = AglToPls(0, 0, 0, 90, 0, 0)
Go P1 ' moves to AglToPls(0, 0, 0, 0, 0, 90) joint position

Similarly, when the AglToPls function is used as a parameter in a CP motion command, the arm may
move to a different joint position from the joint position specified by AglToPls.

Move AglToPls(0, 0, 0, 90, 0, 0) ' moves to AglToPls(0, 0, 0, 0, 0, 90)
joint position

When using the AglToPls function as a parameter in a PTP motion command, this problem does not
occur.

See Also

Agl, JA, Pls

AglToPls Function Example

Go AglToPls(0, 0, 0, 90, 0, 0)

F

Align Function

38 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Align Function

Returns the point data converted to align the robot orientation (U, V, W) at the specified point
in the tool coordinate system with the nearest axis of the specified local coordinate system.

Syntax
(1) Align (Point, [localNumber])

Parameters
Point The point data.
localNumber The local coordinate system number to be a reference for the alignment of

orientation.
If omitted, the base coordinate system is used.

Description

While operating the 6-axis robot, the robot orientation may have to be aligned with an axis of the
specified local coordinate system without changing the tool coordinate system position (origin) defined
with the point data.
Align Function converts the orientation data (U,V,W) of the specified point data and aligns with the
nearest axis of the specified local coordinate system.

For robots except the 6-axis robot, it returns a specified point.

See Also
AlignECP Function, LJM Function

Align Function Example

Move Align(P0) ROT

P1 = Align(P0, 1)
Move P1 ROT

F

AlignECP Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 39

AlignECP Function

Returns the point data converted to align the robot orientation (U, V, W) at the specified point
in the tool coordinate system with the nearest axis of the specified ECP coordinate system.

Syntax
(2) AlignECP (Point, ECPNumber)

Parameters
Point The point data.
ECPNumber The ECP coordinate system number to be a reference for the alignment of

orientation.

Description
While operating the 6-axis robot, the robot orientation may have to be aligned with an axis of the
specified local coordinate system without changing the tool coordinate system position (origin) defined
with the point data.
AlignECP Function converts the orientation data (U,V,W) of the specified point data and aligns with the
nearest axis of the specified local coordinate system.

For robots except the 6-axis robot, it returns a specified point.

See Also
Align Function, LJM Function

AlignECP Function Example

Move AlignECP(P0) ROT

P1 = AlignECP(P0, 1)
Move P1 ROT

F

And Operator

40 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

And Operator

Operator used to perform a logical or bitwise And of 2 expressions.

Syntax
result = expr1 And expr2

Parameters
expr1, expr2 For logical And, any valid expression which returns a Boolean result. For bitwise And,

an integer expression.
result For logical And, result is a Boolean value. For bitwise And, result is an integer.

Description
A logical And is used to combine the results of 2 or more expressions into 1 single Boolean result. The
following table indicates the possible combinations.

expr1 expr2 result
True True True
True False False
False True False
False False False

A bitwise And performs a bitwise comparison of identically positioned bits in two numeric expressions
and sets the corresponding bit in result according to the following table:

If bit in expr1 is And bit in expr2 is The result is
0 0 0
0 1 0
1 0 0
1 1 1

See Also

LShift, Mask, Not, Or, RShift, Xor

And Operator Example

Function LogicalAnd(x As Integer, y As Integer)

 If x = 1 And y = 2 Then
 Print "The values are correct"
 EndIf
Fend

Function BitWiseAnd()

 If (Stat(0) And &H800000) = &H800000 Then
 Print "The enable switch is open"
 EndIf
Fend

>print 15 and 7
7
>

javascript:hhobj_7.Click()
javascript:hhobj_8.Click()

AOpen Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 41

AOpen Statement

Opens file in the appending mode.

Syntax

AOpen fileName As #fileNumber
 .
 .
Close #fileNumber

Parameters

fileName String expression that specifies valid path and file name. If specifying only a file
name, the file must be in the current directory. See ChDisk for the details.

fileNumber Integer expression representing values from 30 - 63.

Description

Opens the specified file and identifies it by the specified file number. This statement is used for
appending data to the specified file. If the specified file is not found, create a new file.
The specified fileNumber identifies the file while it is open and cannot be used to refer to a different file
until the current file is closed. fileNumber is used by other file operations such as Print#, Write, Flish,
and Close.

Use the Close statement to close th file and release the file number.

It is recommended that you use the FreeFile function to obtain the file number so that more than one
task are not using the same number.

Note
Do not use a network path, otherwise an error occurs.
File write buffering

File writing is buffered. The buffered data can be written with Flush statement. Also, when closing a
file with Close statement, the buffered data can be written.

See Also

Close, Print #, BOpen, ROpen, UOpen, WOpen, FreeFile, Flush

AOpen Statement Example

Integer fileNum, i

FileNum = FreeFile
WOpen "TEST.TXT" As #fileNum
For i = 0 To 100
 Print #fileNum, i
Next I
Close #fileNum
....
....
....
FileNum = FreeFile
AOpen "TEST.TXT" As #FileNum
For i = 101 to 200
 Print #FileNum, i
Next i
Close #FileNum

S

Arc, Arc3 Statements

42 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Arc, Arc3 Statements

Arc moves the arm to the specified point using circular interpolation in the XY plane.
Arc3 moves the arm to the specified point using circular interpolation in 3 dimensions.
These two commands are available for SCARA robots (including RS series) and 6-axis robots.

Syntax
(1) Arc midPoint, endPoint [ROT] [CP] [searchExpr] [!...!] [SYNC]
(2) Arc3 midPoint, endPoint [ROT] [ECP] [CP] [searchExpr] [!...!] [SYNC]

Parameters
midPoint Point expression. The middle point (taught previously by the user) which the arm travels

through on its way from the current point to endPoint.
endPoint Point expression. The end point (taught previously by the user) which the arm travels to

during the arc type motion. This is the final position at the end of the circular move.
ROT Optional. :Decides the speed/acceleration/deceleration in favor of tool rotation.
ECP Optional. External control point motion. This parameter is valid when the ECP option is

enabled.
CP Optional. Specifies continuous path motion.
searchExpr Optional. A Till or Find expression.

Till | Find
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

!...! Parallel processing statements may be used with the Arc statement. These are optional.
(Please see the Parallel Processing description for more information.)

SYNC Reserves a motion command. The robot will not move until SyncRobots is executed.

Description
Arc and Arc3 are used to move the arm in a circular type motion from the current position to endPoint
by way of midPoint. The system automatically calculates a curve based on the 3 points (current
position, endPoint, and midPoint) and then moves along that curve until the point defined by endPoint
is reached. The coordinates of midPoint and endPoint must be taught previously before executing the
instruction. The coordinates cannot be specified in the statement itself.

Arc and Arc3 use the SpeedS speed value and AccelS acceleration and deceleration values. Refer to
Using Arc3 with CP below on the relation between the speed/acceleration and the
acceleration/deceleration. If, however, the ROT modifier parameter is used, Arc and Arc3 use the
SpeedR speed value and AccelR acceleration and deceleration values. In this case SpeedS speed
value and AccelS acceleration and deceleration value have no effect.

Usually, when the move distance is 0 and only the tool orientation is changed, an error will occur.
However, by using the ROT parameter and giving priority to the acceleration and the deceleration of
the tool rotation, it is possible to move without an error. When there is not an orientational change with
the ROT modifier parameter and movement distance is not 0, an error will occur.

Also, when the tool rotation is large as compared to move distance, and when the rotation speed
exceeds the specified speed of the manipulator, an error will occur. In this case, please reduce the
speed or append the ROT modifier parameter to give priority to the rotational speed/ acceleration/
deceleration.

When ECP is used (Arc3 only), the trajectory of the external control point coresponding to the ECP
number specified by ECP instruction moves circular with respect to the tool coordinate system. In this
case, the trajectory of tool center point does not follow a circular line.

> S

Arc, Arc3 Statements

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 43

ECP

Work

TCP

Setting Speed and Acceleration for Arc Motion
SpeedS and AccelS are used to set speed and acceleration for the Arc and Arc3 instructions. SpeedS
and AccelS allow the user to specify a velocity in mm/sec and acceleration in mm/sec2.

Notes
Arc Instruction works in Horizontal Plane Only

The Arc path is a true arc in the Horizontal plane. The path is interpolated using the values for
endPoint as its basis for Z and U. Use Arc3 for 3 dimensional arcs.

Range Verification for Arc Instruction
The Arc and Arc3 statements cannot compute a range verification of the trajectory prior to the arc
motion. Therefore, even for target positions that are within an allowable range, en route the robot may
attempt to traverse a path which has an invalid range, stopping with a severe shock which may
damage the arm. To prevent this from occurring, be sure to perform range verifications by running the
program at low speeds prior to running at faster speeds.

Suggested Motion to Setup for the Arc Move
Because the arc motion begins from the current position, it may be necessary to use the Go, Jump or
other related motion command to bring the robot to the desired position prior to executing Arc or Arc3.

Using Arc, Arc3 with CP
The CP parameter causes the arm to move to the end point without decelerating or stopping at the
point defined by endPoint. This is done to allow the user to string a series of motion instructions
together to cause the arm to move along a continuous path while maintaining a specified speed
throughout all the motion. The Arc and Arc3 instructions without CP always cause the arm to
decelerate to a stop prior to reaching the end point.

Potential Errors
Changing Hand Attributes

Pay close attention to the HAND attributes of the points used with the Arc instruction. If the hand
orientation changes (from Right Handed to Left Handed or vice-versa) during the circular interpolation
move, an error will occur. This means the arm attribute (/L Lefty, or /R Righty) values must be the
same for the current position, midPoint and endPoint points.

Attempt to Move Arm Outside Work Envelope
If the specified circular motion attempts to move the arm outside the work envelope of the arm, an
error will occur.

Arc, Arc3 Statements

44 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

See Also
!Parallel Processing!, AccelS, Move, SpeedS

Arc Example

The diagram below shows arc motion which originated at the point P100 and then moves through
P101 and ends up at P102. The following function would generate such an arc:

Function ArcTest
 Go P100
 Arc P101, P102
Fend

P101

P100

P102

Tip

When first trying to use the Arc instruction, it is suggested to try a simple arc with points directly in front
of the robot in about the middle of the work envelope. Try to visualize the arc that would be generated
and make sure that you are not teaching points in such a way that the robot arm would try to move
outside the normal work envelope.

Arch Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 45

Arch Statement

Defines or displays the Arch parameters for use with the Jump, Jump3, Jump3CP
instructions.

Syntax
(1) Arch archNumber, departDist, approDist
(2) Arch archNumber
(3) Arch

Parameters
archNumber Integer expression representing the Arch number to define. Valid Arch numbers are (0-6)

making a total of 7 entries into the Arch table. (see default Arch Table below)
departDist The vertical distance moved (Z) at the beginning of the Jump move before beginning

horizontal motion. (specified in millimeters)
approDist The vertical distance required (as measured from the Z position of the point the arm is

moving to) to move in a completely vertical fashion with all horizontal movement complete.
(specified in millimeters)

Return Values

Displays Arch Table when used without parameters.
The Arch table of the specified Arch number will be displayed when only the Arch number is specified.

Description
The primary purpose of the Arch instruction is to define values in the Arch Table which is required for
use with the Jump motion instruction. The Arch motion is carried out per the parameters
corresponding to the arch number selected in the Jump C modifier. (To completely understand the
Arch instruction, the user must first understand the Jump instruction.)

The Arch definitions allow the user to "round corners" in the Z direction when using the Jump C
instruction. While the Jump instruction specifies the point to move to (including the final Z joint position),
the Arch table entries specify how much distance to move up before beginning horizontal motion
(riseDist) and how much distance up from the final Z joint position to complete all horizontal motion
(fallDist). (See diagram below)

Rise
Distance

Fall
Distance

> S

Arch Statement

46 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

There are a total of 8 entries in the Arch Definition Table with 7 of them (0-6) being user definable.
The 8th entry (Arch 7)is the default Arch which actually specifies no arch at all which is referred to as
Gate Motion. (See Gate Motion diagram below) The Jump instruction used with the default Arch entry
(Entry 8) causes the arm to do the following:

1) Begin the move with only Z-joint motion until it reaches the Z-Coordinate value specified by the
LimZ command. (The upper Z value)

2) Next move horizontally to the target point position until the final X, Y and U positions are
reached.

3) The Jump instruction is then completed by moving the arm down with only Z-joint motion until
the target Z-joint position is reached.

 Gate Motion

(Jump with Arch 7)

P0 P1

Arch Table Default Values:

Arch
Number

Depart
Distance

Approach
Distance

0 30 30
1 40 40
2 50 50
3 60 60
4 70 70
5 80 80
6 90 90

Notes
Jump Motion trajectory changes depending on motion and speed

Jump motion trajectory is comprised of vertical motion and horizontal motion. It is not a continuous
path trajectory. The actual Jump trajectory of arch motion is not determined by Arch parameters alone.
It also depends on motion and speed.

Always use care when optimizing Jump trajectory in your applications. Execute Jump with the desired
motion and speed to verify the actual trajectory.

When speed is lower, the trajectory will be lower. If Jump is executed with high speed to verify an arch
motion trajectory, the end effector may crash into an obstacle with lower speed.

In a Jump trajectory, the depart distance increases and the approach distance decreases when the
motion speed is set high. When the fall distance of the trajectory is shorter than the expected, lower
the speed and/or the deceleration, or change the fall distance to be larger.

Even if Jump commands with the same distance and speed are executed, the trajectory is affected by
motion of the robot arms. As a general example, for a SCARA robot the vertical upward distance
increases and the vertical downward distance decreases when the movement of the first arm is large.
When the vertical fall distance decreases and the trajectory is shorter than the expected, lower the
speed and/or the deceleration, or change the fall distance to be larger.

Arch Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 47

Another Cause of Gate Motion
When the specified value of the Rising Distance or Falling Distance is larger than the actual Z-joint
distance which the robot must move to reach the target position, Gate Motion will occur. (i.e. no type
Arch motion will occur.)

Arch values are Maintained
The Arch Table values are permanently saved and are not changed until either the user changes them.

See Also

Jump, Jump3, JumpCP

Arch Example
The following are examples of Arch settings done from the command window.

> arch 0, 15, 15
> arch 1, 25, 50
> jump p1 c1
> arch
 arch0 = 15.000 15.000
 arch1 = 25.000 50.000
 arch2 = 50.000 50.000
 arch3 = 60.000 60.000
 arch4 = 70.000 70.000
 arch5 = 80.000 80.000
 arch6 = 90.000 90.000
>

Arch Function

48 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Arch Function

Returns arch settings.

Syntax
Arch(archNumber, paramNumber)

Parameters
archNumber Integer expression representing arch setting to retrieve parameter from (0 to 6).
paramNumber 1: depart distance
 2: approach distance

Return Value
Real number containing distance.

See Also
Arch statement

Arch Function Example

Real archValues(6, 1)
Integer i

' Save current arch values
For i = 0 to 6
 archValues(i, 0) = Arch(i, 1)
 archValues(i, 1) = Arch(i, 2)
Next i

> F

Arm Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 49

Arm Statement

Selects or displays the arm number to use.

Syntax
(1) Arm armNumber
(2) Arm

Parameters
armNumber Optional integer expression. Valid range is from 0 - 15. The user may select up

to 16 different arms. Arm 0 is the standard (default) robot arm. Arm 1 - 15 are
auxiliary arms defined by using the ArmSet instruction. When omitted, the
current arm number is displayed.

Return Values

When the Arm instruction is executed without parameters, the system displays the current arm number.

Description
Allows the user to specify which arm to use for robot instructions. Arm allows each auxiliary arm to use
common position data. If no auxiliary arms are installed, the standard arm (arm number 0) operates.
Since at time of delivery the arm number is specified as 0, it is not necessary to use the Arm
instruction to select an arm. However, if auxiliary arms are used they must first defined with the ArmSet
instruction.

The auxiliary arm configuration capability is provided to allow users to configure the proper robot
parameters for their robots when the actual robot configuration is a little different than the standard
robot. For example, if the user mounted a 2nd orientation joint to the 2nd robot link, the user will
probably want to define the proper robot linkages for the new auxiliary arm which is formed. This will
allow the auxiliary arm to function properly under the following conditions:

- Specifying that a single data point be moved through by 2 or more arms.
- Using Pallet
- Using Continuous Path motion
- Using relative position specifications
- Using Local coordinates

For SCARA robots (including RS series) with rotating joints used with a Cartesian coordinate system,
joint angle calculations are based on the parameters defined by the ArmSet parameters. Therefore,
this command is critical if any auxiliary arm or hand definition is required.

Notes
Arm 0

Arm 0 cannot be defined or changed by the user through the ArmSet instruction. It is reserved since it
is used to define the standard robot configuration. When the user sets Arm to 0 this means to use the
standard robot arm parameters.

Arm Number Not Defined
Selecting auxiliary arm numbers that have not been defined by the ArmSet command will result in an
error.

> S

Arm Statement

50 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

See Also
ArmClr, ArmSet, ECPSet, TLSet

Arm Statement Example

The following examples are potential auxiliary arm definitions using the ArmSet and Arm instructions.
ArmSet defines the auxiliary arm and Arm defines which Arm to use as the current arm. (Arm 0 is the
default robot arm and cannot be adjusted by the user.)

From the command window:

> ArmSet 1, 300, -12, -30, 300, 0
> ArmSet
 arm0 250 0 0 300 0
 arm1 300 -12 -30 300 0

> Arm 0
> Jump P1 'Jump to P1 using the Standard Arm Config
> Arm 1
> Jump P1 'Jump to P1 using auxiliary arm 1

Arm Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 51

Arm Function

Returns the current arm number for the current robot.

Syntax
Arm

Return Values
Integer containing the current arm number.

See Also
Arm Statement

Arm Function Example

Print "The current arm number is: ", Arm

> F

ArmClr Statement

52 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

ArmClr Statement

Clears (undefines) an arm definition.

Syntax
ArmClr armNumber

Parameters
armNumber Integer expression representing which of 15 arms to clear (undefine). (Arm 0 is

the default arm and cannot be cleared.)

See Also
Arm, ArmSet, ECPSet, Local, LocalClr, Tool, TLSet

ArmClr Example

ArmClr 1

> S

ArmDef Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 53

ArmDef Function

Returns arm definition status.

Syntax
ArmDef (armNumber)

Parameters
armNumber Integer expression representing which arm to return status for.

Return Values
True if the specified arm has been defined, otherwise False.

See Also
Arm, ArmClr, ArmSet, ECPSet, Local, LocalClr, Tool, TLClr, TLSet

ArmDef Example

Function DisplayArmDef(armNum As Integer)

 Integer i

 If ArmDef(armNum) = False Then
 Print "Arm ", ArmNum, "is not defined"
 Else
 Print "Arm ", armNum, " Definition:"
 For i = 1 to 5
 Print ArmSet(armNum, i)
 Next i
 EndIf
Fend

> F

ArmSet Statement

54 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

ArmSet Statement

Specifies and displays auxiliary arms.

Syntax
(1) ArmSet armNumber , link2Dist, joint2Offset, zOffset, [link1Dist], [orientAngOffset]
(2) ArmSet armNumber
(3) ArmSet

Parameters
armNumber Integer expression: Valid range from 1-15. The user may define up to 15 different

auxiliary arms.
SCARA Robots (including RS series)
paramNumber Description
1 Horizontal distance from joint #2 to orientation center (mm)
2 Joint #2 angle offset (degree)
3 Height offset (mm)
4 Horizontal distance from joint #1 to joint #2 (mm)
5 Orientation joint angle offset in degrees.

Return Values
When the ArmSet instruction is initiated without parameters, the system displays all the auxiliary arm
numbers and parameters.
The specified arm numbers and parameters will be displayed when only the arm number is specified.

Description
Allows the user to specify auxiliary arm parameters to be used in addition to the standard arm
configuration. This is most useful when an auxiliary arm or hand is installed to the robot. When using
an auxiliary arm, the arm is selected by the Arm instruction.

The link1Dist and orientAngOffset parameters are optional. If they are omitted, the default values are
the standard arm values.

The auxiliary arm configuration capability is provided to allow users to configure the proper robot
parameters for their robots when the actual robot configuration is a little different than the standard
robot. For example, if the user mounted a 2nd orientation joint to the 2nd robot link, the user will
probably want to define the proper robot linkages for the new auxiliary arm which is formed. This will
allow the auxiliary arm to function properly under the following conditions:

- Specifying that a single data point be moved through by 2 or more arms.
- Using Pallet
- Using Continuous Path motion
- Using relative position specifications
- Using Local coordinates

> S

ArmSet Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 55

For SCARA robots (including RS series) with rotating joints used with a Cartesian coordinate system,
joint angle calculations are based on the parameters defined by the ArmSet parameters. Therefore,
this command is critical if any auxiliary arm or hand definition is required.

Notes
Arm 0

Arm 0 cannot be defined or changed by the user. It is reserved since it is used to define the standard
robot configuration. When the user sets Arm to 0 this means to use the standard robot arm parameters.

Auxiliary Arm

X Axis

Y Axis

Auxiliary Arm

Auxiliary
Arm

Joint #2

Joint #2

Joint #1

Joint #1

SCARA Robot Cartesian Robot

RS Series:
View from this
direction

SCARA Robots (RS Series)

See Also

Arm, ArmClr

ArmSet Statement Example
The following examples are potential auxiliary arm definitions using the ArmSet and Arm instructions.
ArmSet defines the auxiliary arm and Arm defines which Arm to use as the current arm. (Arm 0 is the
default robot arm and cannot be adjusted by the user.)

From the command window:

> ArmSet 1, 300, -12, -30, 300, 0
> ArmSet
 Arm 0: 125.000, 0.000, 0.000, 225.000, 0.000
 Arm 1: 300.000, -12.000, -30.000, 300.000, 0.000

> Arm 0
> Jump P1 'Jump to P1 using the Standard Arm Config
> Arm 1
> Jump P1 'Jump to P1 using auxiliary arm 1

ArmSet Function

56 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

ArmSet Function

Returns one ArmSet parameter.

Syntax
ArmSet(armNumber, paramNumber)

Parameters
armNumber Integer expression representing the arm number to retrieve values for.
paramNumber Integer expression representing the parameter to retrieve (0 to 5), as described

below.
SCARA Robots (including RS series)

paramNumber Value Returned
1 Horizontal distance from joint #2 to orientation center (mm)
2 Joint #2 angle offset (degree)
3 Height offset (mm)
4 Horizontal distance from joint #1 to joint #2 (mm)
5 Orientation joint angle offset in degrees.

Return Values
Real number containing the value of the specified parameter, as described above.

Auxiliary Arm

X Axis

Y Axis

Auxiliary Arm

Auxiliary
Arm

Joint #2

Joint #2

Joint #1

Joint #1

SCARA Robot Cartesian Robot

RS Series:
View from this
direction

SCARA Robots (RS Series)

See Also

ArmClr, ArmSet Statement

ArmSet Function Example

Real x

x = ArmSet(1, 1)

> F

Asc Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 57

Asc Function

Returns the ASCII value of the first character in a character string.

Syntax
Asc(string)

Parameters
string Any valid string expression of at least 1 character in length.

Return Values
Returns an integer representing the ASCII value of the 1st character in the string sent to the ASC
function.

Description
The Asc function is used to convert a character to its ASCII numeric representation. The character
string send to the ASC function may be a constant or a variable.

Notes
Only the First Character ASCII Value is Returned

Although the Asc instruction allows character strings larger than 1 character in length, only the 1st
character is actually used by the Asc instruction. Asc returns the ASCII value of the 1st character only.

See Also

Chr$, InStr, Left$, Len, Mid$, Right$, Space$, Str$, Val

Asc Function Example
This example uses the Asc instruction in a program and from the command window as follows:

Function asctest
 Integer a, b, c
 a = Asc("a")
 b = Asc("b")
 c = Asc("c")
 Print "The ASCII value of a is ", a
 Print "The ASCII value of b is ", b
 Print "The ASCII value of c is ", c
Fend

From the command window:

>print asc("a")
97
>print asc("b")
98
>

F

Asin Function

58 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Asin Function

Returns the arcsine of a numeric expression.

Syntax
Asin(number)

Parameters
number Numeric expression representing the sine of an angle.

Return Values
Real value, in radians, representing the arc sine of the parameter number.

Description
Asin returns the arcsine of the numeric expression. Values range is from -1 to 1. The value returned
by Asin will range from -PI / 2 to PI / 2 radians. If number is < -1 or > 1, an error occurs.

To convert from radians to degrees, use the RadToDeg function.

See Also
Abs, Acos, Atan, Atan2, Cos, DegToRad, RadToDeg, Sgn, Sin, Tan, Val

Asin Function Example

Function asintest
 Double x

 x = Sin(DegToRad(45))
 Print "Asin of ", x, " is ", Asin(x)
Fend

F

AtHome Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 59

AtHome Function

Returns if the current robot is in its Home position or not.

Syntax
AtHome

Return Values
True if the current robot is in its Home position, otherwise False.

Description
The AtHome function returns if the current robot is in its Home position or not. To register the Home
position, use HomeSet command or Robot Manager. To move to the Home position, use the Home
command.

See Also
Home, HomeClr, HomeDef, HomeSet, Hordr, MCalComplete

F

Atan Function

60 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Atan Function

Returns the arctangent of a numeric expression.

Syntax
Atan(number)

Parameters
number Numeric expression representing the tangent of an angular value.

Return Values
Real value, in radians, representing the arctangent of the parameter number.

Description
Atan returns the arctangent of the numeric expression. The numeric expression (number) may be any
numeric value. The value returned by Atan will range from -PI to PI radans.

To convert from radians to degrees, use the RadToDeg function.

See Also
Abs, Acos, Asin, Atan2, Cos, DegToRad, RadToDeg, Sgn, Sin, Tan, Val

Atan Function Example

Function atantest
 Real x, y
 x = 0
 y = 1
 Print "Atan of ", x, " is ", Atan(x)
 Print "Atan of ", y, " is ", Atan(y)
Fend

F

Atan2 Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 61

Atan2 Function

Returns the angle of the imaginary line connecting points (0,0) and (X, Y) in radians.

Syntax
Atan2(X, Y)

Parameters
X Numeric expression representing the X coordinate.
Y Numeric expression representing the Y coordinate.

Return Values
Numeric value in radians (-PI to +PI).

Description
Atan2(X, Y) returns the angle of the line which connects points (0, 0) and (X, Y). This trigonometric
function returns an arctangent angle in all four quadrants.

See Also
Abs, Acos, Asin, Atan, Cos, DegToRad, RadToDeg, Sgn, Sin, Tan, Val

Atan2 Function Example

Function at2test
 Real x, y
 Print "Please enter a number for the X Coordinate:"
 Input x
 Print "Please enter a number for the Y Coordinate:"
 Input y
 Print "Atan2 of ", x, ", ", y, " is ", Atan2(x, y)
Fend

F

ATCLR Statement

62 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

ATCLR Statement

Clears and intializes the average torque for one or more joints.

Syntax
ATCLR [j1], [j2], [j3], [j4], [j5], [j6], [j7], [j8], [j9]

Parameters
j1 – j9 Optional. Integer expression representing the joint number. If no parameters

are supplied, then the average torque values are cleared for all joints.
The additional S axis is 8 and T axis is 9.

Description

ATCLR clears the average torque values for the specified joints.

You must execute ATCLR before executing ATRQ.

See Also
ATRQ, PTRQ

ATCLR Statement Example

> atclr
> go p1
> atrq 1
 0.028
> atrq
 0.028 0.008
 0.029 0.009
 0.000 0.000
>

> S

ATRQ Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 63

ATRQ Statement

Displays the average torque for the specified joint.

Syntax
ATRQ [jointNumber]

Parameters
jointNumber Optional. Integer expression representing the joint number.

The additional S axis is 8 and T axis is 9.

Return Values
Displays current average torque values for all joints.

Description
ATRQ displays the average RMS (root-mean-square) torque of the specified joint. The loading state
of the motor can be obtained by this instruction. The result is a real value from 0 to 1 with 1 being
maximum average torque.

You must execute ATCLR before this command is executed.

This instruction is time restricted. You must execute ATRQ within 60 seconds after ATCLR is
executed. When this time is exceeded, error 4030 occurs.

See Also
ATCLR, ATRQ Function, PTRQ

ATRQ Statement Example

> atclr
> go p1
> atrq 1
 0.028
> atrq
 0.028 0.008
 0.029 0.009
 0.000 0.000
>

> S

ATRQ Function

64 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

ATRQ Function

Returns the average torque for the specified joint.

Syntax
ATRQ (jointNumber)

Parameters
jointNumber Integer expression representing the joint number.

The additional S axis is 8 and T axis is 9.

Return Values
Real value from 0 to 1.

Description
The ATRQ function returns the average RMS (root-mean-square) torque of the specified joint. The
loading state of the motor can be obtained by this instruction. The result is a real value from 0 to 1
with 1 being maximum average torque.

You must execute ATCLR before this function is executed.

This instruction is time restricted. You must execute ATRQ within 60 seconds after ATCLR is
executed. When this time is exceeded, error 4030 occurs.

See Also
ATRQ Statement, PTCLR, PTRQ Statement

ATRQ Function Example
This example uses the ATRQ function in a program:

Function CheckAvgTorque
 Integer i

 Go P1
 ATCLR
 Go P2
 Print "Average torques:"
 For i = 1 To 4
 Print "Joint ", i, " = ", ATRQ(i)
 Next i
Fend

F

AutoLJM Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 65

AutoLJM Statement

Sets the Auto LJM function.

Syntax
AutoLJM { On | Off }

Parameter
On | Off On: Enables the Auto LJM.

Off: Disables the Auto LJM.
Description

AutoLJM is avairable for following commands.
Arc, Arc3, Go, Jump3, Jump3CP, Move

When AutoLJM is On, the manipulator operates with a least joint motion, just like using the LJM
function, whether the LJM function is applied to the position data to be passed to each command or
not. For example, to get the same effect as Go LJM(P1), you can write a program as follows.

AutoLJM On
Go P1

 AutoLJM Off
Since AutoLJM can enable LJM within a particular section of a program, it is not necessary to edit
each motion command.

When AutoLJM is Off, the LJM function is only enabled when it is applied to the position data to be
passed to each motion command.

In any of the following cases, AutoLJM has the setting specified in the controller settings (factory
default: Off).

Controller startup
Reset
All task stop
Motor On
Switching the Auto / Programming operation mode

Notes
Double application of AutoLJM and LJM function

If LJM function is applied to the point data to be passed to the motion command while AutoLJM is On,
LJM will be doubly applied at the command execution.
For Move LJM(P1, Here) and Move LJM(P1), enabling AutoLJM will not affect the motion. However, if
AutoLJM is enabled for Move LJM(P1, P0), motion completion positions of Move LJM(LJM(P1, P0),
Here), which enabled AutoLJM, and the one of Move LJM(P1, P0), which did not enable AutoLJM,
may be different.
It is recommended to write a program not to duplicate AutoLJM and LJM functions.

AutoLJM Usage Precaution
You can set the AutoLJM function to be enabled at the controller startup by setting the controller
preferences. However, if Auto LJM is enabled at all times by controller preferences or commands, this
function automatically adjusts the posture of the manipulator to reduce the motion distance, even when
you intended to move the joint widely. Therefore, it is recommended to create a program to apply the
LJM function only when necessary by using LJM function or AutoLJM command.

S

AutoLJM Statement

66 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

See Also
AuoLJM Function, LJM Function

AutoLJM example

AutoLJM On
Go P1
Go P2
AutoLJM Off

AutoLJM Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 67

AutoLJM Function

Returns the state of the AutoLJM.

Syntax
AutoLJM

Return Values
0 = Auto LJM OFF
1 = Auto LJM ON

See Also
AutoLJM

AutoLJM Function Example

If AutoLJM = Off Then
 Print "AutoLJM is off"
EndIf

F

AvoidSingularity Statement

68 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

AvoidSingularity Statement

Sets the singularity avoiding function.

Syntax
AvoidSingularity { mode }

Parameter
mode Integer expression representing a singularity avoiding mode to use

Constant Value Mode
SING_NONE 0 Disables the singularity avoiding function.
SING_THRU 1 Enables the singularity avoiding function.
SING_THRUROT 2 Enables the singularity avoiding function in CP motions with an

ROT modifier.
SING_VSD 3 Enables variable speed CP motion function.
SING_AUTO 4 Selects the singularity avoiding function or the variable speed

CP motion function automatically.
Description

AvoidSingularity is avairable for following commands.
Move, Arc, Arc3, Jump3, Jump3CP

A singurality avoiding function is to prevent accceleration errors when the vertical 6-axis robot
approaches to the singularity in CP motion by passing a different trajectory and returning to the original
trajectory after passing the singularity. This function is only applicable for the wrist singularity. Since
the singularity avoiding function is usually set to “1: Enabled” at the controller startup, it is not
necessary to change the setting. If you do not want a singurarity avoidance to ensure compatibility
with software which does not support the singularity avoiding function, or to avoid a trajectory gap,
disable the function.
A variable speed CP motion function automatically controls speed while keeping the trajectory when
the vertical 6-axis robot approaches to the singularity in order to avoid the acceleration error and
overspeed error, and returns to the normal speed command after leaving the singularity. To pass the
singularity while keeping the trajectory, Joint #4 and #6 may move largely.
If the AvoidSingularity parameter is changed, this function remains enabled until the next controller
startup.
At the controller startup, AvoidSingularity has the setting specified in the controller setting (factory
default: 1). Also, parameters for SingularityAngle, SingularitySpeed, and SingularityDist are reset to
the default values when AvoidSingularity setting is changed.

Notes
Condition setting of singularity neighborhood

To determine whether the manipulator approaches to the singularity neighborhood, angle of Joint #5
and angular velocity of Joint #4 are used. By default, Joint #5 angle is set to ±10 degrees, and Joint
#4 angle is set to ±10 % with respect to the maximum joint velocity. To change these settings, use
SingularityAngle and SingularitySpeed commands.

See Also

AvoidSingularity Function, SingualrityAngle, SingularitySpeed, SingularityDist

AvoidSingularity Example

AvoidSingularity 0 ‘Disables the singularity avoidance and operate the manipulator
Move P1
Move P2
AvoidSingularity 1

S

AvoidSingularity Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 69

AvoidSingularity Function

Returns the state of AvoidSingularity.

Syntax
AvoidSingularity

Return values
0 = Singularity avoiding function disabled
1 = Singularity avoiding function enabled
2 = Singularity avoiding function enabled for CP motion commands with an ROT modifier
3 = Variable speed CP motion function enabled
4 = Automatic selection of the singularity avoiding function or the variable speed CP motion

 dunction.

See also
AvoidSingularity

AvoidSingularity Function Example

If AvoidSingularity = Off Then
 Print "AvoidSingularity is off"
EndIf

F

Base Statement

70 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Base Statement

Defines and displays the base coordinate system.

Syntax
(1) Base pCoordinateData
(2) Base pOrigin, pXaxis, pYaxis, [{ X | Y }]

Parameters
pCoordinateData Point data representing the coordinate data of the origin and direction.
pOrigin Integer expression representing the origin point using robot coordinate system.
pXaxis Integer expression representing a point along the X axis using robot coordinate

system if X alignment is specified.
pYaxis Integer expression representing a point along the Y axis using robot coordinate

system if Y alignment is specified.
X | Y Optional. If X alignment is specified, then pXaxis is on the X axis of the new

coordinate system and only the Z coordinate of pYaxis is used. If Y alignment is
specified, then pYaxis is on the Y axis of the new coordinate system and only the
Z coordinate of pXaxis is used. If omitted, X alignment is assumed.

Description

Defines the robot base coordinate system by specifying base coordinate system origin and rotation
angle in relation to the robot absolute coordinate system.

To reset the Base coordinate system to default, execute the following statement. This will make the
base coordinate system the same as the robot absolute coordinate system.

Base XY(0, 0, 0, 0)

Notes
Changing the base coordinate system affects all local definitions

When base coordinates are changed, all local coordinate systems must be re-defined.

See Also

Local

Base Statement Example
Define base coordinate system origin at 100 mm on X axis and 100 mm on Y axis

> Base XY(100, 100, 0, 0)

> S

BClr Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 71

BClr Function

Clear one bit in a number and return the new value

Syntax
BClr (number, bitNum)

Parameters
number Specifies the numeric value to clear the bit by an expression or numeric value.
bitNum Specifies the bit (integer from 0 to 31) to be cleared by an expression or numeric value.

Return Values
Returns the new value of the specified numeric value (integer).

See Also
BSet, BTst

BClr Example

flags = BClr(flags, 1)

F

BGo Statement

72 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

BGo Statement

Executes Point to Point relative motion, in the selected local coordinate system.

Syntax
BGo destination [CP] [searchExpr] [!...!] [SYNC]

Parameters
destination The target destination of the motion using a point expression.
CP Optional. Specifies continuous path motion.
searchExpr Optional. A Till or Find expression.

Till | Find
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

!...! Optional. Parallel Processing statements can be added to execute I/O and
other commands during motion.

SYNC Reserves a motion command. The robot will not move until SyncRobots is
executed.

Description

Executes point to point relative motion, in the selected local coordinate system that is specified in the
destination point expression.

If a local coordinate system is not specified, relative motion will occur in local 0 (base coordinate
system).

Arm orientation attributes specified in the destination point expression are ignored. The manipulator
keeps the current arm orientation attributes. However, for a 6-Axis manipulator, the arm orientation
attributes are automatically changed in such a way that joint travel distance is as small as possible.

The Till modifier is used to complete BGo by decelerating and stopping the robot at an intermediate
travel position if the current Till condition is satisfied.

The Find modifier is used to store a point in FindPos when the Find condition becomes true during
motion.

When Till is used and the Till condition is satisfied, the manipulator halts immediately and the motion
command is finished. If the Till condition is not satisfied, the manipulator moves to the destination point.

When Find is used and the Find condition is satisfied, the current position is stored. Please refer to
Find for details.

When parallel processing is used, other processing can be executed in parallel with the motion
command.

The CP parameter causes acceleration of the next motion command to start when the deceleration
starts for the current motion command. In this case the robot will not stop at the destination coordinate
and will continue to move to the next point.

See Also
Accel, BMove, Find, !....! Parallel Processing, Point Assignment, Speed, Till, TGo, TMove, Tool

> S

BGo Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 73

BGo Example

> BGo XY(100, 0, 0, 0) 'Move 100mm in X direction
 '(in the local coordinate system)

Function BGoTest

 Speed 50
 Accel 50, 50
 Power High

 P1 = XY(300, 300, -20, 0)
 P2 = XY(300, 300, -20, 0) /L
 Local 1, XY(0, 0, 0, 45)

 GoP1
 Print Here
 BGo XY(0, 50, 0, 0)
 Print Here

 Go P2
 Print Here
 BGo XY(0, 50, 0, 0)
 Print Here

 BGo XY(0, 50, 0, 0) /1
 Print Here

Fend

[Output]
 X: 300.000 Y: 300.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /R /0
 X: 300.000 Y: 350.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /R /0
 X: 300.000 Y: 300.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /L /0
 X: 300.000 Y: 350.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /L /0
 X: 264.645 Y: 385.355 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /L /0

BMove Statement

74 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

BMove Statement

Executes linear interpolation relative motion, in the selected local coordinate system

Syntax
BMove destination [ROT] [CP] [searchExpr] [!...!] [SYNC]

Parameters
destination The target destination of the motion using a point expression.
ROT Optional. :Decides the speed/acceleration/deceleration in favor of tool

rotation.
CP Optional. Specifies continuous path motion.
searchExpr Optional. A Till or Find expression.

Till | Find
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

!...! Optional. Parallel Processing statements can be added to execute I/O and
other commands during motion.

SYNC Reserves a motion command. The robot will not move until SyncRobots is
executed.

Description

Executes linear interpolated relative motion, in the selected local coordinate system that is specified in
the destination point expression.

If a local coordinate system is not specified, relative motion will occur in local 0 (base coordinate
system).

Arm orientation attributes specified in the destination point expression are ignored. The manipulator
keeps the current arm orientation attributes. However, for a 6-Axis manipulator, the arm orientation
attributes are automatically changed in such a way that joint travel distance is as small as possible.

BMove uses the SpeedS speed value and AccelS acceleration and deceleration values. Refer to
Using BMove with CP below on the relation between the speed/acceleration and the
acceleration/deceleration. If, however, the ROT modifier parameter is used, BMove uses the SpeedR
speed value and AccelR acceleration and deceleration values. In this case SpeedS speed value and
AccelS acceleration and deceleration value have no effect.

Usually, when the move distance is 0 and only the tool orientation is changed, an error will occur.
However, by using the ROT parameter and giving priority to the acceleration and the deceleration of
the tool rotation, it is possible to move without an error. When there is not an orientational change with
the ROT modifier parameter and movement distance is not 0, an error will occur.

Also, when the tool rotation is large as compared to move distance, and when the rotation speed
exceeds the specified speed of the manipulator, an error will occur. In this case, please reduce the
speed or append the ROT modifier parameter to give priority to the rotational
speed/acceleration/deceleration.

The Till modifier is used to complete BMove by decelerating and stopping the robot at an intermediate
travel position if the current Till condition is satisfied.

The Find modifier is used to store a point in FindPos when the Find condition becomes true during
motion.

> S

BMove Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 75

When Till is used and the Till condition is satisfied, the manipulator halts immediately and the motion
command is finished. If the Till condition is not satisfied, the manipulator moves to the destination point.

When Find is used and the Find condition is satisfied, the current position is stored. Please refer to
Find for details.

When parallel processing is used, other processing can be executed in parallel with the motion
command.

Notes
Using BMove with CP

The CP parameter causes the arm to move to destination without decelerating or stopping at the point
defined by destination. This is done to allow the user to string a series of motion instructions together
to cause the arm to move along a continuous path while maintaining a specified speed throughout all
the motion. The BMove instruction without CP always causes the arm to decelerate to a stop prior to
reaching the point destination.

See Also

AccelS, BGo, Find, !....! Parallel Processing, Point Assignment, SpeedS, TGo, Till, TMove, Tool

BMove Example

> BMove XY(100, 0, 0, 0) 'Move 100mm in the X
 'direction (in the local coordinate system)

Function BMoveTest

 Speed 50
 Accel 50, 50
 SpeedS 100
 AccelS 1000, 1000
 Power High

 P1 = XY(300, 300, -20, 0)
 P2 = XY(300, 300, -20, 0) /L
 Local 1, XY(0, 0, 0, 45)

 Go P1
 Print Here
 BMove XY(0, 50, 0, 0)
 Print Here

 Go P2
 Print Here
 BMove XY(0, 50, 0, 0)
 Print Here

 BMove XY(0, 50, 0, 0) /1
 Print Here

Fend

[Output]
 X: 300.000 Y: 300.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /R /0
 X: 300.000 Y: 350.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /R /0
 X: 300.000 Y: 300.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /L /0
 X: 300.000 Y: 350.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /L /0
 X: 264.645 Y: 385.355 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /L /0

Boolean Statement

76 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Boolean Statement

Declares variables of type Boolean. (1 byte whole number).

Syntax
Boolean varName [(subscripts)], [varName [(subscripts)]...]

Parameters
varName Variable name which the user wants to declare as type Boolean.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared.

The subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 and the

available number of array elements is the upper bound value + 1.
 When specifying the upper bound value, make sure the number of total elements

is within the range shown below:
Local variable 2000
Global Preserve variable 4000
Global variable and module variable 100000

Description

Boolean is used to declare variables as type Boolean. Variables of type Boolean can contain one of
two values, False and True. Local variables should be declared at the top of a function. Global and
module variables must be declared outside of functions.

See Also
Byte, Double, Global, Integer, Long, Real, String

Boolean Statement Example

Boolean partOK
Boolean A(10) 'Single dimension array of boolean
Boolean B(10, 10) 'Two dimension array of boolean
Boolean C(5, 5, 5) 'Three dimension array of boolean

partOK = CheckPart()
If Not partOK Then
 Print "Part check failed"
EndIf

S

BOpen Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 77

BOpen Statement

Opens file in binary mode.

Syntax
BOpen fileName As #fileNumber
 .
 .
Close #fileNumber

Parameters
fileName String expression that specifies valid path and file name.

If specifying only a file name, the file must be in the current directory.
See ChDisk for the details.

fileNumber Integer expression representing values from 30 - 63.

Description
Opens the specified file and identifies it by the specified file number. This statement is used for
accessing the specified file in binary mode. If the specified file is not found, it will create a new file. If
the file exists, it will read and write the data from the beginning.
Use the ReadBin and WriteBin commands to read and write data in binary mode.

Note
Do not use a network path, otherwise an error occurs.

The specified fileNumber identifies the file while it is open and cannot be used to refer to a different file
until the current file is closed. fileNumber is used by other file operations such as ReadBin, WriteBin,
Seek, Eof, Flush, and Close.

The read/write position (pointer) of the file can be changed using the Seek command. When switching
between read and write access, use Seek to reposition the file pointer.

Use the Close statement to close th file and release the file number.

It is recommended that you use the FreeFile function to obtain the file number so that more than one
task are not using the same number.

See Also
Close, AOpen, FreeFile, ReadBin, ROpen, UOpen, WOpen, WriteBin

BOpen Example

Integer fileNum, i

fileNum = FreeFile
BOpen "TEST.DAT" As #fileNum
For i = 0 To 100
 WriteBin #fileNum, i
Next i

Flush #fileNum
Seek #fileNum, 10
ReadBin #fileNum, i
Print "data = ", i
Close #fileNum

S

Box Statement

78 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Box Statement

Specifies and displays the approach check area.

Syntax
(1) Box AreaNum, [robotNumber], minX, maxX, mixY, maxY, minZ, maxZ
(2) Box AreaNum, [robotNumber]
(3) Box

Parameters
AreaNum Integer expression representing the area number from 1 to 15.
robotNumber Optional. Integer expression that specifies which robot you want to configure.

If omitted, the current robot number is used.
minX The minimum X coordinate position which can be set to the approach check area.
maxX The maximum X coordinate position which can be set to the approach check area.
minY The minimum Y coordinate position which can be set to the approach check area.
maxY The maximum Y coordinate position which can be set to the approach check area.
minZ The minimum Z coordinate position which can be set to the approach check area.
maxZ The maximum Z coordinate position which can be set to the approach check area.

Return Values
When Syntax (2) is used, the area setting of the specified area is displayed.
When Syntax (3) is used, the area settings for all area numbers of the current robot are displayed.

Description

Box is used to set the approach check area. The approach check area is for checking approaches of
the robot end effector in the approach check area. The position of the end effector is calculated by the
current tool. The approach check area is set on the base coordinate system of the robot and is
between the specified maximum and minimum X, Y, and Z.

When the approach check area is used, the system detects approaches in any motor power status
during the controller is ON.

You can also use GetRobotInsideBox function or InsideBox function to get the result of the approach
check. GetRobotInsideBox functioin can be used for wait condition of Wait command. You can
provide the check result to the I/O by setting the remote output setting.

> S

Box Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 79

When several robots use one area, you should define the erea from each robot coordinate system.

Box1

Lower limit of axes X, Y, Z

Upper limit of axes X, Y, Z

Robot 2 Robot 1

Configure the Box 1 from Robot 1 position

Box 1, 1, 100, 200, 0, 100, 0, 100

Lower limit of axes X, Y, Z is (100,0,0) and upper limit is (200,100,100)

Configure the Box 1 from Robot 2
Box 1, 2, -200, -100, 0, 100, 0, 100

Lower limit of axes X, Y, Z is (−200,0,0) and upper limit is (−100,100,100)

Notes
Turning Off Approach Check Area by coordinate axis

You can turn off the approach check area of each coordinate axis. To turn off only the Z axis, definthe
minZ and maxZ to be 0. For example Box 1, 200, 300, 0, 500, 0, 0.
In this case, it checks if the robot end effector is in the XY dimentional area.

Default values of Approach Check Area
The default values for the Box statement are "0, 0, 0, 0, 0, 0". (Approach Check Area Checking is
turned off.)

Tool Selection
The approach check is executed for the current tool. When you change the tool, the approach check
may display the tool approach from inside to outside of the area or the other way although the robot is
not operating.

Additional axis
For the robot which has the additional ST axis (including the running axis), the approach check plane
to set doesn’t depend on the position of additional axis, but is based on the robot base coordinate
system.

Tip
Set Box statement from Robot Manager

EPSON RC+ 6.0 has a point and click dialog box for defining the approach check area. The simplest
method to set the Box values is by using the Box page on the Robot Manager .

See Also

BoxClr, BoxDef, GetRobotInsideBox, InsideBox, Plane

Box Statement Example
These are examples to set the approach check area using Box statement.

> Box 1, -200, 300, 0, 500, -100, 0

> Box
Box 1: -200.000, 300.000, 0.000, 500.000, -100.000, 0.000

Box Function

80 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Box Function

Returns the specified approach check area.

Syntax
Box(AreaNum, [robotNumber], limit)

Parameters
AreaNum Integer expression representing the area number from 1 to 15.
robotNumber Optional. Integer expression that specifies which robot you want to configure.

If omitted, the current robot number is used.
limit Integer expression that specifies which limit to return.
 1: Lower limit
 2: Upper limit

Return Values
When you select 1 for limit, the point contains the lower limit of the X, Y, Z coordinates.
When you select 2 for limit, the point contains the upper limit of the X, Y, Z coordinates.

See Also
Box, BoxClr, BoxDef, GetRobotInsideBox, InsideBox

Box Function Example

P1 = Box(1,1)
P2 = Box(1,2)

F

BoxClr Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 81

BoxClr Statement

Clears the definition of approach check area.

Syntax
BoxClr AreaNum [,robotNumber]

Parameters
AreaNum Integer expression representing the area number from 1 to 15.
robotNumber Optional. Integer expression that specifies which robot you want to configure.

If omitted, the current robot number is used.

See Also
Box, BoxDef, GetRobotInsideBox, InsideBox

BoxClr Function Example
This example uses BoxClr function in a program.

Function ClearBox

 If BoxDef(1) = True Then
 BoxClr 1
 EndIf
Fend

S >

BoxDef Function

82 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

BoxDef Function

Returns whether Box has been defined or not.

Syntax
BoxDef(AreaNum) [, robotNumber]

Parameters
AreaNum Integer expression representing an area number from 1 to 15.
robotNumber Integer expression representing a robot number you want to configure.

If ommited, the current robot will be specified.

Return Values
True if approach check area is defined for the specified area number, otherwise False.

See Also
Box, BoxClr, GetRobotInsideBox, InsideBox

BoxDef Function Example
This example uses BoxDef function in a program.

Function ClearBox

 If BoxDef(1) = True Then
 BoxClr 1
 EndIf
Fend

F

Brake Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 83

Brake Statement

Turns brake on or off for specified joint of the current robot.

Syntax
Brake status, jointNumber

Parameters
status The keyword On is used to turn the brake on. The keyword Off is used to turn the brake

off.
jointNumber The joint number from 1 to 6.

Description
The Brake command is used to turn brakes on or off for one joint of the 6-axis robot. It can only be
executed as a command command. This command is intended for use by maintenance personel only.
When the Brake statement is executed, the robot control parameter is initialized.
See Motor On for the details.

WARNING

■ Use extreme caution when turning off a brake. Ensure that the joint is
properly supported, otherwise the joint can fall and cause damage to the
robot and personel.

Before releasing the brake, be ready to use the emergency stop switch so that you can immediately
press it. When the controller is in emergency stop status, the motor brakes are locked. Be aware that
the robot arm may fall by its own weight when the brake is turned off with Brake command.

See Also
Motor, Power, Reset, SFree, SLock

Brake Example

> brake on, 1

> brake off, 1

>

Brake Function

84 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Brake Function

Returns brake status for specified joint.

Syntax
Brake (jointNumber)

Parameters
jointNumber Integer expression representing the joint number. Value are from 1 to the number of

joints on the robot.

Return Values
0 = Brake off, 1 = Brake on.

See Also
Brake Statement

Brake Example

If Brake(1) = Off Then
 Print “Joint 1 brake is off”
EndIf

>

BSet Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 85

BSet Function

Sets a bit in a number and returns the new value.

Syntax
BSet (number, bitNum)

Parameters
number Specifies the value to set the bit with an expression or numeric value.
bitNum Specifies the bit (integer from 0 to 31) to be set by an expression or numeric value.

Return Values
Returns the bit set value of the specified numeric value (integer).

See Also
BClr, BTst

BSet Example

flags = BSet(flags, 1)

F

BTst Function

86 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

BTst Function

Returns the status of 1 bit in a number.

Syntax
BTst (number, bitNum)

Parameters
number Specifies the number for the bit test with an expression or numeric value.
bitNum Specifies the bit (integer from 0 to 31) to be tested.

Return Values
Returns the bit test results (integer 1 or 0) of the specified numeric value.

See Also
BClr, Bset

BTst Example

If BTst(flags, 1) Then
 Print "Bit 1 is set"
EndIf

F

Byte Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 87

Byte Statement

Declares variables of type Byte. (2 byte whole number).

Syntax
Byte varName [(subscripts)] [, varName [(subscripts)]...]

Parameters
varName Variable name which the user wants to declare as type Byte.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared.

The subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 and the

available number of array elements is the upper bound value + 1.
 When specifying the upper bound value, make sure the number of total elements

is within the range shown below:
Local variable 2000
Global Preserve variable 4000
Global variable and module variable 100000

Description

Byte is used to declare variables as type Byte. Variables of type Byte can contain whole numbers
ranging in value from -128 to +127. Local variables should be declared at the top of a function.
Global and module variables must be declared outside of functions.

See Also
Boolean, Double, Global, Integer, Long, Real, String

Byte Example
The following example declares a variable of type Byte and then assigns a value to it. A bitwise And is
then done to see if the high bit of the value in the variable test_ok is On (1) or Off (0). The result is
printed to the display screen. (Of course in this example the high bit of the variable test_ok will always
be set since we assigned the variable the value of 15.)

Function Test
 Byte A(10) 'Single dimension array of byte
 Byte B(10, 10) 'Two dimension array of byte
 Byte C(5, 5, 5) 'Three dimension array of byte
 Byte test_ok
 test_ok = 15
 Print "Initial Value of test_ok = ", test_ok
 test_ok = (test_ok And 8)
 If test_ok <> 8 Then
 Print "test_ok high bit is ON"
 Else
 Print "test_ok high bit is OFF"
 EndIf
Fend

S

Calib Statement

88 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Calib Statement
Replaces the current arm posture pulse values with the current CalPls values.

Syntax
Calib joint1, [joint2], [joint3], [joint4] , [joint5] , [joint6], [joint7] , [joint8] , [joint9]

Parameters

joint Integer number from 1-9 that specifies the joint number to calibrate. While
normally only one joint may need calibration at a time, up to all nine joints may be
calibrated with the Calib command at the same time.
Additional S axis is 8 and T axis is 9.

Description

Automatically calculates and specifies the offset (Hofs) value. This offset is necessary for matching
the origin for each robot joint motor to the corresponding robot mechanical origin.

The Calib command should be used when the motor pulse value has changed. The most common
occurrence for use is after changing a motor. Normally, the calibration position pulse values would
match the CalPls pulse values. However, after maintenance operations such as changing the motors,
these two sets of values will no longer match, and therefore calibration becomes necessary.

Calibration may be accomplished by moving the arm to a desired calibration position, and then
executing the Calib command. By executing Calib, the calibration position pulse value is changed to
the CalPls value, (the correct pulse value for the calibration position)

In order to perform a proper calibration, Hofs values must be determined. To have Hofs values
automatically calculated, move the arm to the desired calibration position, and execute Calib. The
controller automatically calculates Hofs values based on the calibration pulse values and on the CalPls
pulse values.

Notes
Use caution when using the Calib command

Calib is intended to be used for maintenance purposes only. Execute Calib only when necessary.
Executing Calib causes the Hofs value to be replaced. Because unintended Hofs value changes can
cause unpredictable robot motion, use caution in executing Calib only when necessary.

Potential Errors
No Joint Number Specified Error

If the joint number is not specified with the Calib command, an error will occur.

See Also
CalPls, Hofs

Calib Example
Example from themonitor window.

> CalPls 'Display current CalPls values
 65523 43320
 -1550 21351
> Pulse 'Display current Pulse values
 65526 49358
 1542 21299
> Calib 2 'Execute calibration for joint 2 only
> Pulse 'Display (changed) Pulse values
 65526 43320
 -1542 21299
>

> S

Call Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 89

Call Statement

Calls a user function.

Syntax
Call funcName [(argList)]

Parameters
funcName The name of a Function which is being called.
argList Optional. List of arguments that were specified in the Function declaration.

For the argument, use the following syntax:
[ByRef] varName [()], or numerical expression

 ByRef Optional. Specify ByRef when you refer to the variable to be seen by
the calling function. In this case, the argument change in a function can
be reflected to the variable of the calling side. You can change the
values received as a reference.

Description
The Call instruction causes the transfer of program control to a function (defined in Function...Fend).
This means that the Call instruction causes program execution to leave the current function and
transfer to the function specified by Call. Program execution then continues in that function until an
Exit Function or Fend instruction is reached. Control is then passed back to the original calling
function at the next statement after the Call instruction.

You may omit the Call keyword and argument parentheses. For example, here is a call statement
used with or without the Call keyword:

Call MyFunc(1, 2)
MyFunc 1, 2

You can call an external function in a dynamic link library (DLL). For details, refer to Declare
Statement.

To execute a subroutine within a function, use GoSub...Return.

You can specify a variable as an argument. Specifying the ByRef parameter, you can reflect the
change of argument in the function to the variable of the calling side.
When specifying the ByRef parameter, you need to specify ByRef as well for the argument list of the
function definition (Function statement) and DLL function definition (Declare statement).
ByRef is necessary when giving an array variable as an argument.

See Also
Function, GoSub

Call Statement Example
<File1: MAIN.PRG>

Function main
 Call InitRobot
Fend

<File2: INIT.PRG>
Function InitRobot

 If Motor = Off Then
 Motor On
 EndIf
 Power High
 Speed 50
 Accel 75, 75
Fend

S

CalPls Statement

90 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

CalPls Statement

Specifies and displays the position and orientation pulse values for calibration.

Syntax
(1) CalPls j1Pulses, j2Pulses, j3Pulses, j4Pulses, [j5Pulses, j6Pulses], [j7Pulses], [j8Pulses, j9Pulses]
(2) CalPls

Parameters
j1Pulses First joint pulse value. This is a long integer expression.
j2Pulses Second joint pulse value. This is a long integer expression.
j3Pulses Third joint pulse value. This is a long integer expression.
j4Pulses Fourth joint pulse value. This is a long integer expression.
j5Pulses Optional. Fifth joint pulse value. This is a long integer expression.
j6Pulses Optional. Sixth joint pulse value. This is a long integer expression.
j7Pulses Optional. Seventh joint pulse value. This is a long integer expression.
j8Pulses Optional. Eighth joint pulse value. This is a long integer expression.
j9Pulses Optional. Nineth joint pulse value. This is a long integer expression.

Return Values
When parameters are omitted, displays the current CalPls values.

Description
Specifies and maintains the correct position pulse value(s) for calibration.

CalPls is intended to be used for maintenance, such as after changing motors or when motor zero
position needs to be matched to the corresponding arm mechanical zero position. This matching of
motor zero position to corresponding arm mechanical zero position is called calibration.

Normally, the calibration position Pulse values match the CalPls pulse values. However, after
performing maintenance operations such as changing motors, these two sets of values no longer
match, and therefore calibration becomes necessary.

Calibration may be accomplished by moving the arm to a certain calibration position and then
executing Calib. By executing Calib, the calibration position pulse value is changed to the CalPls value
(the correct pulse value for the calibration position.)

Hofs values must be determined to execute calibration. To have Hofs values automatically calculated,
move the arm to the desired calibration position, and execute Calib. The controller automatically
calculates Hofs values based on calibration position pulse values and on the CalPls values

Notes
CalPls Values Cannot be Changed by cycling power

CalPls values are not initialized by turning main power to the controller off and then on again. The only
method to modify the CalPls values is to execute the Calib command.

See Also

Calib, Hofs

> S

CalPls Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 91

CalPls Function

Returns calibration pulse value specified by the CalPls Statement.

Syntax
CalPls(joint)

Parameters
joint Integer expression representing a robot joint number or 0 to return CalPls status.

The additional S axis is 8 and T axis is 9.

Return Values
Integer value containing number of calibration pulses. When joint is 0, returns 1 or 0 depending on if
CalPls has been executed.

See Also

CalPls

CalPls function Example

This example uses the CalPls function in a program:

Function DisplayCalPlsValues
 Integer i

 Print "CalPls Values:"
 For i = 1 To 4
 Print "Joint ", i, " CalPls = ", CalPls(i)
 Next i
Fend

F

ChDir Statement

92 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

ChDir Statement

Changes and displays the current directory.

Syntax

(1) ChDir pathName
(2) ChDir

Parameter

pathName String expression representing the name of the new default path.
See ChDisk for the details.

Description

(1) Changes to the specified directory by specifying the parameter.
(2) When the parameter is omitted, the current directory is displayed. This is used to display the

current directory when it is not known.

ChDir is available only with the PC disk.

When the power is ON, the root directory wil be the current directory if no project is open, and if a
project is open, the project directory will be the current directory.

If you change the drive with ChDrive, the root directory will be the current directory.

See Also

ChDrive, Dir, ChDisk, CurDir$

ChDir Example

The following examples are done from the command window.

> ChDir \ 'Change current directory to the root directory
> ChDir.. 'Change current directory to parent dir

> Cd \TEST\H55 'Change current directory to \H55 in \TEST

> Cd 'Display current directory
A:\TEST\H55\

>

ChDisk Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 93

ChDisk Statement

Sets the object disk for file operations.

Syntax
ChDisk PC|USB|RAM

Parameters
PC Folders (such as Hard disk) on the Windows Part
USB USB memory on the Real Part
RAM Memory on the Real Part

Description

Specifies which disk to use for file operations. Default is PC disk.
The RC620 controller supports the following disks as the object of file operations.

PC Folders on the Windows Part
The initial settingis PC and normally you don’t have to change the
setting from PC.
Accesses to the files on the project folders.

USB USB memory connected to the controller memory port
This is useful to exchange files when you don’t use the Windows Part
(RC+).

RAM Temporary files on the memory
These files are not saves when you turn off the controller.
This is useful to save the data temporary.

Some of the SPEL+ commands change the object of the file operations according to the ChDisk setting.
Also, the ChDisk setting is avaialbe only with the PC disk for some commands.

ChDisk
ChDrive
ChDir
don’t affect…

Curve
CVMove
LoadPoints
SavePoints
ImportPoints file name

Object is always the project folders.
File name can be specified.
If path is specified, an error occurs.

ChDisk
don’t affect…

Access, Excel file name of OpenDB
ImportPoints source path
VLoadModel
VSaceImage
VSaveModel

Object is always the Windows folders.
If only file name is specified, it can be
affected by the current drive and folder.
You can also specify a full path.

Executable when
ChDisk is PC

ChDir
Dir
FolderExists
MkDir
RenDir
RmDir

If you execute without setting ChDisk to PC,
an error occurs.
If only file name and directory name are
specified, it can be affected by the current
drive and folder.
You can also specify a full path.
USB and RAM have no idea of directory.

> S

ChDisk Statement

94 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Executable when
ChDisk is USB or
RAM

Copy
Del
FileDataTime
FileExist
FileLen
AOpen, BOpen, ROpen, UOpen,
WOpen
Rename
Type

When ChDisk is PC:
If only file name and directory name are
specified, it can be affected by the current
drive and folder.
You can also specify a full path.

When ChDisk is USB or RAM:
Only file name can be specified and if a
path is specified, an error occurs.

Special Declare See Declare for the details.
Any specified file name can be accepted.
It cannot be affected by the current drive
and folder

How to decide a full path when ChDisk is PC is as follows:

Only file name “abc.txt” Curret drive + Current directory +
 Specified file name
“C:\EpsonRC60\Projects\ProjectName\abc.txt”

Full path without a drive “\abc.txt” Current drive + Specified full path
“C:\abc.txt”

Full path with a drive “d:\abc.txt” Specified full path
“d:\abc.txt”

Drive is a network folder “k:\abc.txt” If the “k” drive is network folder, an error occurs.
This will be supported by the following version.

Network path “\\Epson\data\abc.txt” If a network path is specified, an error occurs.
This will not be supported in the future version.

You can have one ChDisk setting per controller.
If you want to set more than one disk as a system, take a exceptional control to switch the ChDisk
setting.

See Also
ChDir, ChDrive, Dir, CurDisk$

ChDisk Example
Examples from the Command window.

> ChDisk PC

ChDrive Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 95

ChDrive Statement

Changes the current disk drive for file operations.

Syntax

ChDrive drive

Parameters

drive String expression or literal containing a valid drive letter.

Description

ChDrive is available only with the PC disk.

When the power is turned on, the “C” drive will be the current drive if a project is closed. If a project is
open, the drive of the opened project will be the current drive.

See ChDisk for the details.

See Also

ChDir, ChDisk, CurDrive$

ChDrive Statement Example

The following examples are done from the command window.

> ChDrive d

S

ChkCom Function

96 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

ChkCom Function

Returns number of characters in the reception buffer of a communication port

Syntax
ChkCom (portNumber As Integer)

Parameters
portNumber Integer value that specifies the RS-232C port number

Real Part 1 ~ 8
Windows Part 1001 ~ 1002

Return Values
Number of characters received (integer).

If the port cannot receive characters, the following negative values are returned to report the current
port status:

-2 Port is used by another task
-3 Port is not open

See Also
CloseCom, OpenCom, Read, Write

ChkCom Example

Integer numChars

numChars = ChkCom(1)

F

ChkNet Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 97

ChkNet Function

Returns number of characters in the reception buffer of a network port

Syntax
ChkNet (portNumber As Integer)

Parameters
portNumber TCP/IP port number (201 ~ 216)

Return Values
Number of characters received (integer).

If the port cannot receive characters, the following negative values are returned to report the current
port status:

-1 Port is open but communication has not been established
-2 Port is used by another task
-3 Port is not open

See Also
CloseNet, OpenNet, Read, Write

ChkNet Example

Integer numChars

numChars = ChkNet(201)

F

Chr$ Function

98 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Chr$ Function

Returns the character specified by a numeric ASCII value.

Syntax
Chr$(number)

Parameters
number An integer expression between 1 and 255.

Return Values
Returns a character that corresponds with the specified ASCII code specified by the value of number.

Description
Chr$ returns a character string (1 character) having the ASCII value of the parameter number. When
the number specified is outside of the range 1-255 an error will occur.

See Also
Asc, Instr, Left$, Len, Mid$, Right$, Space$, Str$, Val

Chr$ Function Example
The following example declares a variable of type String and then assigns the string "ABC" to it. The
Chr$ instruction is used to convert the numeric ASCII values into the characters "A", "B" and "C". The
&H means the number following is represented in hexadecimal form. (&H41 means Hex 41)

Function Test
 String temp$
 temp$ = Chr$(&H41) + Chr$(&H42) + Chr$(&H43)
 Print "The value of temp = ", temp$
Fend

F

ClearPoints Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 99

ClearPoints Statement

Erases the robot position data memory.

Syntax
ClearPoints

Description
ClearPoints initializes the robot position data area. Use this instruction to erase point definitions
which reside in memory before teaching new points.

See Also
Plist, LoadPoints, SavePoints

ClearPoints Statement Example
The example below shows simple examples of using the ClearPoints command (from the command
window). Notice that no teach points are shown when initiating the Plist command once the
ClearPoints command is given.

>P1=100,200,-20,0/R
>P2=0,300,0,20/L
>plist
P1=100,200,-20,0/R
P2=0,300,0,20/L
>clearpoints
>plist
>

S

Close Statement

100 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Close Statement

Closes a file that has been opened with AOpen, BOpen, ROpen, UOpen, or WOpen.

Syntax

Close #fileNumber

Parameters

fileNumber Integer expression whose value is from 30 - 63.

Description

Closes the file referenced by file handle fileNumber and releases it.

See Also

AOpen, BOpen, Flush, FreeFile, Input #, Print #, ROpen, UOpen, WOpen

Close Example

This example opens a file, writes some data to it, then later opens the same file and reads the data
into an array variable.

Integer fileNumber, i, j

ｆileNumber = FreeFile
WOpen "TEST.DAT" As #fileNum
For i = 0 To 100
 Print #fileNum, i
Next i
Close #fileNum

FileNum = FreeFile
ROpen "TEST.DAT" As #fileNum
For i = 0 to 100
 Input #fileNum, j
 Print j
Next i
Close #fileNum

S

CloseCom Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 101

CloseCom Statement

Close the RS-232C port that has been opened with OpenCom.

Syntax
CloseCom #portNumber | All

Parameters
portNumber RS-232C port number to close.

Real Part 1 ~ 8
Windows Part 1001 ~ 1002

If All is specified, the task will close all the open RS-232C port.

See Also

ChkCom, OpenCom

CloseCom Statement Example

CloseCom #1

S

CloseDB Statement

102 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

CloseDB Statement

Close the database that has been opened with the OpenDB command and releases the file number.

Syntax

CloseDB #fileNumber

Parameters

fileNumber Database number specified with OpenDB from 501 ~ 508

Description

CloseDB closes the database and Excel book, and releases the database number.

See Also

OpenDB,SelectDB, Input #, Print #

CloseDB Example

Refer to OpenDB use example

CloseNet Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 103

CloseNet Statement

Close the TCP/IP port previously opened with OpenNet.

Syntax
CloseNet #portNumber | All

Parameters
portNumber TCP/IP port number to close (201 ~ 216)

If All is specified, the task will close all the open TCP/IP port.
See Also

ChkNet, OpenNet

CloseNet Statement Example

CloseNet #201

S

Cls Statement

104 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Cls Statement

Clears the EPSON RC+ 6.0 Run, Operator, or Command window text area.
Clears also the TP print panel.

Syntax
(1) Cls #deviceID
(2) Cls

Parameters
deviceID 21 RC+

24 TP
When deviceID is omitted, the display device is cleared.

Description

Cls clears the current EPSON RC+ Run or Operator window text area, depending on where the
program was started from.

If Cls is executed from a program that was started from the Command window, the command window
text area is cleared.

When deviceID is omitted, the display of the current display device is cleared.

Cls Example
If this example is run from the Run window or Operator window, the text area of the window will be
cleared when Cls executes.

Function main
 Integer i

 Do
 For i = 1 To 10
 Print i
 Next i
 Wait 3
 Cls
 Loop
Fend

S

Cnv_AbortTrack Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 105

Cnv_AbortTrack Statement

Aborts tracking motion to a conveyor queue point.
Syntax

Cnv_AbortTrack [stopZheight]
Parameters

stopZheight Optional. Real expression that specifies the Z position the robot should move to
after aborting the track.

Description
When a motion command to a conveyor queue point is in progress, Cnv_AbortTrack can be executed
to abort it.

If stopZHeight is specified, the robot will move up to this value only if the Z axis position at the time of
abort is below stopZHeight and will then be decelerated to a stop.

If stopZHeight is ommitted, the robot is decelerated to a stop without the depart motion in the Z
direction.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_RobotConveyor Statement

Cnv_AbortTrack Statement Example

' Task to monitor robot whose part being tracked has gone downstream

Function WatchDownstream

 Robot 1
 Do
 If g_TrackInCycle And Cnv_QueLen(1, CNV_QUELEN_DOWNSTREAM) > 0 Then
 ' Abort tracking for current robot and move robot Z axis to 0
 g_AbortTrackInCycle = TRUE
 Cnv_AbortTrack 0
 g_AbortTrackInCycle = FALSE
 EndIf
 Wait .01
 Loop
Fend

S

Cnv_Accel Statement

106 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Cnv_Accel Statement

Sets acceleration and deceleration of the tracking motion in the Conveyor Tracking.

Syntax
Cnv_Accel (conveyorNumber) , accel/decel

Parameters
conveyorNumber Integer expression representing the conveyor number (1 ~ 16)
accel/decel Acceleration and deceleration of tracking motion

Description
Sets acceleration and deceleration of the tracking motion in Conveyor Tracking.
Acceleration and deceleration cannot be set separately.
Change the parameters when acceleration setting erro occurs, or when it is required to reduce work picking time.
The default value is 2000[mm/sec2].

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_Accel Function

Cnv_Accel Statement Example

Cnv_Accel 1,2000

Cnv_Accel Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 107

Cnv_Accel Function

Returns acceleration and deceleration of tracking motion in Conveyor Tracking.

Syntax
Cnv_Accel (conveyorNumber)

Parameters
conveyorNumber Integer expression representing the conveyor number (1 ~ 16)

Return Value
Real value in millimeters.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_Accel

Cnv_AccelFunction Example

Print Cnv_Accel (1)

Cnv_Downstream Function

108 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Cnv_Downstream Function

Returns the downstream limit for the specified conveyor.

Syntax

Cnv_Downstream (conveyorNumber)

Parameters

conveyorNumber Integer expression representing the conveyor number (1 ~ 16)

Return Values

Real value in millimeters.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_Upstream

Cnv_Downstream Statement Example

Print "Downstream limit: ", Cnv_Downstream(1)

F

Cnv_Fine Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 109

Cnv_Fine Statement

Sets the value of Cnv_Fine for one conveyor.

Syntax

Cnv_Fine conveyorNumber [, fineValue]

Parameters

conveyorNumber Integer expression representing the conveyor number.
fineValue Optional. Real expression that specifies the distance at which tracking is

completed in millimeters. A value of 0 means that Cnv_Fine is not used.
If omitted, the current Cnv_Fine setting is displayed.

Description

After confirming the tracking operation is complete, specify the distance from the part that is
acceptable for the next command. When specifying 0, the Cnv_Fine setting will not be used and the
next command will be accepted when the motion command is complete.

The default value of 0 mm is automatically set when the following conditions occur:

Conveyor is created.
Controller is started.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_Fine Function

Cnv_Fine Statement Example

Cnv_Fine 1, 5

S

Cnv_Fine Function

110 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Cnv_Fine Function

Returns the current Cnv_Fine setting.

Syntax

Cnv_Fine(conveyorNumber)

Parameters

conveyorNumber Integer expression representing the conveyor number (1 ~ 16).

Return Values

Real value of Cnv_Fine in millimeters.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_Fine Statement

Cnv_Fine Function Example

Real f

f = Cnv_Fine(1)

F

Cnv_LPulse Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 111

Cnv_LPulse Function

Returns the pulse value latched by the coveyor trigger.

Syntax
Cnv_LPulse (conveyorNumber)

Parameters
conveyorNumber Integer expression that specifies the conveyor number (1 ~ 16)

Description
Returns the latest conveyor pulses latched by the hardware trigger wires or Cnv_Trigger.

Return Values
Long value that contains the latched pulses of the specified conveyor.

Note
This command will only work if the Conveyor Tracking option is active.

See Also
Cnv_Trigger, Cnv_Pulse

Cnv_LPulse function Example

Print "Latched conveyor position: ", Cnv_LPulse(1)

F

Cnv_Mode

112 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Cnv_Mode

Sets the tracking mode for the conveyor tracking.

Syntax
Cnv_Mode (conveyorNumber , modeNumber)

Parameter
conveyorNumber Integer expression that specifies the conveyor number (1 ~ 16)
modeNumber 0: Picking quantity-priority mode

1: Picking accuracy-priority mode

Description
Sets the tracking mode for the conveyor tracking.
Cnv_Mode is only available for the linear conveyors.
Set the tracking mode before starting the conveyor tracking. If the mode is not selected, or if the
conveyor speed is 350 mm/sec or more, the picking quantity-priority mode will be set.
Picking quantity-priority mode: Although this mode is inferior in picking accuracy to the picking

accuracy-priority mode, it takes less time to catch up with the moving
work pieces. Therefore, this mode is suitable for the conveyor
systems in which space between the work pieces is narrow or the
fast-speed conveyor systems.

Picking accuracy-priority mode: Although this mode takes longer time to catch up with the work pieces
compared to the picking quantity-priority mode, this improves the
picking accuracy. Therefore, this mode is suitable for the conveyor
systems for small work pieces.

Note

This command will only work if the Conveyor Tracking option is active.

See Also
Cnv_Mode Function

Cnv_Mode Example

Cnv_Mode 1, 1

S

Cnv_Mode Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 113

Cnv_Mode Function

Returns the tracking mode of the conveyor tracking.

Syntax
Cnv_Mode (conveyorNumber)

Parameter
conveyorNumber Integer expression that specifies the conveyor number (1 ~ 16)

Return Values
Integer expression 0 or 1.
0: Picking quantity-priority mode
1: Picking accuracy-priority mode

Note
This command will only work if the Conveyor Tracking option is active.

See Also
Cnv_Mode

Cnv_Mode Function Example

Print Cnv_Mode (1)

F

Cnv_Name$ Function

114 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Cnv_Name$ Function

Returns the name of the specified conveyor.

Syntax

Cnv_Name$ (conveyorNumber)

Parameters

conveyorNumber Integer value from 1 ~ 16 representing the conveyor number.

Return Values

A string containing the conveyor name.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_Number

Cnv_Name$ Function Example

Print "Conveyor 1 Name: ", Cnv_Name$(1)

F

Cnv_Number Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 115

Cnv_Number Function

Returns the number of a conveyor specified by name.

Syntax

Cnv_Number (conveyorName)

Parameters

conveyorName String expression representing the conveyor name.

Return Values

Integer conveyor number.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_Name$

Cnv_Number Function Example

Integer cnvNum

cnvNum = Cnv_Number("Main Conveyor")

F

Cnv_OffsetAngle

116 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Cnv_OffsetAngle

Sets the offset value for the conveyor queue data.

Syntax

Cnv_OffsetAngle conveyorNumber [, offsetAngle]

Parameters

conveyorNumber Integer value from 1 ~ 16 representing the conveyor number.
offsetAngle Real value representing the offset value for the conveyor queue data (unit: degree).

Optional. If omitted, the current offset is dispayed.

Description

Sets the offset value for the conveyor queue data.
Cnv_OffsetAngle is available for the circular conveyor.
Conveyor Tracking may have tracking delay according to the conveyor speed. If the tracking delay is
occurred, the robot handles the parts in the wrong position moved by the tracking delay.
Cnv_OffsetAngle gives the offset value to the queue in order to move the robot back to the correct
position.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_OffsetAngle Function

Cnv_OffsetAngle Example

Cnv_OffsetAngle 1, 5

F

Cnv_OffsetAngle Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 117

Cnv_OffsetAngle Function

Returns the offset value of the conveyor queue data.

Syntax

Cnv_OffsetAngle (conveyorNumber)

Parameters

conveyorNumber Integer value from 1 ~ 16 representing the conveyor number.

Return Values

Integer value (unit: degree).

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_OffsetAngle

Cnv_OffsetAngle Function Example

Real offsetAngle

offsetAngle = Cnv_OffsetAngle (1)

F

Cnv_Point Function

118 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Cnv_Point Function

Returns a robot point in the specified conveyor's coordinate system derived from
sensor coordinates.

Syntax

Cnv_Point (conveyorNumber, sensorX, sensorY [, sensorU])

Parameters

conveyorNumber Integer expression representing the conveyor number.
sensorX Real expression for the sensor X coordinate.
sensorY Real expression for the sensor Y coordinate.
sensorU Optional. Real expression for the sensor U coordinate.

Return Values

Robot point in conveyor coordinate system.

Description

The Cnv_Point function must be used to create points that can be added to a conveyor queue. For
vision conveyors, sensorX and sensorY are the vision coordinates from the camera. For sensor
conveyors, sensorX and sensorY can be 0, since this is the origin of the conveyor's coordinate system.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_Speed

Cnv_Point Function Example

Boolean found
Integer i, numFound
Real x, y, u

Cnv_Trigger 1
VRun FindParts
VGet FindParts.Part.NumberFound, numFound
For i = 1 To numFound
 VGet FindParts.Part.CameraXYU(i), found, x, y, u
 Cnv_QueAdd 1, Cnv_Point(1, x, y)
Next i

F

Cnv_PosErr Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 119

Cnv_PosErr Function

Returns deviation in current tracking position compared to tracking target.

Syntax

Cnv_PosErr (conveyorNumber)

Parameters

conveyorNumber Integer expression representing the conveyor number.

Return Values

Real value in millimeters.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_MakePoint

Cnv_PosErr Function Example

Print "Conveyor 1 position error: ", Cnv_PosErr(1)

F

Cnv_Pulse Function

120 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Cnv_Pulse Function

Returns the current position of a conveyor in pulses.

Syntax

Cnv_Pulse (conveyorNumber)

Parameters

conveyorNumber Integer expression representing the conveyor number.

Return Values

Long value of current pulses for specified conveyor.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_Trigger, Cnv_LPulse

Cnv_Pulse Function Example

Print "Current conveyor position: ", Cnv_Pulse(1)

F

Cnv_QueAdd Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 121

Cnv_QueAdd Statement

Adds a robot point to a conveyor queue.

Syntax

Cnv_QueAdd conveyorNumber, pointData [, userData]

Parameters

conveyorNumber Integer expression that specifies the number of the conveyor to use.
pointData The robot point to add to the conveyor queue.
userData Optional. Real expression used to store user data along with the point.

Description

pointData is added to the end of the specified conveyor's queue. It is registered together with the
currently latched conveyor pulse position.

If the distance between pointData and the previous point in the queue is at or below that specified by
Cnv_QueReject, the point data will not be added to the queue, and no error will occur.

The maximum queue data value is 1000.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_RobotConveyor Statement

Cnv_QueAdd Statement Example

Boolean found
Integer i, numFound
Real x, y, u

Cnv_Trigger 1
VRun FindParts
VGet FindParts.Part.NumberFound, numFound
For i = 1 To numFound
 VGet FindParts.Part.CameraXYU(i), found, x, y, u
 Cnv_QueAdd 1, Cnv_Point(1, x, y)
Next i

S

Cnv_QueGet Function

122 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Cnv_QueGet Function

Returns a point from the specified conveyor's queue.

Syntax

Cnv_QueGet(conveyorNumber [, index])

Parameters

conveyorNumber Integer expression representing the conveyor number.
index Optional. Integer expression representing the index of the queue data to retrieve.

Return Values
A robot point in the specified conveyor's coordinate system.

Description

Use Cnv_QueGet to retrieve points from the conveyor queue. When queNumber is omitted, the first
point in the queue is returned. Otherwise, the point from the specified queNumber is returned.

Cnv_QueGet does not delete the point from the queue. Instead, you must use Cnv_QueRemove to
delete it.

To track a part as the conveyor moves, you must use Cnv_QueGet in a motion command statement.
For example:

 Jump Cnv_QueGet(1) ' this tracks the part

You cannot assign the result from Cnv_QueGet to a point and then track it by moving to the point.

 P1 = Cnv_QueGet(1)
 Jump P1 ' this does not track the part

When you assign the result from Cnv_QueGet to a point, the coordinate values correspond to the
position of the part when the point assignment was executed.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_QueLen, Cnv_QueRemove

Cnv_QueGet Function Example

' Jump to the first part in the queue and track it
Jump Cnv_QueGet(1)
On gripper
Wait .1
Jump place
Off gripper
Wait .1
Cnv_QueRemove 1

F

Cnv_QueLen Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 123

Cnv_QueLen Function

Returns the number of items in the specified conveyor's queue.

Syntax

Cnv_QueLen(conveyorNumber [, paramNumber])

Parameters

conveyorNumber Integer expression representing the conveyor number.
paramNumber Optional. Integer expression that specifies which data to return the length for.

Symbolic constant Value Meaning

CNV_QUELEN_ALL 0 Returns total number of items in queue.
CNV_QUELEN_UPSTREAM 1 Returns number of items upstream.
CNV_QUELEN_PICKUPAREA 2 Returns number of items in pickup area.
CNV_QUELEN_DOWNSTREAM 3 Return number of items downstream.

Return Values

Integer number of items.

Description

Cnv_QueLen is used to find out how many items are available in the queue. Typically, who will want
to know how many items are in the pick up area.

You can also use Cnv_QueLen as an argment to the Wait statement.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_QueGet

Cnv_QueLen Function Example

Do
 Do While Cnv_QueLen(1, CNV_QUELEN_DOWNSTREAM) > 0
 Cnv_QueRemove 1, 0
 Loop
 If Cnv_QueLen(1, CNV_QUELEN_PICKUPAREA) > 0 Then
 Jump Cnv_QueGet(1, 0) C0
 On gripper
 Wait .1
 Cnv_QueRemove 1, 0
 Jump place
 Off gripper
 Jump idlePos
 EndIf
Loop

F

Cnv_QueList Statement

124 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Cnv_QueList Statement

Displays a list of items in the specified conveyor's queue.

Syntax

Cnv_QueList conveyorNumber, [numOfItems]

Parameters

conveyorNumber Integer expression representing the conveyor number.
numOfItems Optional. Integer expression to specify how many items to display. If omitted, all

items are displayed.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_QueGet

Cnv_QueList Statement Example

Cnv_QueList 1

S

Cnv_QueMove Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 125

Cnv_QueMove Statement

Moves data from upstream conveyor queue to downstream conveyor queue.

Syntax

Cnv_QueMove conveyorNumber, [index], [userData]

Parameters

conveyorNumber Integer value from 1 ~ 16 representing the conveyor number.
index Optional. Integer expression that specifies the index of the queue to move.

(The first item in the queue is index #0.)
userData Optional. Real expression used to store user data along with the item.

Description

Cnv_QueMove is used to move one or more items from a conveyor queue to its associated
downstream conveyor queue. If index is specified, the first item (index #0) of the queue is moved.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_QueGet

Cnv_QueMove Statement Example

Cnv_QueMove 1

S

Cnv_QueReject Statement

126 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Cnv_QueReject Statement

Sets and displays the queue reject distance for a conveyor.

Syntax

Cnv_QueReject conveyorNumber [, rejectDistance]

Parameters

conveyorNumber Integer expression representing the conveyor number.
rejectDistance Optional. Real expression specifying the minimum distance between parts allowed

in the queue in millimeters. If omitted, the current rejectDistance is displayed.
Description

Use Cnv_QueReject to specify the miminum distance between parts to prevent double registration in
the queue. As parts are scanned by the vision system, they will be found more than once, but they
should only be registered once. Cnv_QueReject helps the system filter out double registration.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_QueReject Function

Cnv_QueReject Statement Example

Cnv_QueReject 1, 20

S

Cnv_QueReject Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 127

Cnv_QueReject Function

Returns the current part reject distance for a conveyor.

Syntax

Cnv_QueReject (conveyorNumber)

Parameters

conveyorNumber Integer expression representing the conveyor number.

Return Values

Real value in millimeters.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_QueReject Statement

Cnv_QueReject Function Example

Real rejectDist

RejectDist = Cnv_QueReject(1)

F

Cnv_QueRemove Statement

128 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Cnv_QueRemove Statement

Removes items from a conveyor queue.

Syntax

Cnv_QueRemove conveyorNumber [, index | All]

Parameters

conveyorNumber Integer expression representing the conveyor number.
index Optional. Integer expression specifying the index of the first item to remove or

specify All to remove all.
Description

Use Cnv_QueRemove to remove one or more items from a conveyor queue. Typically, you remove
items from the queue after you are finished with the data.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_QueAdd Statement

Cnv_QueRemove Statement Example

Jump Cnv_QueGet(1)
On gripper
Wait .1
Jump place
Off gripper
Wait .1

' Remove the data from the conveyor
Cnv_QueRemove 1
Jump Cnv_QueGet(1)
On gripper
Wait .1
Jump place
Off gripper
Wait .1

' Remove the data from the conveyor
Cnv_QueRemove 1

S

Cnv_QueUserData Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 129

Cnv_QueUserData Statement

Sets and displays user data associated with a queue entry.

Syntax

Cnv_QueUserData conveyorNumber, [index], [userData]

Parameters

conveyorNumber Integer expression representing the conveyor number.
index Optional. Integer expression specifying the index of the item number in the queue.
userData Optional. Real expression specifying user data.

Description

Cnv_QueUserData is used to store your own data with each item in a conveyor queue. User data is
optional. It is not necessary for normal operation.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_QueUserData Function

Cnv_QueUserData Statement Example

Cnv_QueUserData 1, 1, angle

S

Cnv_QueUserData Function

130 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Cnv_QueUserData Function

Returns the user data value associated with an item in a conveyor queue.

Syntax

Cnv_QueUserData (conveyorNumber [, index])

Parameters

conveyorNumber Integer expression representing the conveyor number.
index Optional. Integer expression specifying the index of the item number in the queue.

Return Values

Real value.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_QueUserData Statement

Cnv_QueUserData Function Example

' Add to queue
Cnv_QueAdd 1, Cnv_Point(1, x, y), angle

' Remove from queue
angle = Cnv_QueUserData(1) ' default to queue index of 0
Jump Cnv_QueGet(1) :U(angle)
Cnv_QueRemove 1

F

Cnv_RobotConveyor Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 131

Cnv_RobotConveyor Function

Returns the conveyor being tracked by a robot.

Syntax

Cnv_RobotConveyor [(robotNumber)]

Parameters

robotNumber Integer expression representing the robot number.

Return Values

Integer conveyor number. 0 = no conveyor being tracked.

Description

When using multiple robots, you can use Cnv_RobotConveyor to see which conveyor a robot is
currently tracking.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_MakePoint Statement

Cnv_RobotConveyor Function Example

Integer cnvNum

cnvNum = Cnv_RobotConveyor(1)

F

Cnv_Speed Function

132 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Cnv_Speed Function

Returns the current speed of a conveyor.

Syntax

Cnv_Speed (conveyorNumber)

Parameters

conveyorNumber Integer expression representing the conveyor number.

Return Values

For straight conveyors, a real value in millimeters per second. For circular conveyors, a real value in
degrees per sec.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_Pulse

Cnv_Speed Statement Example

Print "Conveyor speed: ", Cnv_Speed(1)

F

Cnv_Trigger Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 133

Cnv_Trigger Statement

Latches current conveyor position for the next Cnv_QueAdd statement.

Syntax

Cnv_Trigger conveyorNumber

Parameters

conveyorNumber Integer expression representing the conveyor number.

Description

Cnv_Trigger is a software trigger command that must be used if there is no hardware trigger wired to
the PG board for the conveyor encoder.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_QueAdd

Cnv_Trigger Statement Example

Boolean found
Integer i, numFound
Real x, y, u

Cnv_Trigger 1
VRun FindParts
VGet FindParts.Part.NumberFound, numFound
For i = 1 To numFound
 VGet FindParts.Part.CameraXYU(i), found, x, y, u
 Cnv_QueAdd 1, Cnv_Point(1, x, y)
Next i

S

Cnv_Upstream Function

134 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Cnv_Upstream Function

Returns the upstream limit for the specified conveyor.

Syntax

Cnv_Upstream (conveyorNumber)

Parameters

conveyorNumber Integer expression representing the conveyor number.

Return Values

Real value in millimeters.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_Downstream

Cnv_Upstream Function Example

Print "Upstream limit: ", Cnv_Upstream(1)

F

Cont Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 135

Cont Statement

Resumes the contoller after a Pause statement has been executed and continues the
execution of all tasks.
This command is for the experienced user and you need to understand the command specification
before the use.

Syntax

Cont

Description

To execute the Cont statement from a program, you need to set the [Enable advanced task
commands] checkbox in Setup | System Configuration | Conroller | Preferences page. However, even
if this preference is enabled, you cannot execute the Cont statement from a task executed by Trap
SGClose.

The Cont command resumes the controller tasks paused by the Pause statement or safeguard open
and continues all tasks execution. It has the same function as the <Continue> button on the Run
Window, Operator Window, and the Continue Remote input.

If you execute the Cont command during WaitRecover status (waiting for the recover after safeguard
open), it will turn on all the robot motors and execute the recover motion. Then, the program will be
resumed.
If you just want to turn on motors and execute recover motion, use the Recover command.

CAUTION

 When executing Cont command from a program, you must understand the
command specification and confirm that the system has the proper conditions for
the Cont command. Improper use such as continuous execution of a command
within a loop may deteriorate the system safety.

See Also

Pause, Recover

Cont Example

Function main
 Xqt 2, monitor, NoPause
 Do
 Jump P1
 Jump P2
 Loop
Fend

Function monitor
 Do
 If Sw(pswitch) = On then
 Pause
 Wait Sw(pswitch) = Off and Sw(cswitch) = On
 Cont
 End If
 Loop
Fend

S

Copy Statement

136 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Copy Statement

Copies a file to another location.

Syntax

Copy source, destination

Parameters

source Pathname and filename of the source location of the file to copy.
See ChDisk for the details.

destination Pathname and filename of the destination to copy the specified source file to.
See ChDisk for the details.

Description

Copies the specified source filename to the specified destination filename.

The same pathname and filename may not be specified for both source and destination files.
An error occurs if the destination already exists.

Note
Do not use a network path, otherwise an error occurs.

Wildcard characters (*, ?) are not allowed in specified filenames.

When used in the Command window, quotes and comma may be omitted.

See Also

ChDir, Dir, MkDir

Copy Command Example

The following example is done from the Command window.

> copy TEST.DAT TEST2.DAT

> Copy TEST.DAT ｃ: 'NG
!! Error: 7203 Access is denied.
> Copy TEST.DAT ｃ:\ 'OK
>

>

Cos Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 137

Cos Function

Returns the cosine of a numeric expression.

Syntax
Cos(number)

Parameters
number Numeric expression in Radians.

Return Values
Numeric value in radians representing the cosine of the numeric expression number.

Description
Cos returns the cosine of the numeric expression. The numeric expression (number) must be in radian
units. The value returned by the Cos function will range from -1 to 1

To convert from degrees to radians, use the DegToRad function.

See Also
Abs, Atan, Atan2, Int, Mod, Not, Sgn, Sin, Sqr, Str$, Tan, Val

Cos Function Example
The following example shows a simple program which uses Cos.

Function costest
 Real x
 Print "Please enter a value in radians"
 Input x
 Print "COS of ", x, " is ", Cos(x)
Fend

The following examples use Cos from the Command window.

Display the cosine of 0.55:

>print cos(0.55)
 0.852524522059506
>

Display cosine of 30 degrees:

>print cos(DegToRad(30))
 0.866025403784439
>

F

CP Statement

138 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

CP Statement

Sets CP (Continuous Path) motion mode.

Syntax
CP { On | Off }

Parameters
On | Off The keyword On is used to enable path motion. The keyword Off is used to disable CP

mode.
Description

CP (Continuous Path) motion mode can be used for the Arc, Arc3, Go, Jump, Jump3, Jump3CP, and
Move robot motion instructions.

When CP mode is On, each motion command executes the next statement as deceleration starts.
Continuous path motion will continue regardless of whether the CP parameter is specified in each

motion command or not.
When CP is Off, this function is active only when the CP parameter is specified in each motion
command.

Start deceleration

Start acceleration

Path Motion

0 time

sp
ee

d

Normal Motion

0 time

sp
ee

d

When CP is On, path motion will continue without full deceleration between two CP motions (Arc, Arc3,
Jump3, Jump3CP, Move), or two PTP motions (Go, Jump).
In contrast, full deceleration will occur between a CP motion and a PTP motion.

CP will be set to Off in the following cases

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

See Also
CP Function, Arc, Move, Go

CP Statement Example
CP On
Move P1
Move P2
CP Off

S

CP Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 139

CP Function

Returns status of path motion.

Syntax
CP

Return Values
0 = Path motion off, 1 = Path motion on.

See Also
CP Statement

CP Function Example

If CP = Off Then
 Print "CP is off"
EndIf

F

Ctr Function

140 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Ctr Function

Returns the counter value of the specified Hardware Input counter.

Syntax
Ctr(bitNumber)

Parameters
bitNumber Number of the Hardware Input bit set as a counter. Only 16 counters can be

active at the same time.

Return Values
The current count of the specified Hardware Input Counter. (Integer expression from 0-65535)

Description
Ctr works with the CTReset statement to allow Hardware inputs to be used as counters.

Each time a hardware input specified as a counter is switched from the Off to On state that input
causes the counter to increment by 1.

The Ctr function can be used at any time to get the current counter value for any counter input. Any of
the Hardware Inputs can be used as counters. However, only 16 counters can be active at the same
time.

Counter Pulse Input Timing Chart

4 msec or longer
4 msec or longer

High (ON)

Low (OFF)

See Also
CTReset

Ctr Function Example
The following example shows a sample of code which could be used to get a hardware input counter
value.

CTReset 3 'Reset counter for input 3 to 0
On 0 'Turn an output switch on
Wait Ctr(3) >= 5
Off 0 'When 5 input cycles are counted for Input 3 turn
 'switch off (output 0 off)

F

CTReset Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 141

CTReset Statement

Resets the counter value of the specified input counter and enables the input to be
a counter input.

Syntax
CTReset(bitNumber)

Parameters
bitNumber Number of the input bit set as a counter. This must be an integer expression

representing a valid input bit. Only 16 counters can be active at the same time.

Description
CTReset works with the CTR function to allow inputs to be used as counters. CTReset sets the
specified input bit as a counter and then starts the counter. If the specified input is already used as a
counter, it is reset and started again.

Notes
Turning Off Power and Its Effect on Counters

Turning off main power releases all counters.
Using the Ctr Function

Use the Ctr Function to retrieve current Hardware Input counter values.

See Also

Ctr

CTReset Example
The following example shows a sample of code which could be used to get a hardware input counter
value.

CTReset 3 'Reset Counter 3 to 0
On 0 'Turn an output switch on
Wait Ctr(3) >= 5
Off 0 'When 5 input cycles are counted for Input 3 turn
 'switch off (output 0 off)

> S

CtrlDev Function

142 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

CtrlDev Function

Returns the current control device number.

Syntax
CtrlDev

Return Values
21 Self
22 Remote I/O

See Also
CtrlInfo Function

CtrlDev Function Example

Print "The current control device is: ", CtrlDev

F

CtrlInfo Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 143

CtrlInfo Function

Returns controller information.

Syntax
CtrlInfo (index)

Parameters
index Integer expression that represents the index of the information to retrieve.

Description
The following table shows the information that is available from the CtrlInfo function:

Index Bit Value Description
0 N/A Obtained for compatibility.

Use index 9 to get the firmware version of the controller.

1

Controller status
0 &H1 Ready state
1 &H2 Start state
2 &H4 Pause state

3-7 Undefined
8 &H100 Estop state
9 &H200 Safeguard open

10 &H400 Error state
11 &H800 Critical error state
12 &H1000 Warning
13 &H2000 WaitRecover state (Waiting for recover from safeguard open)
14 &H4000 Recover state (Recovering from the safeguard open)

15-31 Undefined

2 0 &H1 Enable switch is on
1-31 Undefined

3

0 &H1 Teach mode circuit problem detected
1 &H2 Safeguard circuit problem detected
2 &H4 Estop circuit problem detected

3-31 Undefined

4 N/A 0 – Normal mode
1 – Dry run mode

5 N/A
 Control device:

21 – RC+
22 – Remote

6 N/A Number of defined robots

7 N/A
 Operation mode:

0 – Program mode
1 – Auto mode

8 N/A Undefined

9 N/A
 Firmware verision of the Controller

Major No.*1000000 + Minor No.*10000 + Rev No.*100 + Build No.
(Example) Version 1.6.2.4 is 1060204

10 N/A

 SMART status of hard disk
0 : SMART status is normal
1 : SMARTstatus is not normal

If SMART status is not normal, the hard disk can be broken. You
need to backup the data promptly and replace the harddisk with
new one.
When using the RAID option, you cannot use the SMART status, it
always returns that it is normal.

F

CtrlInfo Function

144 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Return Values
Long value of the desired data

See Also

RobotInfo, TaskInfo

CtrlInfo Function Example
Print "The controller version: ", CtrlInfo(6)

CurDir$ Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 145

CurDir$ Function

Returns a string representing the current directory.

Syntax

CurDir$

Return Values

A string that includes the current drive and path.

See Also

ChDir, CurDrive$, CurDisk$

CurDir$ Function Example

Print "The current directory is: ", CurDir$

F

CurDisk$ Function

146 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

CurDisk$ Function

Returns a string representing the current disk.

Syntax
CurDisk$

Return Values
A string that contains the current disk letter.

See Also
ChDisk, CurDir$, CurDrive$

CurDisk$ function Example

Print "The current disk is: ", CurDisk$

F

CurDrive$ Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 147

CurDrive$ Function

Returns a string representing the current drive.

Syntax

CurDrive$

Return Values

A string that contains the current drive letter.

See Also

ChDrive, CurDir$, CurDisk$

CurDrive$ Function Example

Print "The current drive is: ", CurDrive$

F

CurPos Function

148 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

CurPos Function

Returns the current target position of the specified robot.

Syntax
CurPos

Return Values
A robot point representing the current target position of the specified robot.

See Also
InPos, FindPos, RealPos

CurPos Function Example

Function main

 Xqt showPosition
 Do
 Jump P0
 Jump P1
 Loop
Fend

Function showPosition

 Do
 P99 = CurPos
 Print CX(P99), CY(P99)
 Loop
Fend

F

Curve Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 149

Curve Statement

Defines the data and points required to move the arm along a curved path. Many data points
can be defined in the path to improve precision of the path.

Syntax
Curve fileName, closure, mode, numAxes, pointList

Parameters
fileName A string expression for the name of the file in which the point data is stored. The

specified fileName will have the extension .crv appended to the end so no extension is to
be specified by the user. When the Curve instruction is executed, file will be created.

 You cannot specify a file path and fileName doesn’t have any effect from ChDisk. See
ChDisk for the details.

closure Specifies whether or not the defined Curve is Closed or left Open at the end of the curved
motion. This parameter must be set to one of two possible values, as shown below.

 C - Closed Curve
 O - Open Curve
 When specifying the open curve, the Curve instruction creates the data to stop the arm at

the last point of the specified point series. When specifying the closed curve, the Curve
instruction creates the data required to continue motion through the final specified point
and then stopping motion after returning the arm to the starting point of the specified point
series for the Curve instruction.

mode Specifies whether or not the arm is automatically interpolated in the tangential direction of
the U-Axis. It can also specify the ECP number in the upper four bits.

Mode Setting Tangential

Correction
ECP

Number Hexadecimal Decimal
&H00 0

No

0
&H10 16 1
&H20 32 2

… … …
&HA0 160 10
&HB0 176 11
&HC0 192 12
&HD0 208 13
&HE0 224 14
&HF0 240 15
&H02 2

Yes

0
&H12 18 1
&H22 34 2

… … …
&HA2 162 10
&HB2 178 11
&HC2 194 12
&HD2 210 13
&HE2 226 14
&HF2 242 15

S

Curve Statement

150 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

When specifying tangential correction, Curve uses only the U-Axis coordinate of the
starting point of the point series. Tangential correction continuously maintains tool
alignment tangent to the curve in the XY plane. It is specified when installing tools such
as cutters that require continuous tangential alignment. When specifying a closed curve
(using the closure parameter) with Automatic Interpolation in the tangential direction of
the U-Axis, the U-Axis rotates 360 degrees from the start point. Therefore, before
executing the CVMove instruction, set the U-Axis movement range using the Range
instruction so the 360 degree rotation of the U-Axis does not cause an error.
When using ECP, specify the ECP number in the upper four bits.
When generating a curve considering the additional axis position included in the point
data, specify the nineth bit as 1. For example, when using no orientation offset or ECP
and generating a curve considering the additional axis position, specify &H100.
When generating a curve for the additional axis, join the continuous point data of S axis
and T axis separately from the robot coordinate system.
However if the additional axis is consisted of the PG axis, it doesn’t generate a curve with
the continuous point but creates the data to move to the final point.

numAxes Integer number 2, 3, 4, or 6 which specifies the number of axes controlled during the
curve motion as follows:

2 - Generate a curve in the XY plane with no Z Axis movement or U Axis rotation.
3 - Generate a curve in the XYZ space with no U axis rotation.
4 - Generate a curve in the XYZ space with U-Axis rotation.
6 - Generate a curve in the XYZ space with U, V, and W axes rotation (6-Axis

robots only).
The axes not selected to be controlled during the Curve motion maintain their previous
encoder pulse positions and do not move during Curve motion.

pointList { point expression | P(start:finish) } [, output command] ...
This parameter is actually a series of Point Numbers and optional output statements
either separated by commas or an ascended range of points separated by a colon.
Normally the series of points are separated by commas as shown below:
 Curve "MyFile", O, 0, 4, P1, P2, P3, P4

 Sometimes the user defines a series of points using an ascending range of points as
shown below:
 Curve "MyFile", O, 0, 4, P(1:4)

 In the case shown above the user defined a curve using points P1, P2, P3, and P4.
output command is optional and is used to control output operation during curve motion.
The command can be On or Off for digital outputs or memory outputs. Entering an output
command following any point number in the point series causes execution of the output
command when the arm reaches the point just before the output command. A maximum
of 16 output commands may be included in one Curve statement. In the example below,
the "On 2" command is executed just as the arm reaches the point P2, then the arm
continues to all points between and including P3 and P10.
 Curve "MyFile", C, 0, 4, P1, P2, ON 2, P(3:10)

Description

Curve creates data that moves the manipulator arm along the curve defined by the point series
pointList and stores the data in a file on the controller. The CVMove instruction uses the data in the file
created by Curve to move the manipulator in a continuous path type fashion.

The curve file is stored in the compact flush inside of the controller. Therefore, Curve starts writing into
the compact flush. Frequent writing into the compact flush will shorten the compact flush lifetime. We
recommend using Curve only for saving the point data.

Curve Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 151

Curve calculates independent X, Y, Z, U, V, W coordinate values for each point using a cubic spline
function to create the trajectory. Therefore, if points are far apart from each other or the orientation of
the robot is changed suddenly from point to point, the desired trajectory may not to be realized.

It is not necessary to specify speeds or accelerations prior to executing the Curve instruction. Arm
speed and acceleration parameters can be changed anytime prior to executing CVMove by using the
SpeedS or AccelS instructions.

Points defined in a local coordinate system may be used in the series to locate the curve at the desired
position. By defining all of the specified points in the point series for the Curve instruction as points
with local attributes, the points may be changed as points on the local coordinate system by the Local
instruction following the Curve instruction.

Note
Use tangential correction when possible

It is recommended that you use tangential correction whenever possible, especially when using
CVMove in a continuous loop throught the same points. If you do not use tangential correction, the
robot may not follow the correct path at higher speeds.

Open Curve Min and Max Number of Points Allowed
Open Curves may be specified by using from 3 to 200 points.

Closed Curve Min and Max Number of Points Allowed
Closed Curves may be specified by using from 3 to 50 points.

Potential Errors
Attempt to Move Arm Outside Work Envelope

The Curve instruction cannot check the movement range for the defined curve path. This means that a
user defined path may cause the robot arm to move outside the normal work envelope. In this case an
"out of range" error will occur.

See Also

AccelS Function, Arc, CVMove, ECP, Move, SpeedS

Curve Statement Example
The following example designates the free curve data file name as MYCURVE.CVT, creates a curve
tracing P1-P7, switches ON output port 2 at P2, and decelerates the arm at P7.

Set up curve

> curve "mycurve", O, 0, 4, P1, P2, On 2, P(3:7)

Move the arm to P1 in a straight line

> jump P1

Move the arm according to the curve definition called mycurve

> cvmove "mycurve"

CVMove Statement

152 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

CVMove Statement

Performs the continuous spline path motion defined by the Curve instruction.

Syntax
CVMove fileName [CP] [searchExpr] [SYNC]

Parameters
fileName String expression for the file name. This file must be previously created by the Curve

instruction and stored on a PC hard disk.
 You cannot specify a file path and fileName doesn’t have any effect from ChDisk. See

ChDisk for the details.
CP Optional. Specifies continuous path motion after the last point.
searchExpr Optional. A Till or Find expression.

Till | Find
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

SYNC Reserves a motion command. A robot will not move until the SyncRobots gives
instructions.

Description
CVMove performs the continuous spline path motion defined by the data in the file fileName, which is
located in the controller memory. The file must be previously created with the Curve command.
Multiple files may exist at the same time on the system. If there is no file name extension, then CVT is
assumed.

The user can change the speed and acceleration for the continuous path motion for CVMove by using
the SpeedS and AccelS instructions.

When the Curve instruction has been previously executed using points with Local definitions, you can
change the operating position by using the Local instruction.

When executing CVMove, be careful that the robot doesn’t collide with peripheral equipment. When
you attempt to change the hand orientation of the 6-axis robot between adjacent points suddenly, due
to the nature of cubic spline function, the 6-axis robot may start changing its orientation from the
previous and following points and move in an unexpected trajectory. Verify the trajectory thoroughly
prior to a CVMove execution and be careful that the robot doesn’t collide with peripheral equipment.
Specify points closely each other and at equal interval. Do not change the hand orientation between
adjacent points suddenly.

The CP parameter causes acceleration of the next motion command to start when the deceleration
starts for the current motion command. In this case the robot will not stop at the destination coordinate
and will continue to move to the next point.

See Also
AccelS Function, Arc, Curve, Move, SpeedS, Till, TillOn

CVMove Statement Example
The following example designates the free curve data file name as MYCURVE.CVT, creates a curve
tracing P1-P7, switches ON output port 2 at P2, and decelerates the arm at P7.

Set up curve
> curve "mycurve", O, 0, 4, P1, P2, On 2, P(3:7)

Move the arm to P1 in a straight line
> jump P1

Move the arm according to the curve definition called mycurve
> cvmove "mycurve"

S

CX, CY, CZ, CU, CV, CW, CR, CS, CT Statements

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 153

CX, CY, CZ, CU, CV, CW, CR, CS, CT
Statements

Sets the coordinate value of a point data.
CV, CW are for only 6-axis robots.
CR is only for Joint type robots.
CS, CT are only for robots with additional axes.

Syntax
CX(point) = value
CY(point) = value
CZ(point) = value
CU(point) = value
CV(point) = value
CW(point) = value
CR(point) = value
CS(point) = value
CT(point) = value

Parameters
point Pnumber or P(expr) or point label.
value Real expression representing the new coordinate value in millimeters.

See Also
CX, CY, CZ, CU, CV, CW, CR, CS, CT Functions

CX, CY, CZ, CU, CV, CW, CR, CS, CT StatementS Example

CX(pick) = 25.34

F

CX, CY, CZ, CU, CV, CW, CR, CS, CT Functions

154 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

CX, CY, CZ, CU, CV, CW, CR, CS, CT Functions

Retrieves a coordinate value from a point
CV, CW functions are only for 6-axis robots.
CS, CT are only for robots with additional axes.

Syntax
CX (point)
CY (point)
CZ (point)
CU (point)
CV (point)
CW (point)
CR (point)
CS (point)
CT (point)

Parameters
point Point expression.

Return Values
Returns the specified coordinate value. The return values for CX, CY, CZ are real numbers in
millimeters. The return values for CU, CV, CW are real numbers in degrees.
Return values of CS, CT functions: Real values in mm or deg. It depends on the additional axis setting.

Description
Used to retrieve an individual coordinate value from a point.

To obtain the coordinate from the current robot position, use Here for the point parameter.

See Also
Point expression
CX, CY, CZ, CU, CV, CW, CR, CS, CT Statements

CX, CY, CZ, CU, CV, CW, CR, CS, CT Functions Example
The following example extracts the X axis coordinate value from point "pick" and puts the coordinate
value in the variable x.

Function cxtest
 Real x
 x = CX(pick)
 Print "The X Axis Coordinate of point 'pick' is", x
Fend

F

Date Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 155

Date Statement

Displays the date.

Syntax
Date

Return Values
The current date is displayed.

See Also
Time, Date$

Date Example
Example from the command window.

> Date
2009/08/01

>

Date$ Function

156 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Date$ Function

Returns the system date.

Syntax
Date$

Return Values
A string containing the date in the format yyyy/mm/dd.

See Also
Date, Time, Time$

Date$ Function Example

Print "Today's date: ", Date$

F

Declare Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 157

Declare Statement

Declares an external function in a dynamic link library (DLL).

Syntax

Declare funcName, dllFile, [alias] [, (argList)] As type

Parameters

funcName The name of the function as it will be called from your program.
dllFile The path and name of the library file. This must be a literal string (characters

delimited by quotation marks). You may also use a macro defined by #define. If
there is no path specified, then RC+ will look for the file in the current project
directory. If not found, then it is assumed that the file is in the Windows system32
directory. The file extension can be omitted, but is always assumed to be .DLL.

alias Optional. The actual name of the function in the DLL or the function index. The
name is case sensitive. The alias must be a literal string (characters delimited by
quotation marks). If you use an index, you must use a # character before the
index. If omitted, a function name specified by funcName can be used as a name
of function in DLL.

arglist Optional. List of the DLL arguments. See syntax below.
type Required. You must declare the type of function.

The arglist argument has the following syntax:
[{ByRef | ByVal}] varName [()] As type

ByRef Optional. Specify ByRef when you refer to the variable to be seen by the calling

function. In this case, the argument change in a function can be reflected to the
variable of the calling side. You can change the values received as a reference.

ByVal Optional. Specify ByVal when you do not want any changes in the value of the
variable to be seen by the calling function. This is the default.

varName Required. Name of the variable representing the argument; follows standard
variable naming conventions. If you use an array variable as argument, you must
specify ByRef.

type Required. You must declare the type of argument.

Description
Use Declare to call DLL functions from the current program. Declare must be used outside of
functions.

The Declare statement checks that the DLL file and function exist at compile time.

Passing Numeric Variables ByVal
SPEL: Declare MyDLLFunc, "mystuff.dll", "MyDLLFunc", (a As Long) As Long
VC++ long _stdcall MyDllFunc(long a);

Passing String Variables ByVal
SPEL: Declare MyDLLFunc, "mystuff.dll", "MyDLLFunc", (a$ As String) As Long
VC++ long _stdcall MyDllFunc(char *a);

S

Declare Statement

158 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Passing Numeric Variables ByRef
SPEL: Declare MyDLLFunc, "mystuff.dll", "MyDLLFunc", (ByRef a As Long) As
Long
VC++ long _stdcall MyDllFunc(long *a);

Passing String Variables ByRef
SPEL: Declare MyDLLFunc, "mystuff.dll", "MyDLLFunc", (ByRef a$ As String) As
Long
VC++ long _stdcall MyDllFunc(char *a);

When you pass a string using ByRef, you can change the string in the DLL. Maximum string length is
255 characters. You must ensure that you do not exceed the maximum length.

Passing Numeric Arrays ByRef
SPEL: Declare MyDLLFunc, "mystuff.dll", "MyDLLFunc", (ByRef a() As Long) As
Long
VC++ long _stdcall MyDllFunc(long *a);

Returning Values from DLL Function
The DLL function can return a value for any data type, including String. However, for a string, you
must return a pointer to a string allocated in the DLL function. And the function name must end in a
dollar sign, as with all SPEL+ string variables and functions. Note that the alias doesn't have a dollar
sign suffix.

For example:
Declare ReturnLong, "mystuff.dll", "ReturnLong", As Long
Declare ReturnString$, "mystuff.dll", "ReturnString", As String

Function main

 Print "ReturnLong = ", ReturnLong
 Print "ReturnString$ = ", ReturnString$
Fend

See Also
Function...Fend

Declare Example
' Declare a DLL function. Since there is no path specified,
' the file can be in the current project directory or in
' the Windows system32 directory

Declare MyDLLTest, "mystuff.dll", "MyDLLTest" As Long

Function main
 Print MyDLLTest
Fend

' Declare a DLL function with two integer arguments
' and use a #define to define the DLL file name

#define MYSTUFF "mystuff.dll"

Declare MyDLLCall, MYSTUFF, "MyTestFunc", (var1 As Integer, var2 As
Integer) As Integer

' Declare a DLL function using a path and index.

Declare MyDLLTest, "c:\mydlls\mystuff.dll", "#1" As Long

DegToRad Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 159

DegToRad Function

Converts degrees to radians.

Syntax
DegToRad(degrees)

Parameters
degrees Real expression representing the degrees to convert to radians.

Return Values
A double value containing the number of radians.

See Also
ATan, ATan2, RadToDeg Function

DegToRad Function Example

s = Cos(DegToRad(x))

> F

Del Statement

160 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Del Statement

Deletes one or more files.

Syntax

Del fileName

Parameters

fileName The path and name of the file(s) to delete. The filename should be specified with
an extension. See ChDisk for the details.

Description
Deletes the specified file(s).

Del Example

Example from the command window.

> Del TEST.PTS ' Deletes the point file from the
 current directory.

> Del ｃ：TEST.PTS ' NG
!! Error: 7213 The file specified by path does not exist.
> Del ｃ：\TEST.PTS 'OK

>

Dir Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 161

Dir Statement

Displays the contents of the specified directory.

Syntax

(1) Dir
(2) Dir [filename As String]
(3) Dir [fileName]

Parameters

filename Path name of the fil to search for.
fileName File name to search for. The filename and extension may contain wildcard

characters (*, ?).
Description

(1) If omitted the parameter, it is like making a file name as *.* and the all files in the current directory
is displayed.

(2) The all files in the specified directory is displayed.
(3) The specified file is displayed. If omiited the file path, the file in the current directory is displayed.

See ChDisk for the details of path.

Dir command works similar to the dir command in DOS and displays filename, directory name, file size
and date for specified directories and files.

Note
This statement is executable only with the PC disk.

See Also

ChDir, ChDrive, ChDisk

Dir Command Example

Examples from the Command window.

> Dir ' Displays all files in the current directory.

> Dir ｃ:\TEST ' Displays all files in the directory “C:\TEST”

> Dir TEST.* ' Displays the file “TEST” in the current directory

> Dir *.DAT ' Displays the file extension is “.DAT” in the current
directory.

>

DispDev Statement

162 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

DispDev Statement

Sets the current display device.

Syntax
DispDev (deviceID)

Parameters
deviceID The device ID for the desired display device.
 21 Self

24 TP

 The following parameters are also available.
 21 DEVID_SELF

24 DEVID_TP

See Also
DispDev Function

DispDev Statement Example

DispDev DEVID_TP

S

DispDev Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 163

DispDev Function

Returns the current display device.

Syntax
DispDev

Return Values
Integer value containing the deviceID.
21 Self
24 TP

See Also
DispDev Statement

DispDev Function Example

Print "The current display device is ", DispDev

F

Dist Function

164 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Dist Function

Returns the distance between two robot points.

Syntax
Dist (point1, point2)

Parameters
point1, point2 Specifies two robot point expressions.

Return Values
Returns the distance between both points (real value in mm).

Description
Even if you are using the additional axis, only the robot travel distance is returned.
It doesn’t include the travel distance of additional axis while you use the additional axis as running axis.
For the Joint type robot, the return value of this function means nothing.

See Also

CU, CV, CW, CX, CY, CZ

Dist Function Example

Real distance

distance = Dist(P1, P2)

F

Do...Loop Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 165

Do...Loop Statement

Repeats a block of statements while a condition is True or until a condition becomes True.

Syntax

Do [{ While | Until } condition]
[statements]

[Exit Do]
[statements]

Loop

Or, you can use this syntax:

Do

[statements]
[Exit Do]

[statements]
Loop [{ While | Until } condition]

The Do Loop statement syntax has these parts:

Part Description
condition Optional. Numeric expression or string expression that is True or False. If condition is

Null, condition is treated as False.
statements One or more statements that are repeated while, or until, condition is True.

Description

Any number of Exit Do statements may be placed anywhere in the Do...Loop as an alternate way to
exit a Do...Loop. Exit Do is often used after evaluating some condition, for example, If...Then, in
which case the Exit Do statement transfers control to the statement immediately following the Loop.

When used within nested Do...Loop statements, Exit Do transfers control to the loop that is one
nested level above the loop where Exit Do occurs.

See Also

For...Next, Select...Send

Do Example

Do While Not Lof(1)
 Line Input #1, tLine$
 Print tLine$
Loop

S

Double Statement

166 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Double Statement

Declares variables of type Double. (8 byte double precision number).

Syntax
Double varName [(subscripts)] [, varName [(subscripts)]...]

Parameters
varName Variable name which the user wants to declare as type Double.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared.

The subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 and the

available number of array elements is the upper bound value + 1.
 When specifying the upper bound value, make sure the number of total elements

is within the range shown below:
Local variable 2000
Global Preserve variable 4000
Global variable and module variable 100000

Description
Double is used to declare variables as type Double. Local variables should be declared at the top of
a function. Global and module variables must be declared outside of functions.
Valid number of digits for Double is 14.

See Also
Boolean, Byte, Global, Integer, Long, Real, String

Double Example
The following example shows a simple program which declares some variables using Double.

Function doubletest
 Double var1
 Double A(10) 'Single dimension array of double
 Double B(10, 10) 'Two dimension array of double
 Double C(5, 5, 5) 'Three dimension array of double
 Double arrayvar(10)
 Integer i
 Print "Please enter a Number:"
 Input var1
 Print "The variable var1 = ", var1
 For i = 1 To 5
 Print "Please enter a Number:"
 Input arrayvar(i)
 Print "Value Entered was ", arrayvar(i)
 Next i
Fend

S

ECP Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 167

ECP Statement

Selects or displays the current ECP (external control point).

Syntax
(1) ECP ECPNumber
(2) ECP

Parameters
ECPNumber Optional. Integer expression from 0-15 representing which of 16 ECP definitions

to use with subsequent motion instructions. ECP 0 makes the ECP selection
invalid.

Return Values

Displays current ECP when used without parameters.

Description
ECP selects the external control point specified by the ECPnumber (ECPNumber).

Note
This command will only work if the External Control Point option is active.
Power Off and Its Effect on the ECP Selection

Turning main power off clears the ECP selection.

See Also

ECPSet

ECP Statement Example

>ecpset 1, 100, 200, 0, 0
>ecp 1

> S

ECP Function

168 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

ECP Function

Returns the current ECP (external control point) number.

Syntax
ECP

Return Values
Integer containing the current ECP number.

Note
This command will only work if the External Control Point option is active.

See Also

ECP Statement

ECP Function Example

Integer savECP

savECP = ECP
ECP 2
Call Dispense
ECP savECP

ECPClr Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 169

ECPClr Statement

Clears (undefines) an external control point.

Syntax
ECPClr ECPNumber

Parameters
ECPNumber Integer expression representing which of the 15 external control points to clear

(undefine). (ECP0 is the default and cannot be cleared.)

Note
This command will only work if the External Control Point option is active.

See Also

Arm, ArmClr, ArmSet, ECPSet, Local, LocalClr, Tool, TLSet

ECPClr Example

ECPClr 1

> S

ECPDef Function

170 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

ECPDef Function

Returns ECP definition status.

Syntax
ECPDef (ECPNumber)

Parameters
ECPNumber Integer expression representing which ECP to return status for.

Return Values
True if the specified ECP has been defined, otherwise False.

See Also
Arm, ArmClr, ArmSet, ECPSet, Local, LocalClr, Tool, TLClr, TLSet

ECPDef Example

Function DisplayECPDef(ecpNum As Integer)

 If ECPDef(ecpNum) = False Then
 Print "ECP ", ecpNum, "is not defined"
 Else
 Print "ECP ", ecpNum, ": ",
 Print ECPSet(ecpNum)
 EndIf
Fend

> F

ECPSet Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 171

ECPSet Statement

Defines or displays an external control point.

Syntax
(1) ECPSet ECPNum, ECPPoint
(2) ECPSet ECPNum
(3) ECPSet

Parameters
ECPNum Integer number from 1-15 representing which of 15 external control points to define.
ECPPoint Pnumber or P(expr) or point label or point expression.

Return Values
When parameters are omitted, displays the current ECPSet definitions.
When only the ECP number is specified, displays the specified ECPSet definitions.

Description
Defines an external control point.

Note
This command will only work if the External Control Point option is active.

ECPSet Example

ECPSet 1, P1
ECPSet 2, 100, 200, 0, 0

> S

ECPSet Function

172 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

ECPSet Function

Returns a point containing the external control point definition for the specified ECP.

Syntax
ECPSet(ECPNumber)

Parameters
ECPNumber Integer expression representing the number of the ECP to retrieve.

Return Values
A point containing the ECP definition.

Note
This command will only work if the External Control Point option is active.

See Also

ECPSet Statement

ECPSet Function Example

P1 = ECPSet(1)

F

Elbow Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 173

Elbow Statement

Sets the elbow orientation of a point.

Syntax
(1) Elbow point, [value]
(2) Elbow

Parameters
point Pnumber or P(expr) or point label.
value Integer expression.

1 = Above (/A)
 2 = Below (/B)

Return Values
When both parameters are omitted, the elbow orientation is displayed for the current robot position.
If value is ommited, the elbow orientation for the specified point is displayed.

See Also
Elbow Function, Hand, J4Flag, J6Flag, Wrist

Elbow Statement Example

Elbow P0, Below
Elbow pick, Above
Elbow P(myPoint), myElbow

P1 = 0.000, 490.000, 515.000, 90.000, -40.000, 180.000

Elbow P1, Above
Go P1

> S

Elbow P1, Below
Go P1

Elbow Function

174 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Elbow Function

Returns the elbow orientation of a point.

Syntax
Elbow [(point)]

Parameters
point Optional. Point expression. If point is omitted, then the elbow orientation of the current

robot position is returned.

Return Values
1 Above (/A)
2 Below (/B)

See Also
Elbow Statement, Hand, Wrist, J4Flag, J6Flag

Elbow Function Example

Print Elbow(pick)
Print Elbow(P1)
Print Elbow
Print Elbow(P1 + P2)

F

Eof Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 175

Eof Function

Returns end of file status.

Syntax

Eof (fileNumber)

Parameters

fileNumber Integer number from 30 ~ 60 or expression representing the file number to check.

Return Values

True if file pointer is at end of file, otherwise False.

Description

Eof is functional only if the file is opened for reading mode.
An error occurs if the file was opened with the AOpen or WOpen statements.

See Also

Lof

Eof Example

Integer fileNum
String data$

fileNum = FreeFile
UOpen "TEST.DAT" As #fileNum
Do While Not Eof(fileNum)
 Line Input #fileNum, data$
 Print "data = ", data$
Loop
Close #fileNum

F

Era Function

176 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Era Function

Returns the joint number for which an error occurred.

Syntax
Era[(taskNum)]

Parameters
taskNum Integer expression representing a task number from 0 ~ 32.

Task number omission or 0 specifies the current task.

Return Values
The joint number that caused the error in the range 0-6 as described below:

0 - The current error was not caused by a servo axis.
1 - The error was caused by joint number 1
2 - The error was caused by joint number 2
3 - The error was caused by joint number 3
4 - The error was caused by joint number 4
5 - The error was caused by joint number 5
6 - The error was caused by joint number 6
7 - The error was caused by joint number 7
8 - The error was caused by joint number 8 (additional S axis)
9 – The error was casued by joint number 9 (additional T axis)

Description
Era is used when an error occurs to determine if the error was caused by one of the robot joints and to
return the number of the joint which caused the error. If the current error was not caused by any joint,
Era returns zero.

See Also
Erl, Err, ErrMsg$, Ert, OnErr, Trap

Era Function Example

Function main
 OnErr Goto eHandler
 Do
 Call PickPlace
 Loop
 Exit Function
eHandler:
 Print "The Error code is ", Err
 Print "The Error Message is ", ErrMsg$(Err)
 errTask = Ert
 If errTask > 0 Then
 Print "Task number in which error occurred is ", errTask
 Print "The line where the error occurred is Line ", Erl(errTask)
 If Era(errTask) > 0 Then
 Print "Joint which caused the error is ", Era(errTask)
 EndIf
 EndIf
Fend

F

EResume Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 177

EResume Statement

Resumes execution after an error-handling routine is finished.

Syntax
EResume [{ label | Next }]

Description
EResume
If the error occurred in the same procedure as the error handler, execution resumes with the statement
that caused the error. If the error occurred in a called procedure, execution resumes at the Call
statement in the procedure containing the error handler.

EResume Next
If the error occurred in the same procedure as the error handler, execution resumes with the statement
immediately following the statement that caused the error. If the error occurred in a called procedure,
execution resumes with the statement immediately following the Call statement that last in the
procedure containing the error handler.

EResume { label }
If the error occurred in the same procedure as the error handler, execution resumes at the statement
containing the label.

See Also
OnErr

EResume Statement Example

Function main
 Integer retry

 OnErr GoTo eHandler
 Do
 RunCycle
 Loop
 Exit Function

eHandler:
 Select Err
 Case MyError
 retry = retry + 1
 If retry < 3 Then
 EResume ' try again
 Else
 Print "MyError has occurred ", retry, " times
 EndIf
 Send
Fend

S

Erf$ Function

178 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Erf$ Function

Returns the name of the function in which the error occurred.

Syntax
Erf$[(taskNumber)]

Parameters
taskNumber Integer expression representing a task number from 0 ~ 32.

Task number omission or 0 specifies the current task.

Return Values
The name of thefunction where the last error occurred.

Description
Erf$ is used with OnErr. Erf$ returns the function name in which the error occurred. Using
Erf$ combined with Err, Ert, Erl and Era the user can determine much more about the error which
occurred.

See Also
Era, Erl, Err, ErrMsg$, Ert, OnErr

Erf$ Function Example
The following example shows a simple program using the Ert function to determine which task the
error occurred in along with; Erf$: the name of the function the error occurred in; Erl: the line number
where the error occurred; Era: if a joint caused the error....

Function main
 OnErr Goto eHandler
 Do
 Call PickPlace
 Loop
 Exit Function
eHandler:
 Print "The Error code is ", Err
 Print "The Error Message is ", ErrMsg$(Err)
 errTask = Ert
 If errTask > 0 Then
 Print "Task number in which error occurred is ", errTask
 Print "Function at which error occurred is ", Erf$(errTask)
 Print "The line where the error occurred is Line ", Erl(errTask)
 If Era(errTask) > 0 Then
 Print "Joint which caused the error is ", Era(errTask)
 EndIf
 EndIf
Fend

F

Erl Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 179

Erl Function

Returns the line number in which the error occurred.

Syntax
Erl[(taskNumber)]

Parameters
taskNumber Integer expression representing a task number from 0 ~ 32.

Task number omission or 0 specifies the current task.

Return Values
The line number where the last error occurred.

Description
Erl is used with OnErr. Erl returns the line number in which the error occurred. Using Erl combined
with Err, Ert and Era the user can determine much more about the error which occurred.

See Also
Era, Erf$, Err, ErrMsg$, Ert, OnErr

Erl Function Example
The following example shows a simple program using the Ert function to determine which task the
error occurred in along with; Erl: where the error occurred; Era: if a joint caused the error....

Function main
 OnErr Goto eHandler
 Do
 Call PickPlace
 Loop
 Exit Function
eHandler:
 Print "The Error code is ", Err
 Print "The Error Message is ", ErrMsg$(Err)
 errTask = Ert
 If errTask > 0 Then
 Print "Task number in which error occurred is ", errTask
 Print "The line where the error occurred is Line ", Erl(errTask)
 If Era(errTask) > 0 Then
 Print "Joint which caused the error is ", Era(errTask)
 EndIf
 EndIf
Fend

F

Err Function

180 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Err Function

Returns the most recent error status.

Syntax
Err [(taskNumber)]

Parameters
taskNumber Optional. Integer expression representing a task number from 0 ~ 32.

0 specifies the current task.

Return Values
Returns a numeric error code in integer form.

Description
Err allows the user to read the current error code. This along with the SPEL+ Error Handling
capabilities allows the user to determine which error occurred and react accordingly. Err is used with
OnErr.
To get the controller error, use SysErr function.

See Also
Era, Erf$, Erl, ErrMsg$, EResume, Ert, OnErr, Return, SysErr

Err Example
The following example shows a simple utility program which checks whether points P0-P399 exist. If
the point does not exist, then a message is printed on the screen to let the user know this point does
not exist. The program uses the CX instruction to test each point for whether or not it has been
defined. When a point is not defined control is transferred to the error handler and a message is
printed on the screen to tell the user which point was undefined.

Function errtest
 Integer i, errnum
 Real x

 OnErr GoTo eHandle
 For i = 0 To 399
 x = CX(P(i))
 Next i
 Exit Function
'
'
'***
'* Error Handler *
'***
eHandle:
 errnum = Err
 ' Check if using undefined point
 If errnum = 78 Then
 Print "Point number P", i, " is undefined!"
 Else
 Print "ERROR: Error number ", errnum, " Occurred."
 EndIf
 EResume Next
Fend

F

ErrMsg$ Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 181

ErrMsg$ Function

Returns the error message which corresponds to the specified error number.

Syntax
ErrMsg$(errNumber, langID)

Parameters
errNumber Integer expression containing the error number to get the message for.
langID Optional. Integer expression containing the language ID based on the following values.

0 - English
1 - Japanese
2 - German
3 - French
If omitted, English is used.

Return Values

Returns the error message which is described in the Error Codes table.

See Also
Era, Erl, Err, Ert, OnErr, Trap

ErrMsg$ Example
The following example shows a simple program using the Ert function to determine which task the
error occurred in along with; Erl: where the error occurred; Era: if a joint caused the error....

Function main
 OnErr Goto eHandler
 Do
 Call PickPlace
 Loop
 Exit Function
eHandler:
 Print "The Error code is ", Err
 Print "The Error Message is ", ErrMsg$(Err)
 errTask = Ert
 If errTask > 0 Then
 Print "Task number in which error occurred is ", errTask
 Print "The line where the error occurred is Line ", Erl(errTask)
 If Era(errTask) > 0 Then
 Print "Joint which caused the error is ", Era(errTask)
 EndIf
 EndIf
Fend

F

Error Statement

182 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Error Statement

Generates a user error.

Syntax
(1) Error task Number, errorNumber
(2) Error errorNumber

Parameters
taskNumber Optional. Integer expression representing a task number from 0 ~ 32.

0 specifies the current task.
errorNumber Integer expression representing a valid error number. User error numbers range

is from 8000 to 8999.

Description
Use the Error statement to generate system or user defined errors. You can define user error labels
and descriptions by using the User Error Editor in the EPSON RC+ 6.0 development environment.

See Also
Era, Erl, Err, OnErr

Error Statement Example

#define ER_VAC 8000

If Sw(vacuum) = Off Then
 Error ER_VAC
EndIf

S

ErrorOn Funcion

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 183

ErrorOn Funcion

Returns the error status of the controller.

Syntax
ErrorOn

Return Values
True if the controller is in error status, otherwise False.

DeThis scription
ErrorOn function is used only for NoEmgAbort task (special task using NoEmgAbort at Xqt) and
background task.

See Also
ErrorOn, SafetyOn, SysErr, Wait, Xqt

ErrorOn Function Example
The following example shows a program that monitors the controller error and switches the I/O On/Off
according to the error number when error occurs.

Notes

Forced Flag
This program example uses Forced flag for On/Off command.
Be sure that the I/O outputs change during error, or at Emergency Stop or Safety Door Open when
designing the system.

After Error Occurence
As this program, finish the task promptly after completing the error handling.

Function main

Xqt ErrorMonitor, NoEmgAbort
:
:

Fend

Function ErrorMonitor
 Wait ErrorOn
 If 4000 < SysErr Then
 Print "Motion Error = ", SysErr
 Off 10, Forced
 On 12, Forced
 Else
 Print "Other Error = ", SysErr
 Off 11, Forced
 On 13, Forced
 EndIf

Fend

F

Ert Function

184 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Ert Function

Returns the task number in which an error occurred.

Syntax
Ert

Return Values
The task number in which the error occurred.

Description
Ert is used when an error occurs to determine in which task the error occurs. The number returned will
be between 1 ~ 32.

See Also
Era, Erl, Err, ErrMsg$, OnErr, Trap

Ert Function Example
The following example shows a simple program using the Ert function to determine which task the
error occurred in along with; Erl: where the error occurred; Err: what error occurred; Era: if a joint
caused the error....

Function main
 OnErr Goto eHandler
 Do
 Call PickPlace
 Loop
 Exit Function
eHandler:
 Print "The Error code is ", Err
 Print "The Error Message is ", ErrMsg$(Err)
 errTask = Ert
 If errTask > 0 Then
 Print "Task number in which error occurred is ", errTask
 Print "The line where the error occurred is Line ", Erl(errTask)
 If Era(errTask) > 0 Then
 Print "Joint which caused the error is ", Era(errTask)
 EndIf
 EndIf
Fend

> F

EStopOn Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 185

EStopOn Function

Return the Emergency Stop status.

Syntax
EstopOn

Return Values
True if the status is Emergency Stop, otherwise False.

Description
EStopOn function is used only for NoEmgAbort task (special task using NoEmgAbort at Xqt).

See Also
ErrorOn, SafetyOn, Wait, Xqt

EstopOn Function Example
The following example shows a program that monitors the Emergency Stop and switches the I/O
On/Off when Emergency Stop occurs.

Notes

Forced Flag
This program example uses Forced flag for On/Off command.
Be sure that the I/O outputs change during error, or at Emergency Stop or Safeguard Open when
designing the system.

Error Handling
As this program, finish the task promply after completing the error handling.

Outputs OFF during Emergency Stop
As this program example, when the task executes I/O On/Off after the Emergency Stop, uncheck the
[Controller]-[Preferences]-[Outputs off during emergency stop] check box. If this check box is checked,
the execution order of turn Off by the controller and turn On using the task are not guaranteed.

Function main

 Xqt EStopMonitor, NoEmgAbort
 :
 :
Fend

Function EStopMonitor
 Wait EStopOn
 Print "EStop !!!"
 Off 10, Forced
 On 12, Forced
Fend

F

Eval Function

186 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Eval Function

Executes a Command window statement from a program and returns the error status.

Syntax
Eval(command [, reply$])

Parameters
command A string expression containing a command you want to execute.
reply$ Optional. A string variable that contains the reply from the command.

If the command is in the error status, it will return “!Error: error code”.
If the reply is over 255 characters, the extra characters will be truncated.

Return Values

The error code returned from executing the command.
Even if the command exection results in an error, the function itself will not be an error. Also, the
system log doesn’t record it.
When the command is completed successfully, it returns 0.

Description

You can execute any command (executable commands from Command window) from communication
port such as TCP/IP by using Eval. It takes more time to execute this function than by using a normal
statement.

Use the reply$ parameter to retrieve the reply from the command. For example, if the command was
"Print Sw(1)", then reply$ would be a "1" or "0".

See Also

Error Codes

Eval Function Example

This example shows how to execute a command being read over RS-232. After the command is
executed, the error code is returned to the host. For example, the host could send a command like
"motor on".

Integer errCode
String cmd$

OpenCom #1
Do
 Line Input #1, cmd$
 errCode = Eval(cmd$)
 Print #1, errCode
Loop

F

Exit Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 187

Exit Statement

Exits a loop construct or function.

Syntax
Exit { Do | For | Function }

Description
The Exit statement syntax has these forms:

Statement Description
Exit Do Provides a way to exit a Do...Loop statement. It can be used only inside a Do...Loop

statement. Exit Do transfers control to the statement following the Loop statement.
When used within nested Do...Loop statements, Exit Do transfers control to the loop
that is one nested level above the loop where Exit Do occurs.

Exit For Provides a way to exit a For loop. It can be used only in a For...Next loop. Exit For
transfers control to the statement following the Next statement. When used within
nested For loops, Exit For transfers control to the loop that is one nested level above
the loop where Exit For occurs.

Exit Function Immediately exits the Function procedure in which it appears. Execution continues
with the statement following the statement that called the Function.

See Also

Do...Loop, For...Next, Function...Fend

Exit Statement Example

For i = 1 To 10
 If Sw(1) = On Then
 Exit For
 EndIf
 Jump P(i)
Next i

S

ExportPoints Statement

188 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

ExportPoints Statement

Exports a point file to the specified path.

Syntax
ExportPoints fileName, destination

Parameters
fileName String expression containing the specific file to be exported.

The extention must be .PTS. You cannot specify a file path and fileName doesn’t have
any effect from ChDisk. See ChDisk for the details.

destination Specify the path and file name to save the file.
The extension must be .PTS. See ChDisk for the details.

Description

ExportPoints copies a specified point file to a folder on the PC.
If the file already exists in the folder, it wil be overwritten.

Potential Errors
File Does Not Exist

If the specified path does not exist, an error will occur.
A Path Cannot be Specified

If fileName contains a path, an error will occur.

See Also

Dir, LoadPoints, SavePoints, FileExists, FolderExists

ExportPoints Statement Example
Function main
 LoadPoints "robot1.pts"
 :
 SavePoints "robot1.pts"
 If FolderExists("c:\mypoints\") Then
 ExportPoints "robot1.pts", "c:\mypoints\model1.pts"
 EndIf
Fend

> S

FbusIO_GetBusStatus Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 189

FbusIO_GetBusStatus Function

Returns the status of the specified Fieldbus.

Syntax
FbusIO_GetBusStatus(busNumber)

Parameters
busNumber Integer expression representing the Fieldbus system number. This number must be 16.

This is the ID for the bus connected to the Fieldbus master board on the PC side of the
controller.

Return Values

0 - OK
1 - Disconnected
2 - Power off

Description
FbusIO_GetBusStatus can be used to verify the general status of the Fieldbus.

Note
This command will only work if the Fieldbus Master option is active.

See Also

FbusIO_GetDeviceStatus, FbusIO_SendMsg

FbusIO_GetBusStatus Function Example

Long sts
sts = FbusIO_GetBusStatus(16)

FbusIO_GetDeviceStatus Function

190 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

FbusIO_GetDeviceStatus Function

Returns the status of the specified Fieldbus device.

Syntax
FbusIO_GetDeviceStatus(busNumber, deviceID)

Parameters
busNumber Integer expression representing the Fieldbus system number. This number must be 16.

This is the ID for the bus connected to the Fieldbus master board on the PC side of the
controller.

deviceID Integer expression representing the Fieldbus ID of the device.

Return Values
0 - OK
1 - Disconnected
2 - Power off
3 - Syncronization error. Device is booting, or has incorrect baud rate.

Description
FbusIO_GetDeviceStatus can be used to verify the general status of a Fieldbus device.

Note
This command will only work if the Fieldbus Master option is active.

See Also

FbusIO_GetBusStatus, FbusIO_SendMsg

FbusIO_GetDeviceStatus Function Example

Long sts
sts = FbusIO_GetDeviceStatus(1, 10)

FbusIO_SendMsg Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 191

FbusIO_SendMsg Statement

Sends an explicit message to a Fieldbus device and returns the reply.

Syntax
FbusIO_SendMsg busNumber, deviceID, msgParam, sendData(), recvData()

Parameters
busNumber Integer expression representing the Fieldbus system number. This number must be 16.

This is the ID for the bus connected to the Fieldbus master board on the PC side of the
controller.

deviceID Integer expression representing the Fieldbus ID of the device.
msgParam Integer expression for the message parameter. Not used with DeviceNet.
sendData Array of type Byte containing data that is sent to the device. This array must be

dimensioned to the number of bytes to send. If there are no bytes to send, specify 0.
recvData Array of type Byte that contains the data received from the device. This array will

automatically be redimensioned to the number of bytes received.
Description

FBusIO_SendMsg is used to query one Fieldbus device. Refer to the device manufacturer for
information on messaging support.

Note
This command will only work if the Fieldbus Master option is active.

See Also

FbusIO_GetBusStatus, FbusIO_GetDeviceStatus

FbusIO_SendMsg Statement Example

' Send explicit message to DeviceNet device
Byte sendData(5)
Byte recvData(0)
Integer i

sendData(0) = &H0E ' Command
sendData(1) = 1 ' Class
sendData(3) = 1 ' Instance
sendData(5) = 7 ' Attribute
' msgParam is 0 for DeviceNet
FbusIO_SendMsg 1, 1, 0, sendData(), recvData()
' Display the reply
For i = 0 to UBound(recvData)
 Print recvData(i)
Next i

' Send message to Profibus device
Byte recvData(0)
Integer i

' msgParam is the service number
FbusIO_SendMsg 16, 1, 56, 0, recvData()
' Display the reply
For i = 0 to UBound(recvData)
 Print recvData(i)
Next i

FileDateTime$ Function

192 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

FileDateTime$ Function

Returns the date and time of a file.

Syntax

FileDateTime$ (filename)

Parameters

fileName A string expression containing the file name to check. The drive and path can
also be included.
If only file name is specified,, the file in the current directory is displayed.
See ChDisk for the details.

Note
Do not use a network path, otherwise an error occurs.

Return Values

Returns the date and time of the last update in the following format:

m/d/yyyy hh:mm:ss
See Also

FileExists, FileLen

FileDateTime$ Function Example

String myPath$
myPath$ = "ｃ:\TEST\TEST.DAT"

If FileExists(myPath$) Then
 Print "Last access date and time: ", FileDateTime$(myPath$)
 Print "Size: ", FileLen(myPath$)
EndIf

F

FileExists Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 193

FileExists Function

Checks if a file exists.

Syntax

FileExists (filename)

Parameters

fileName A string expression containing the file name to check. The drive and path can
also be included.
If only the file name is specified, the file is checked in the current directory.
See ChDisk for the details.

Note
Do not use a network path, otherwise an error occurs.

Return Values

True if the file exists, False if not.

See Also

FolderExists, FileLen, FileDateTime$

FileExists Function Example

String myPath$
myPath$ = "ｃ:\TEST\TEST.DAT"

If FileExists(myPath$) Then
 Print "Last access date and time: ", FileDateTime$(myPath$)
 Print "Size: ", FileLen(myPath$)
EndIf

F

FileLen Function

194 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

FileLen Function

Returns the length of a file.

Syntax

FileLen (filename)

Parameters

fileName A string expression containing the file name to check. The drive and path can
also be included.
If only the file name is specified, the file is checked in the current directory.
See ChDisk for the details.

Note
Do not use a network path, otherwise an error occurs.

Return Values

Returns the number of bytes in the file.

See Also

FileDateTime$, FileExists

FileLen Function Example

String myPath$
myPath$ = "ｃ:\TEST\TEST.DAT"

If FileExists(myPath$) Then
 Print "Last access date and time: ", FileDateTime$(myPath$)
 Print "Size: ", FileLen(myPath$)
EndIf

F

Find Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 195

Find Statement

Specifies or displays the condition to store coordinates during motion.

Syntax
Find [condition]

Parameters
condition The following functions and operators are available.

Functions : Sw, In, InW, Oport, Out, OutW, MemSw, MemIn, MemW, Ctr
Operators : And, Or, Xor
<Example> Find Sw(5) = On
 Find Sw(5) = On And Sw(6) = Off

Input status specified as a trigger
[Event] comparative operator (=, <>, >=, >, <, <=) [Integer expression]

The following functions and variables can be used in the Event:
Functions : Sw, In, InW, Oport, Out, OutW, MemSw, MemIn, MemInW, Ctr,
 GetRobotInsideBox, GetRobotInsidePlane
Variables : Byte, Integer, Long global preserve variable, Global variable,
 module variable

In addition, using the following operators you can specify multiple event conditions.
Operator : And, Or, Xor
Example : Trap 1, Sw(5) = On Call, TrapFunc
 Trap 1, Sw(5) = On And Till(6) = Off, Call TrapFunc

Description

Find statement can be used by itself or as a modifier of a motion command.

The Find condition must include at least one of the functions above.

When variables are included in the Find condition, their values are computed when setting the Find
condition. No use of variable is recommended. Otherwise, the condition may be an unintended
condition. Multiple Find statements are permitted. The most recent Find condition remains current.

When parameters are omitted, the current Find definition is displayed.

Notes
Find Setting at Main Power On

At power on, the Find condition is:
Find Sw(0) = On 'Input bit 0 is on

Use of PosFound Function to Verify Find
Use PosFound function to verify if the Find condition has been satisfied after executing a motion
command using Find modifier.

Use Variables in Event Condition Expression
- Available variables are Integer type (Byte, Integer, Long)
- Array variables are not available
- Local variables are not available
- If a variable value cannot satisfy the event condition for more than 0.01 second, the system cannot

retrieve the change in variables.
- Up to 64 can wait for variables in one system (including the ones used in the event condition

expressions such as Wait). If it is over 64, an error occurs during the project build.
- If you try to transfer a variable waiting for variables as a reference with Byref, an error occurs.

S >

Find Statement

196 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

- When a variable is included in the right side member of the event condition expression, the value is
calculated when starting the motion command. We recommend not using variables in an integer
expression to avoid making unintended conditions.

See Also

FindPos, Go, Jump, PosFound

Find Statement Example

Find Sw(5) = On
Go P10 Find
If PosFound Then
 Go FindPos
Else
 Print "Cannot find the sensor signal."
EndIf

FindPos Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 197

FindPos Function

Returns a robot point stored by Fine during a motion command.

Syntax
FindPos

Return Values
A robot point that was stored during a motion command using Find.

See Also
Find, Go, Jump, PosFound, CurPos, InPos

FindPos Function Example

Find Sw(5) = On
Go P10 Find
If PosFound Then
 Go FindPos
Else
 Print "Cannot find the sensor signal."
EndIf

F

Fine Statement

198 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Fine Statement

Specifies and displays the positioning accuracy for target points.

Syntax
(1) Fine axis1, axis2, axis3, axis4, [axis5, axis6], [axis7], [axis8, axis9]
(2) Fine

Parameters
axis1 Integer expression ranging from (0-65535) which represents the allowable positioning

error for the 1st joint.
axis2 Integer expression ranging from (0-65535) which represents the allowable positioning

error for the 2nd joint.
axis3 Integer expression ranging from (0-65535) which represents the allowable positioning

error for the 3rd joint.
axis4 Integer expression ranging from (0-65535) which represents the allowable positioning

error for the 4th joint.
axis5 Optional. Integer expression ranging from (0-65535) which represents the allowable

positioning error for the 5th joint.
axis6 Optional. Integer expression ranging from (0-65535) which represents the allowable

positioning error for the 6th joint.
axis 7 Optional. Integer expression ranging from (0-65535) which represents the allowable

positioning error for the 7th joint. Only for the Joint type 7-axis robot.
axis 8 Optional. Integer expression ranging from (0-65535) which represents the allowable

positioning error for the 7th joint. Only for the additional S axis.
axis 9 Optional. Integer expression ranging from (0-65535) which represents the allowable

positioning error for the 7th joint. Only for the additional T axis.

Return Values
When used without parameters, Fine displays the current fine values for each axis.

Description
Fine specifies, for each joint, the allowable positioning error for detecting completion of any given
move.

This positioning completion check begins after the CPU has completed sending the target position
pulse to the servo system. Due to servo delay, the robot will not yet have reached the target position.
This check continues to be executed every few milliseconds until each joint has arrived within the
specified range setting. Positioning is considered complete when all axes have arrived within the
specified ranges. Once positioning is complete program control is passed to the next statement,
however, servo system keeps the control of the robot target position.

When relatively large ranges are used with the Fine instruction, the positioning will be confirmed
relatively early in the move, and executes the next statement.

The default Fine settings depend on the robot type. Refer to your robot manual for details.

> S

Fine Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 199

Notes
Cycle Times and the Fine Instruction

The Fine value does not affect the acceleration or deceleration control of the manipulator arm.
However, smaller Fine values can cause the system to run slower because it may take the servo
system extra time (a few milliseconds) to get within the acceptable position range. Once the arm is
located within the acceptable position range (defined by the Fine instruction), the CPU executes the
next user instruction.

Initialization of Fine (by Motor On, SLock, SFree)
Any time the following commands are used the Fine value is initialized to default values: SLock, SFree,
Motor instructions.
Make sure that you reset Fine values after one of the above commands execute.

Potential Errors

If Fine positioning is not completed within about 2 seconds, Error 4024 will occur. This error normally
means the servo system balance needs to be adjusted. (Call your distributor for assistance)

See Also

Accel, AccelR, AccelS, Arc, Go, Jump, Move, Speed, SpeedR, SpeedS, Pulse

Fine Statement Example
The examples below show the Fine statement used in a program function, and used from the monitor
window.

Function finetest
 Fine 5, 5, 5, 5 'reduce precision to +/- 5 Pulse
 Go P1
 Go P2
Fend

> Fine 10, 10, 10, 10
>
> Fine
10, 10, 10, 10

Fine Function

200 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Fine Function

Returns Fine setting for a specified joint.

Syntax
Fine(joint)

Parameters
joint Integer expression representing the joint number for which to retrieve the Fine setting.

The additional S axis is 8 and T axis is 9.

Return Values
Real value.

See Also
Accel, AccelS, Arc, Go, Jump, Move, Speed, SpeedS, Pulse

Fine Function Example
This example uses the Fine function in a program:

Function finetst
 Integer a
 a = Fine(1)
Fend

F

Fix Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 201

Fix Function

Returns the integer portion of a real number.

Syntax
Fix(number)

Parameters
number Real expression containing number to fix.

Return Values
An integer value containing the integer portion of the real number.

See Also
Int

Fix Function Example

>print Fix(1.123)
 1
>

F

Flush

202 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Flush

Writes a file's buffer into the file.

Syntax

Flush #fileNumber

Parameters

#fileNumber Integer value from 30 ~ 63 or expression

Description

Writes a file's buffer into the specified file.
Flush cannot be used if the file was opened with ROpen.

Flush Example

Integer fileNum, i

fileNum = FreeFile
UOpen "TEST.DAT" As #fileNum
For i = 0 To 100
 Print #fileNum, i
Next i
Flush #fileNum
Close #fileNum

FmtStr$ Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 203

FmtStr$ Function

Format a numeric expression.

Syntax
FmtStr$ (numeric expression, strFormat)

Parameters
numeric expression Numaric expression to be formatted.
strFormat Format specification string.

Return Values
A string containing the formatted expression.

Description
Use FmtStr$ to format a numeric expression into a string.

Numeric Format Specifiers
Character Description
None Display the number with no formatting.
(0) Digit placeholder. Display a digit or a zero. If the expression has a digit in the position

where the 0 appears in the format string, display it; otherwise, display a zero in that
position. If the number has fewer digits than there are zeros (on either side of the
decimal) in the format expression, display leading or trailing zeros. If the number has
more digits to the right of the decimal separator than there are zeros to the right of the
decimal separator in the format expression, round the number to as many decimal places
as there are zeros. If the number has more digits to the left of the decimal separator than
there are zeros to the left of the decimal separator in the format expression, display the
extra digits without modification.

(#) Digit placeholder. Display a digit or nothing. If the expression has a digit in the position
where the # appears in the format string, display it; otherwise, display nothing in that
position. This symbol works like the 0 digit placeholder, except that leading and trailing
zeros aren't displayed if the number has the same or fewer digits than there are #
characters on either side of the decimal separator in the format expression.

(.) Decimal placeholder. In some locales, a comma is used as the decimal separator. The
decimal placeholder determines how many digits are displayed to the left and right of the
decimal separator. If the format expression contains only number signs to the left of this
symbol, numbers smaller than 1 begin with a decimal separator. To display a leading zero
displayed with fractional numbers, use 0 as the first digit placeholder to the left of the
decimal separator. The actual character used as a decimal placeholder in the formatted
output depends on the Number Format recognized by your system.

(,) Thousand separator. In some locales, a period is used as a thousand separator. The
thousand separator separates thousands from hundreds within a number that has four or
more places to the left of the decimal separator. Standard use of the thousand separator
is specified if the format contains a thousand separator surrounded by digit placeholders
(0 or #). Two adjacent thousand separators or a thousand separator immediately to the
left of the decimal separator (whether or not a decimal is specified) means "scale the
number by dividing it by 1000, rounding as needed." For example, you can use the format
string "##0,," to represent 100 million as 100. Numbers smaller than 1 million are
displayed as 0. Two adjacent thousand separators in any position other than immediately
to the left of the decimal separator are treated simply as specifying the use of a thousand
separator. The actual character used as the thousand separator in the formatted output
depends on the Number Format recognized by your system.

F

FmtStr$ Function

204 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

See Also
Left$, Right$, Str$

FmtStr$ Example

Function SendDateCode

 String d$, f$

 f$ = FmtStr$(10, "000.00")
 OpenCom #1
 Print #1, f$
 CloseCom #1
Fend

FolderExists Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 205

FolderExists Function

Checks if a folder exists.

Syntax

FolderExists(pathName)

Parameters

pathName A string expression containing the path of the folder to check. The drive can also
be included. See ChDisk for the details.

Note
This function is executable only with the PC disk.

Return Values

True if the folder exists, False if not.

See Also

FileExists, MkDir

FolderExists Function Example

If Not FolderExists("ｃ:\TEST") Then
 MkDir "ｃ:\TEST"
EndIf

F

For...Next Statement

206 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

For...Next Statement

The For...Next instructions are used together to create a loop where instructions located
between For and Next are executed multiple times as specified by the user.

Syntax
For var = initValue To finalValue [Step increment]

statements
Next [var]

Parameters
var The counting variable used with the For...Next loop. This variable is normally

defined as an integer but may also be defined as a Real variable.
initValue The initial value for the counter var.
finalValue The final value of the counter var. Once this value is met, the For...Next loop is

complete and execution continues starting with the statement following the Next
instruction.

increment An optional parameter which defines the counting increment for each time the
Next statement is executed within the For...Next loop. This variable may be
positive or negative. However, if the value is negative, the initial value of the
variable must be larger than the final value of the variable. If the increment value
is left out the system automatically increments by 1.

statements Any valid SPEL+ statements can be inserted inside the For...Next loop.

Description
For...Next executes a set of statements within a loop a specified number of times. The beginning of
the loop is the For statement. The end of the loop is the Next statement. A variable is used to count
the number of times the statements inside the loop are executed.

The first numeric expression (initValue) is the initial value of the counter. This value may be positive or
negative as long as the finalValue variable and Step increment correspond correctly.

The second numeric expression (finalValue) is the final value of the counter. This is the value which
once reached causes the For...Next loop to terminate and control of the program is passed on to the
next instruction following the Next instruction.

Program statements after the For statement are executed until a Next instruction is reached. The
counter variable (var) is then incremented by the Step value defined by the increment parameter. If the
Step option is not used, the counter is incremented by 1 (one).

The counter variable (var) is then compared with the final value. If the counter is less than or equal to
the final value, the statements following the For instruction are executed again. If the counter variable
is greater than the final value, execution branches outside of the For...Next loop and continues with the
instruction immediately following the Next instruction.

S

For...Next Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 207

Notes
Negative Step Values:

If the value of the Step increment (increment) is negative, the counter variable (var) is decremented
(decreased) each time through the loop and the initial value must be greater than the final value for the
loop to work.

Variable Following Next is Not Required:
The variable name following the Next instruction may be omitted. However, for programs that contain
nested For...Next loops, it is recommended to include the variable name following the Next instruction
to aid in quickly identifying loops.

Whem a variable comes out of the loop, the value is not a final value.
 Function forsample
 Integer i
 For i = 0 To 3
 Next
 Print i ' Displays 4
 Fend

See Also

Do...Loop

For...Next Example

Function fornext
 Integer counter
 For counter = 1 to 10
 Go Pctr
 Next counter

 For counter = 10 to 1 Step -1
 Go Pctr
 Next counter
Fend

Force_Calibrate Statement

208 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Force_Calibrate Statement

Sets zero offsets for all axes for the current force sensor.

Syntax
Force_Calibrate

Parameters

On | Off Torque Control can be either On or Off.

Description

You should call Force_Calibrate for each sensor when your application starts. This will account for
the weight of the components mounted on the sensor.

Note

This command will only work if the Force Sensing option is active.

See Also

Force_Sensor Statement

Force_Calibrate Statement Example

Force_Calibrate

S

Force_ClearTrigger

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 209

Force_ClearTrigger

Clears all trigger conditions for the current force sensor.

Syntax
Force_ClearTrigger

Description

Use Force_ClearTrigger to clear all conditions for the current force sensor's trigger.

Note

This command will only work if the Force Sensing option is active.

See Also

Force_Sensor Statement

Force_ClearTrigger Statement Example

Force_ClearTrigger

Force_GetForces Statement

210 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Force_GetForces Statement

Returns the forces and torques for all force sensor axes in an array.

Syntax
Force_GetForces array()

Syntax

Parameters
array() Real array with upper bound of 6.

Return Values

The array elements are filled in as follows:

Axis Constant Value
X Force FORCE_XFORCE 1
Y Force FORCE_YFORCE 2
Z Force FORCE_ZFORCE 3
X Torque FORCE_XTORQUE 4
Y Torque FORCE_YTORQUE 5
Z Torque FORCE_ZTORQUE 6

Description

Use Force_GetForces to read all force and torque values at once.

Note

This command will only work if the Force Sensing option is active.

See Also

Force_GetForce Statement

Force_GetForces Statement Example

 Real fValues(6)
 Force_GetForces fValues()

S

Force_GetForce Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 211

Force_GetForce Function

Returns the force for a specified axis.

Syntax
Force_GetForce (axis)

Parameters
axis Integer expression representing the axis.

Axis Constant Value
X Force FORCE_XFORCE 1
Y Force FORCE_YFORCE 2
Z Force FORCE_ZFORCE 3
X Torque FORCE_XTORQUE 4
Y Torque FORCE_YTORQUE 5
Z Torque FORCE_ZTORQUE 6

Return Values

Returns an real value.

Description

Use Force_GetForce to read the current force setting for one axis. The units are determined by the
type of force sensor.

Note

This command will only work if the Force Sensing option is active.

See Also

Force_GetForces

Force_GetForce Function Example

 Print Force_GetForce(1)

F

Force_Sensor Statement

212 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Force_Sensor Statement

Sets the current force sensor for the current task.

Syntax
Force_Sensor sensorNumber

Parameters
sensorNumber Integer expression representing the sensor number.

Description

When using multiple force sensors on the same system, you must set the current force sensor before
using other force sensing commands.

If your system has only one sensor, then you don't need to use Force_Sensor because the default
sensor number is 1.

Note

This command will only work if the Force Sensing option is active.

See Also

Force_Sensor Function

Force_Sensor Statement Example

 Force_Sensor 1

S

Force_Sensor Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 213

Force_Sensor Function

Returns the current force sensor for the current task.

Syntax
Force_Sensor

Description
Force_Sensor returns the current sensor number for the current task. When a task starts, the sensor
number is automatically set to 1.

Note

This command will only work if the Force Sensing option is active.

See Also

Force_Sensor Statement

Force_Sensor Function Example

 var = Force_Sensor

F

Force_SetTrigger Statement

214 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Force_SetTrigger Statement

Sets the force trigger for the Till command.

Syntax
Force_SetTrigger axis, Threshold, CompareType

Parameters
axis Integer expression containing the desired force sensor axis.

Axis Constant Value
X Force FORCE_XFORCE 1
Y Force FORCE_YFORCE 2
Z Force FORCE_ZFORCE 3
X Torque FORCE_XTORQUE 4
Y Torque FORCE_YTORQUE 5
Z Torque FORCE_ZTORQUE 6

Threshold Real expression containing the desired threshold in units for the sensor being used.

CompareType Comparison Constant Value

Less than or equal FORCE_LESS 0
Greater than or equal FORCE_GREATER 1

Description

To stop motion with a force sensor, you must set the trigger for the sensor, then use Till Force in your
motion statement.

You can set the trigger with multiple axes. Call Force_SetTrigger for each axis. To disable an axis,
set the threshold at 0.

Note

This command will only work if the Force Sensing option is active.

See Also

Force_Calibrate

Force_SetTrigger Statement Example

'Set trigger to stop motion when force is less than −1 on Z axis.
Force_SetTrigger 3, -1, 0
SpeedS 3
AccelS 5000
Move Place Till Force

S

FreeFile Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 215

FreeFile Function

Returns / reserves a file number that is currently not being used.

Syntax

FreeFile

Return Values

Integer between 30 and 63.

See Also

AOpen, BOpen, ROpen, UOpen, WOpen, Close

FreeFile Function Example

Integer fileNum, i, j

fileNum = FreeFile
WOpen "TEST.DAT" As #fileNum
For i = 0 To 100
 Print #fileNum, i
Next i
Close #fileNum

fileNum = FreeFile
ROpen "TEST.DAT" As #fileNum
For i = 0 to 100
 Input #fileNum, j
 Print "data = ", j
Next i
Close #fileNum

Function...Fend Statement

216 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Function...Fend Statement

A function is a group of program statements which includes a Function statement as the first
statement and an Fend statement as the last statement.

Syntax
Function funcName [(argList)] [As type]

statements
Fend

Parameters
funcName The name which is given to the specific group of statements bound between the

Function and Fend instructions. The function name must contain alphanumeric
characters and may be up to 64 characters in length. Underscores are also
allowed.

argList Optional. List of variables representing arguments that are passed to the Function
procedure when it is called. Multiple variables are separated by commas.

The arglist argument has the following syntax:
[{ByRef | ByVal}] varName [()] As type

ByRef Optional. Specify ByRef when you refer to the variable to be seen by the calling

function. In this case, the argument change in a function can be reflected to the
variable of the calling side.

ByVal Optional. Specify ByVal when you do not want any changes in the value of the
variable to be seen by the calling function. This is the default.

varName Required. Name of the variable representing the argument; follows standard
variable naming conventions. If you use an array variable as argument, you
should specify ByRef.

As type Required. You must declare the type of argument.

Return Values
Value whose data type is specified with the As clause at the end of the function declaration.

Description
The Function statement indicates the beginning of a group of SPEL+ statements. To indicate where a
function ends we use the Fend statement. All statements located between the Function and Fend
statements are considered part of the function.

The Function...Fend combination of statements could be thought of as a container where all the
statements located between the Function and Fend statements belong to that function. Multiple
functions may exist in one program file.

See Also
Call, Fend, Halt, Quit, Return, Xqt

S

Function...Fend Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 217

Function...Fend Example
The following example shows 3 functions which are within a single file. The functions called task2 and
task3 are executed as background tasks while the main task called main executes in the foreground.

Function main
 Xqt 2, task2 'Execute task2 in background
 Xqt 3, task3 'Execute task3 in background
 '....more statements here
Fend

Function task2
 Do
 On 1
 On 2
 Off 1
 Off 2
 Loop
Fend

Function task3
 Do
 On 10
 Wait 1
 Off 10
 Loop
Fend

GetCurrentUser$ Function

218 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

GetCurrentUser$ Function

Returns the current EPSON RC+ user.

Syntax

GetCurrentUser$

Return Values

String containing the current user logID.

Note

This command will only work if the Security option is active.

See Also

LogIn Statement

GetCurrentUser$ Function Example

String currUser$

currUser$ = GetCurrentUser$

GetRobotInsideBox Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 219

GetRobotInsideBox Function

Returns a robot which is in the approach check area.

Syntax
GetRobotInsideBox (AreaNum)

Parameters
AreaNum Integer value (1 ~ 15) representing the approach check area you want to return

the status for.

Return Values
Return the robot that is in the approach check area specified with AreaNum in bit.

Bit 0 : Robot 1 ……… Bit 15 : Robot 16
If the robot doesn’t configure the approach check area, bit is always 0.
For example, Robot 1, Robot 3 are in the approach check area, bit 0, bit 2 will be On and 3 will be
returned.

See Also
Box, InsideBox

GetRobotInsideBox function Example
The following program uses the GetRobotInsideBox function.
Wait for the status that no robots are in the approach check area.

Function WaitNoBox

 Wait GetRobotInsideBox(1) = 0

Wait for the status that Robot 2 is only one in the approach check area.

Function WaitInBoxRobot2

 Wait GetRobotInsideBox(1) = &H2

The following program uses the GetRobotInsideBox function in the parallel processing of the motion
command. When a robot is in the specific approach check area while it is running, it turns ON the I/O.
One robot is connected to the controller in this case.

Function Main
 Motor On
 Power High
 Speed 30; Accel 30, 30

 Go P1 !D0; Wait GetRobotInsideBox(1) = 1; On 1!

Fend

Note

D0 must be described.

F

GetRobotInsidePlane Function

220 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

GetRobotInsidePlane Function

Returns a robot which is in the approach check plane.

Syntax
GetRobotInsidePlane (PlaneNum)

Parameters
PlaneNum Integer value (1 ~ 15) representing the approach check plane you want to return

the status for.

Return Values
Returns the number of the robot that is in the approach check plane specified with PlaneNum in bit.

Bit 0 : Robot 1 ……… Bit 15 : Robot 16
If the robot doesn’t configure the approach check plane, it always returns bit 0.
For example, Robot 1, Robot 3 are in the approach check plane, bit 0, bit 2 will be On and 3 will be
returned.

See Also
InsidePlane, Plane

GetRobotInsidePlane function Example
The following program uses the GetRobotInsidePlane function.
Wait for the status that no robots are in the approche check plane.

Function WaitNoPlane

 Wait GetRobotInsidePlane(1) = 0

Wait for the status Robot 2 is only one in the approach check plane.

Function WaitInPlaneRobot2

 Wait GetRobotInsidePlane(1) = &H2

The following program uses the the GetRobotInsidePlane function in the parallel processing of the motion
command. When a robot is in the specific approach check plane while it is running, it turns ON the I/O. One robot
is connected to the controller in this case

Function Main
 Motor On
 Power High
 Speed 30; Accel 30, 30

 Go P1 !D0; Wait GetRobotInsidePlane(1) = 1; On 1!

Fend

Note

D0 must be described.

Global Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 221

Global Statement

Declares variables with the global scope. Global variables can be accessed from anywhere.

Syntax
Global [Preserve] dataType varName [(subscripts)] [, varName [(subscripts)] , ...]

Parameters
Preserve If Preserve is specified, then the variable retains its values. The values are

cleared by project changes. If Preserve is omitted, the variable doesn’t retain its
values.

dataType Data type including Boolean, Integer, Long, Real, Double, Byte, or String.
varName Variable name. Names may be up to 32 characters in length.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared.

The subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 to the upper

bound value.
 The total available number of array elements for global variables is 10000 for

strings and 100000 for all other types.
 The total available number of array elements for global preserve variables is 400

for strings and 4000 for all other types.
 To calculate the total elements used in an array, use the following formula.

(If a dimension is not used, substitute 0 for the ubound value.)
total elements = (ubound1 + 1) * (ubound2 + 1) * (ubound3 + 1)

Description

Global variables are variables which can be used in more than 1 file within the same project. They are
cleared whenever a function is started from the Run window or Operator window unless they are
declared with the Preserve option.

When declared in Preserve option, the variable retains the value at turning off the controller.

Global Preserve variables can be used with the VB Guide option.

It is recommended that global variable names begin with a "g_" prefix to make it easy to recognize
globals in a program. For example:

Global Long g_PartsCount

See Also
Boolean, Byte, Double, Integer, Long, Real, String

S

Global Statement

222 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Global Statement Example
The following example shows 2 separate program files. The first program file defines some global
variables and initializes them. The second file then uses these global variables.

FILE1 (MAIN.PRG)

Global Integer status1
Global Real numsts

Function Main
 Integer I

 status1 = 10

The following example shows 2 separate program files. The first program file defines some global
variables and initializes them. The second file then also uses these global variables.

FILE1 (MAIN.PRG)

Global Integer g_Status
Global Real g_MaxValue

Function Main

 g_Status = 10
 g_MaxValue = 1.1
 .
 .
Fend

FILE2 (TEST.PRG)

Function Test

 Print "status1 = , g_Status
 Print "MaxValue = , g_MaxValue
 .
 .
Fend

Go Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 223

Go Statement

Moves the arm using point to point motion from the current position to the specified
point or X,Y,Z,U, V, W position. The Go instruction can move any combination of
1-6 joints at the same time.

Syntax
Go destination [CP] [LJM [orientationFlag]] [searchExpr] [!...!] [SYNC]

Parameters
destination The target destination of the motion using a point expression.
CP Optional. Specifies continuous path motion.
LJM Optional. Convert the target destination using LJM function.
orientationFlag Optional. Specifies a parameter that selects an orientation flag for LJM function.
searchExpr Optional. A Till or Find expression.

Till | Find
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

!...! Optional. Parallel Processing statements can be added to execute I/O and other
commands during motion.

SYNC Reserves a motion command. The robot will not move until SyncRobots is executed.
Description

Go simultaneously moves all joints of the robot arm using point to point motion. The destination for the
Go instruction can be defined in a variety of ways:
 - Using a specific point to move to. For example: Go P1.
 - Using an explicit coordinate position to move to. For example: Go XY(50, 400, 0, 0).
 - Using a point with a coordinate offset. For example: Go P1 +X(50).
 - Using a point but with a different coordinate value. For example: Go P1 :X(50).

The path is not predictable because the each joint interpolates between the current point and the
target point. Be careful of the interference with peripherals.

The Speed instruction determines the arm speed for motion initiated by the Go instruction. The Accel
instruction defines the acceleration.

With CP parameter, the arm can accelerate for the next motion command while the arm starts
decelerating to a stop. In this case, the arm is not positioned at the target point.

With LJM parameter, the arm moves to the point into where the target point is converted using LJM
function, with the current point as reference point.

Go LJM (P1, Here,1)
can be

Go P1 LJM 1

At this point, the original point data P1 does not change.
LJM parameter is available for the 6-axis and RS series robots.
When using orientationFlag with the default value, it can be ommited.
 Go P1 LJM

> S

Go Statement

224 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Notes
Difference between Go and Move

The Move instruction and the Go instruction each cause the robot arm to move. However, the primary
difference between the 2 instructions is that the Go instruction causes point to point motion where as
the Move instruction causes the arm to move in a straight line. The Go instruction is used when the
user is primarily concerned with the orientation of the arm when it arrives on point. The Move
instruction is used when it is important to control the path of the robot arm while it is moving.

Difference between Go and Jump
The Jump instruction and the Go instruction each cause the robot arm to move in a point to point type
fashion. However, the JUMP instruction has 1 additional feature. Jump causes the robot end effector
to first move up to the LimZ value, then in a horizontal direction until it is above the target point, and
then finally down to the target point. This allows Jump to be used to guarantee object avoidance and
more importantly to improve cycle times for pick and place motions.

Proper Speed and Acceleration Instructions with Go
The Speed and Accel instructions are used to specify the speed and acceleration of the manipulator
during motion caused by the Go instruction. Pay close attention to the fact that the Speed and Accel
instructions apply to point to point type motion (like that for the Go instruction) while linear and circular
interpolation motion uses the SpeedS and AccelS instructions.

Using Go with the Optional Till Modifier
The optional Till modifier allows the user to specify a condition to cause the robot to decelerate to a
stop at an intermediate position prior to completing the motion caused by the Go instruction. If the Till
condition is not satisfied, the robot travels to the target position. The Go with Till modifier can be used
in 2 ways as described below:

(1) Go with Till Modifier
 Checks if the current Till condition becomes satisfied. If satisfied, this command completes by

decelerating and stopping the robot at an intermediate position prior to completing the motion
caused by the Go instruction.

(2) Go with Till Modifier, Sw(Input bit number) Modifier, and Input Condition
 This version of the Go with Till modifier allows the user to specify the Till condition on the

same line with the Go instruction rather than using the current definition previously defined for
Till. The condition specified is simply a check against one of the inputs. This is accomplished
through using the Sw instruction. The user can check if the input is On or Off and cause the
arm to stop based on the condition specified. This feature works almost like an interrupt
where the motion is interrupted (stopped) once the Input condition is met. If the input
condition is never met during the robot motion then the arm successfully arrives on the point
specified by destination.

Using Go with the Optional Find Modifier
The optional Find modifier allows the user to specify a condition to cause the robot to record a position
during the motion caused by the Go instruction. The Go with Find modifier can be used in 2 ways as
described below:

(1) Go with Find Modifier:
 Checks if the current Find condition becomes satisfied. If satisfied, the current position is

stored in the special point FindPos.
(2) Go with Find Modifier, Sw(Input bit number) Modifier, and Input Condition:
 This version of the Go with Find modifier allows the user to specify the Find condition on the

same line with the Go instruction rather than using the current definition previously defined for
Find. The condition specified is simply a check against one of the inputs. This is
accomplished through using the Sw instruction. The user can check if the input is On or Off
and cause the current position to be stored in the special point FindPos.

Go Instruction Always Decelerates to a Stop
The Go instruction always causes the arm to decelerate to a stop prior to reaching the final destination
of the move.

Go Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 225

Potential Errors
Attempt to Move Outside of Robots Work Envelope
When using explicit coordinates with the Go instruction, you must make sure that the coordinates
defined are within the robots valid work envelope. Any attempt to move the robot outside of the valid
work envelope will result in an error.

See Also

!...! Parallel Processing, Accel, Find, Jump, Move, Pass, Pn= (Point Assignment), Pulse, Speed, Sw,
Till

Go Example
The example shown below shows a simple point to point move between points P0 and P1 and then
moves back to P0 in a straight line. Later in the program the arm moves in a straight line toward point
P2 until input #2 turns on. If input #2 turns On during the Move, then the arm decelerates to a stop
prior to arriving on point P2 and the next program instruction is executed.

Function sample

 Integer i

 Home
 Go P0
 Go P1
 For i = 1 to 10
 Go P(i)
 Next i
 Go P2 Till Sw(2) = On
 If Sw(2) = On Then
 Print "Input #2 came on during the move and"
 Print "the robot stopped prior to arriving on"
 Print "point P2."
 Else
 Print "The move to P2 completed successfully."
 Print "Input #2 never came on during the move."
 EndIf
Fend

Some syntax examples from the command window are shown below:

>Go Here +X(50) ' Move only in the X direction 50 mm from the current position
>Go P1 ' Simple example to move to point P1
>Go P1 :U(30) ' Move to P1 but use +30 as the position for the U joint to move to
>Go P1 /L ' Move to P1 but make sure the arm ends up in lefty position
>Go XY(50, 450, 0, 30) ' Move to position X=50, Y=450, Z=0, U=30

<Another Coding Example>
Till Sw(1) = Off And Sw(2) = On ' Specifies Till conditions for inputs 1 & 2
Go P1 Till ' Stop if current Till condition
 ' defined on previous line is met
Go P2 Till Sw(2) = On ' Stop if Input Bit 2 is On
Go P3 Till ' Stop if current Till condition defined on
 ' previous line is met

GoSub...Return

226 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

GoSub...Return

GoSub transfers program control to a subroutine. Once the subroutine is complete, program
control returns back to the line following the GoSub instruction which initiated the subroutine.

Syntax
GoSub { label }

{ label:}
statements
Return

Parameters
label When the user specifies a label, the program execution will jump to the line on

which this label resides. The label can be up to 32 characters in length.
However, the first character must be an alphabet character (not numeric).

Description

The GoSub instruction causes program control to branch to the user specified statement label. The
program then executes the statement on that line and continues execution through subsequent line
numbers until a Return instruction is encountered. The Return instruction then causes program control
to transfer back to the line which immediately follows the line which initiated the GoSub in the first
place. (i.e. the GoSub instruction causes the execution of a subroutine and then execution returns to
the statement following the GoSub instruction.) Be sure to always end each subroutine with Return.
Doing so directs program execution to return to the line following the GoSub instruction.

Potential Errors
Branching to Non-Existent Statement

If the GoSub instruction attempts to branch control to a non-existent label then an Error 3108 will be
issued.

Return Found Without GoSub
A Return instruction is used to "return" from a subroutine back to the original program which issued the
GoSub instruction. If a Return instruction is encountered without a GoSub having first been issued
then an Error 2383 will occur. A stand alone Return instruction has no meaning because the system
doesn't know where to Return to.

See Also

GoTo, OnErr, Return

S

GoSub...Return

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 227

GoSub Statement Example
The following example shows a simple function which uses a GoSub instruction to branch to a label
and execute some I/O instructions then return.

Function main
 Integer var1, var2

 GoSub checkio 'GoSub using Label
 On 1
 On 2
 Exit Function

checkio: 'Subroutine starts here
 var1 = In(0)
 var2 = In(1)
 If var1 = 1 And var2 = 1 Then
 On 1
 Else
 Off 1
 EndIf
 Return 'Subroutine ends here
Fend

GoTo Statement

228 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

GoTo Statement

The GoTo instruction causes program control to branch unconditionally to a designated
statement label.

Syntax
GoTo { label }

Parameters
label Program execution will jump to the line on which the label resides. The label can

be up to 32 characters. However, the first character must be an alphabetic
character (not numeric).

Description

The GoTo instruction causes program control to branch to the user specified label. The program then
executes the statement on that line and continues execution from that line on. GoTo is most commonly
used for jumping to an exit label because of an error.

Notes
Using Too Many GoTo's

Please be careful with the GoTo instruction since using too many GoTo's in a program can make the
program difficult to understand. The general rule is to try to use as few GoTo instructions as possible.
Some GoTo's are almost always necessary. However, jumping all over the source code through using
too many GoTo statements is an easy way to cause problems.

See Also

GoSub, OnErr

GoTo Statement Example

The following example shows a simple function which uses a GoTo instruction to branch to a line label.

Function main

 If Sw(1) = Off Then
 GoTo mainAbort
 EndIf
 Print "Input 1 was On, continuing cycle"
 .
 .
 Exit Function

mainAbort:
 Print "Input 1 was OFF, cycle aborted!"
Fend

S

Halt Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 229

Halt Statement

Temporarily suspends execution of a specified task.

Syntax
Halt taskIdentifier

Parameters
taskIdentifier Task name or integer expression representing the task number.

A task name is the function name used in an Xqt statement or a function started
from the Run window or Operator window. If an integer expression is used, the
range is from 1 to 16 for normal tasks and from 257 to 261 for trap tasks.

Description

Halt temporarily suspends the task being executed as specified by the task name or number.

To continue the task where it was left off, use Resume. To stop execution of the task completely, use
Quit. To display the task status, click the Task Manager Icon on the EPSON RC+ Toolbar to run the
Task manager.

Halt also stops the task when the specified task is NoPause task, NoEmgAbort task (special task
using NoPause or NoEmgAbort at Xqt), trap tasks, or the background tasks.
However, stopping these tasks needs enough consideration. Normally, Halt is not recommended for
the special task.

See Also
Quit, Resume, Xqt

Halt Statement Example

The example below shows a function named "flicker" that is started by Xqt, then is temporarily stopped
by Halt and continued again by Resume.

Function main
 Xqt flicker 'Execute flicker function

 Do
 Wait 3 'Execute task flicker for 3 seconds
 Halt flicker

 Wait 3 'Halt task flicker for 3 seconds
 Resume flicker

 Loop
Fend

Function flicker
 Do
 On 1
 Wait 0.2
 Off 1
 Wait 0.2
 Loop
Fend

S

Hand Statement

230 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Hand Statement

Sets the hand orientation of a point.

Syntax
(1) Hand point, [Lefty | Righty]
(2) Hand

Parameters
point Pnumber or P(expr) or point label.
Lefty | Righty Hand orientation.

Return Values

When both parameters are omitted, the hand orientation is displayed for the current robot position.
If Lefty | Righty is ommited, the hand orientation for the specified point is displayed.

See Also
Elbow, Hand Function, J4Flag, J6Flag, Wrist, J1Flag, J2Flag

Hand Statement Example

Hand P0, Lefty
Hand pick, Righty
Hand P(myPoint), myHand

P1 = -364.474, 120.952, 469.384, 72.414, 1.125, -79.991

Hand P1, Righty
Go P1

Hand P1, Lefty
Go P1

> S

Hand Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 231

Hand Function

Returns the hand orientation of a point.

Syntax
Hand [(point)]

Parameters
point Optional. Point expression. If point is omitted, then the hand orientation of the current

robot position is returned.

Return Values
1 Righty (/R)
2 Lefty (/L)

See Also
Elbow, Wrist, J4Flag, J6Flag, J1Flag, J2Flag

Hand Function Example

Print Hand(pick)
Print Hand(P1)
Print Hand
Print Hand(P1 + P2)

F

Here Statement

232 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Here Statement

Teach a robot point at the current position.

Syntax
Here point

Parameters
point Pnumber or P(expr) or point label.

Note
The Here statement and Parallel Processing

You cannot use both of the Here statement and parallel processing in one motion command like this:
Go Here :Z(0) ! D10; MemOn 1 !

Be sure to change the program like this:
P999 = Here
Go P999 Here :Z(0) ! D10; MemOn 1 !

See Also

Here Function

Here Statement Example

Here P1
Here pick

S

Here Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 233

Here Function

Returns current robot position as a point.

Syntax
Here

Return Values
A point representing the current robot position.

Description
Use Here to retrieve the current position of the current manipulator.

See Also
Here Statement

Here Function Example

P1 = Here

F

Hex$ Function

234 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Hex$ Function

Returns a string representing a specified number in hexadecimal format.

Syntax
Hex$(number)

Parameters
number Integer expression.

Return Values
Returns a string containing the ASCII representation of the number in hexadecimal format.

Description
Hex$ returns a string representing the specified number in hexadecimal format. Each character is
from 0-9 or A-F. Hex$ is especially useful for examining the results of the Stat function.

See Also
Str$, Stat, Val

Hex$ Function Example

> print hex$(stat(0))
A00000
> print hex$(255)
FF

> F

Hofs Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 235

Hofs Statement

Displays or sets the offset pulses between the encoder origin and the home sensor.

Syntax

(1) Hofs j1Pulses, j2Pulses, j3Pulses, j4Pulses, [j5pulses, j6pulses], [j7pulses], [j8pulses, j9pulses]
(2) Hofs

Parameters

j1Pulses Integer expression representing joint 1 offset pulses.
j2Pulses Integer expression representing joint 2 offset pulses.
j3Pulses Integer expression representing joint 3 offset pulses.
j4Pulses Integer expression representing joint 4 offset pulses.
j5Pulses For 6 axis robots. Integer expression representing joint 5 offset pulses.
j6Pulses For 6 axis robots. Integer expression representing joint 6 offset pulses.
j7Pulses For 7 axis robots. Integer expression representing joint 7 offset pulses.
j8Pulses For additional S axis. Integer expression representing joint 8 (additional S axis)

offset pulses.
j9Pulses For additional T axis. Integer expression representing joint 9 (additional T axis)

offset pulses.
Return Values

Displays current Hofs values when used without parameters.

Description

Hofs displays or sets the home position offset pulses. Hofs specifies the offset from the encoder 0
point (Z phase) to the mechanical 0 point.)

Although the robot motion control is based on the zero point of the encoder mounted on each joint
motor, the encoder zero point may not necessarily match the robot mechanical zero point. The Hofs
offset pulse correction pulse is used to carry out a software correction to the mechanical 0 point based
on the encoder 0 point.

Note
Hofs Values SHOULD NOT be Changed unless Absolutely Necessary

The Hofs values are correctly specified prior to delivery. There is a danger that unnecessarily changing
the Hofs value may result in position errors and unpredictable motion. Therefore, it is strongly
recommended that Hofs values not be changed unless absolutely necessary.

To Automatically Calculate Hofs Values
To have Hofs values automatically calculated, move the arm to the desired calibration position, and
execute Calib. The controller then automatically calculates Hofs values based on the CalPls pulse
values and calibration position pulse values.

Saving and Restoring Hofs
Hofs can be saved and restored using the Save and Load commands in the [System Configuration]
dialog-[Robot]-[Calibration] from the System Configuration menu.

> S

Hofs Statement

236 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

See Also
Calib, CalPls, Home, Hordr, MCal, SysConfig

Hofs Statement Example

These are simple examples on the monitor window that first sets the joint 1 home offset value to be -
545, the joint 2 home offset value to be 514, and the joint 3 and the joint 4 Home offset values to be
both 0. It then displays the current home offset values.

> hofs -545, 514, 0, 0

> hofs
-545, 514, 0, 0
>

Hofs Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 237

Hofs Function

Returns the offset pulses used for software zero point correction.

Syntax

Hofs(jointNumber)

Parameters

jointNumber Integer expression representing the joint number to retrieve the Hofs value for.
The additional S axis is 8 and T axis is 9.

Return Values

The offset pulse value (integer value, in pulses).

See Also

Calib, CalPls, Home, Hordr, MCal, SysConfig

Hofs Function Example

This example uses the Hofs function in a program:

Function DisplayHofs
 Integer i

 Print "Hofs settings:"
 For i = 1 To 4
 Print "Joint ", i, " = ", Hofs(i)
 Next i
Fend

F

Home Statement

238 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Home Statement

Moves the robot arm to the user defined home position.

Syntax
Home

Description
Executes low speed Point to Point motion to the Home (standby) position specified by HomeSet, in the
homing order defined by Hordr.

Normally, for SCARA robots (including RS series), the Z joint (J3) returns first to the HomeSet position,
then the J1, J2 and J4 joints simultaneously return to their respective HomeSet coordinate positions.
The Hordr instruction can change this order of the axes returning to their home positions.

Note
Home Status Output:

When the robot is in its Home position, the controller's system Home output is turned ON.

Potential Errors
Attempting to Home without HomeSet Values Defined

Attempting to Home the robot without setting the HomeSet values will result in an Error 2228 being
issued.

See Also

HomeClr, HomeDef, HomeSet, Hordr

Home Example
The Home instruction can be used in a program such as this:

Function InitRobot
 Reset
 If Motor = Off Then
 Motor On
 EndIf
 Home
Fend

Or it can be issued from the Command window like this:

> home
>

> S

HomeClr Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 239

HomeClr Function

Clears the home position definition.

Syntax
HomeClr

See Also
HomeDef, HomeSet

HomeClr Function Example
This example uses the HomeClr function in a program:

Function ClearHome

 If HomeDef = True Then
 HomeClr
 EndIf
Fend

F

HomeDef Function

240 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

HomeDef Function

Returns whether home position has been defined or not.

Syntax
HomeDef

Return Values
True if home position has been defined, otherwise False.

See Also
HomeClr, HomeSet

HomeDef Function Example
This example uses the HomeDef function in a program:

Function DisplayHomeSet

 Integer i

 If HomeDef = False Then
 Print "Home is not defined"
 Else
 Print "Home values:"
 For i = 1 To 4
 Print "J", i, " = ", HomeSet(i)
 Next i
 EndIf
Fend

F

HomeSet Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 241

HomeSet Statement

Specifies and displays the Home position.

Syntax

(1) HomeSet j1Pulses, j2Pulses, j3Pulses, j4Pulses,
[j5Pulses, j6Pulses], [j7Pulses], [j8Pulses, j9Pulses]

(2) HomeSet

Parameters

j1Pulses The home position encoder pulse value for joint 1.
j2Pulses The home position encoder pulse value for joint 2.
j3Pulses The home position encoder pulse value for joint 3.
j4Pulses The home position encoder pulse value for joint 4.
j5Pulses Optional for 6-axis robots. The home position encoder pulse value for joint 5.
j6Pulses Optional for 6-axis robots. The home position encoder pulse value for joint 6.
j7Pulses Optional for Joint type 7-axis robots. The home position encoder pulse value

for joint 7.
j8Pulses Optional for additional S axis. The home position encoder pulse value for joint

8 (additional S axis).
j9Pulses Optional for additional T axis. The home position encoder pulse value for joint

9 (additional T axis).
Return Values

Displays the pulse values defined for the current Home position when parameters are omitted.

Description

Allows the user to define a new home (standby) position by specifying the encoder pulse values for
each of the robot joints.

Potential Errors
Attempting to Home without HomeSet Values Defined:

Attempting to Home the robot without setting the HomeSet values will result in an Error 2228 being
issued.

Attempting to Display HomeSet Values without HomeSet Values Defined:
Attempting to display home position pulse values without HomeSet values defined causes an Error
2228.

> S

HomeSet Statement

242 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

See Also
Home, Hordr, Mcal, Pls

HomeSet Example

The following examples are done from the monitor window:

> homeset 0,0,0,0 'Set Home position at 0,0,0,0
> homeset
 0 0
 0 0

> home 'Robot homes to 0,0,0,0 position

Using the Pls function, specify the current position of the arm as the Home position.

> homeset Pls(1), Pls(2), Pls(3), Pls(4)

HomeSet Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 243

HomeSet Function

Returns pulse values of the home position for the specified joint.

Syntax
HomeSet(jointNumber)

Parameters
jointNumber Integer expression representing the joint number to retrieve the HomeSet value for.

The additional S axis is 8 and T axis is 9.

Return Values
Returns pulse value of joint home position. When jointNumber is 0, returns 1 when HomeSet has
been set or 0 if not.

See Also
HomeSet Statement

HomeSet Function Example
This example uses the HomeSet function in a program:

Function DisplayHomeSet

 Integer i

 If HomeSet(0) = 0 Then
 Print "HomeSet is not defined"
 Else
 Print "HomeSet values:"
 For i = 1 To 4
 Print "J", i, " = ", HomeSet(i)
 Next i
 EndIf
Fend

F

Hordr Statement

244 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Hordr Statement

Specifies or displays the order of the axes returning to their Home positions.

Syntax
(1) Hordr step1, step2, step3, step4, [step5], [step6], [step7], [step8], [step9]
(2) Hordr

Parameters
step1 Bit pattern that defines which joints should home during the 1st step of the homing

process.
step2 Bit pattern that defines which joints should home during the 2nd step of the homing

process.
step3 Bit pattern that defines which joints should home during the 3rd step of the homing

process.
step4 Bit pattern that defines which joints should home during the 4th step of the homing

process.
step5 Bit pattern that defines which joints should home during the 5th step of the homing

process.
step6 Bit pattern that defines which joints should home during the 6th step of the homing

process.
step7 Bit pattern that defines which joints should home during the 7th step of the homing

process.
step8 Bit pattern that defines which joints should home during the 8th step of the homing

process.
step9 Bit pattern that defines which joints should home during the 9th step of the homing

process.

Return Values
Displays current Home Order settings when parameters are omitted.

Description
Hordr specifies joint motion order for the Home command. (i.e. Defines which joint will home 1st,
which joint will home 2nd, 3rd, etc.)

The purpose of the Hordr instruction is to allow the user to change the homing order. The homing
order is broken into 4, 6, or 9 separate steps, depending on robot type. The user then uses Hordr to
define the specific joints which will move to the Home position during each step. It is important to
realize that more than one joint can be defined to move to the Home position during a single step. This
means that all joints can potentially be homed at the same time. For SCARA robots (including RS
series, 4 axis robots), it is recommended that the Z joint normally be defined to move to the Home
position first (in Step 1) and then allow the other joints to follow in subsequent steps.

The Hordr instruction expects that a bit pattern be defined for each of the steps. Each joint is assigned
a specific bit. When the bit is set to 1 for a specific step, then the corresponding joint will home. When
the bit is cleared to 0, then the corresponding axis will not home during that step. The joint bit patterns
are assigned as follows:

> S

Hordr Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 245

Joint: 1 2 3 4 5 6 7 8 9
Bit
Number: bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7 bit 8

Binary
Code: &B0001 &B0010 &B0100 &B1000 &B100

00
&B100

000
&B100
0000

&B100
00000

&B100
000000

See Also

Home, HomeSet

Hordr Statement Example
Following are some command window examples for SCARA robots (including RS series, 4 axis
robots):

This example defines the home order as J3 in the first step, J1 in second step, J2 in third step, and J4
in the fourth step. The order is specified with binary values.

>hordr &B0100, &B0001, &B0010, &B1000

This example defines the home order as J3 in the first step, then J1, J2 and J4 joints simultaneously in
the second step. The order is specified with decimal values.

>hordr 4, 11, 0, 0

This example displays the current home order in decimal numbers.

>hordr
4, 11, 0, 0
>

Hordr Function

246 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Hordr Function

Returns Hordr value for a specified step.

Syntax
Hordr(stepNumber)

Parameters
stepNumber Integer expression representing which Hordr step to retrieve.

Return Values
Integer containing the Hordr value for the specified step.

See Also
Home, HomeSet

Hordr Function Example

Integer a
a = Hordr(1)

> F

Hour Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 247

Hour Statement

Displays the accumulated controller operating time.

Syntax
Hour

Description
Displays the amount of time the controller has been turned on and running SPEL. (Accumulated
Operating Time) Time is always displayed in units of hours.

See Also
Time

Hour Example
The following example is done from the Command window:

> hour
2560
>

>

Hour Function

248 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Hour Function

Returns the accumulated controller operating time.

Syntax
Hour

Return Values
Returns accumulated operating time of the controller (real number, in hours).

See Also
Time

Hour Function Example

Print "Number of controller operating hours: ", Hour

F

If…Then…Else…EndIf Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 249

If…Then…Else…EndIf Statement

Executes instructions based on a specified condition.

Syntax
(1) If condition Then
 stmtT1
 .
 .
 [ElseIf condition Then]
 stmtT1
 .
 .
 [Else]
 stmtF1
 .
 .
 EndIf

(2) If condition Then stmtT1 [; stmtT2...] [Else stmtF1 [; stmtF2...]]

Parameters
condition Any valid test condition which returns a True (any number besides 0) or False result

(returned as a 0). (See sample conditions below)
stmtT1 Executed when the condition is True. (Multiple statements may be put here in a blocked

If...Then...Else style.)
stmtF1 Executed when the condition is False. (Multiple statements may be put here in a blocked

If...Then...Else style.)
Description

(1) If...Then...Else executes stmtT1, etc. when the conditional statement is True. If the condition is
False then stmtF1, etc. are executed. The Else portion of the If...Then...Else instruction is optional.
If you omit the Else statement and the conditional statement is False, the statement following the
EndIf statement will be executed. For blocked If...Then...Else statements the EndIf statement is
required to close the block regardless of whether an Else is used or not.

(2) If...Then...Else can also be used in a non blocked fashion. This allows all statements for the

If...Then...Else to be put on the same line. Please note that when using If...Then...Else in a non
blocked fashion, the EndIf statement is not required. If the If condition specified in this line is
satisfied (True), the statements between the Then and Else are executed. If the condition is not
satisfied (False), the statements following Else are executed. The Else section of the
If...Then...Else is not required. If there is no Else keyword then control passes on to the next
statement in the program if the If condition is False.

The logical output of the conditional statement is any number excluding 1 when it is True, and 0 when it
is false.

Notes
Sample Conditions:

a = b :a is equal to b
a < b :b is larger than a
a >= b :a is greater than or equal to b
a <> b :a is not equal to b
a > b :b is smaller than a
a <= b :a is less than or equal to b

Logical operations And, Or and Xor may also be used.

S

If…Then…Else…EndIf Statement

250 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

True in the Conditions:
Constant True is −1 and the type is Boolean, so you need to be careful when using it in a comparing
condition with other type variable.

Function main
 Integer i
 i = 3
 If i = True Then
 Print "i=TRUE"
 EndIf
Fend

When you execute the program above, “i=TRUE” is displayed.
The judgement of condition including the Boolean type is done with “0” or “non-0”.
If the value of “i” is not “0”, it is considered that the condition is established and “i=TRUE” is displayed.

See Also

Else, Select...Case, Do...Loop

If/Then/Else Statement Example

<Single Line If...Then...Else>
The following example shows a simple function which checks an input to determine whether to turn a
specific output on or off. This task could be a background I/O task which runs continuously.

Function main
 Do
 If Sw(0) = 1 Then On 1 Else Off 1
 Loop
Fend

<Blocked If...Then...Else>
The following example shows a simple function which checks a few inputs and prints the status of
these inputs

If Sw(0) = 1 Then Print "Input0 ON" Else Print "Input0 OFF"
'
If Sw(1) = 1 Then
 If Sw(2) = 1 Then
 Print "Input1 On and Input2 ON"
 Else
 Print "Input1 On and Input2 OFF"
 EndIf
Else
 If Sw(2) = 1 Then
 Print "Input1 Off and Input2 ON"
 Else
 Print "Input1 Off and Input2 OFF"
 EndIf
EndIf

<Other Syntax Examples>

If x = 10 And y = 3 Then GoTo 50
If test <= 10 Then Print "Test Failed"
If Sw(0) = 1 Or Sw(1) = 1 Then Print "Everything OK"

ImportPoints Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 251

ImportPoints Statement

Imports a point file into the current project for the specified robot.

Syntax
ImportPoints sourcePath, filename, [robotNumber]

Parameters
sourcePath String expression containing the specific path and file to import into the current

project. The extension can be .PTS or .PNT (EPSON RC+ 3.x and 4.x format).
See ChDisk for the details.

fileName String expression containing the specific file to be imported to in the current
project for the current robot The extension must be .PTS.
You cannot specify a file path and fileName doesn’t have any effect from ChDisk.
See ChDisk for the details.

robotNumber Optional. Integer expression that specifies which robot the point file should be
associated with. If robotNumber = 0, then the point file is imported as a common
point file. If robotNumber is omitted, the current robot number is used.

Description

ImportPoints copies a point file into the current project and adds it to the project files for the specified
robot. The point file is then compiled and is ready for loading using the LoadPoints command. If the
file already exists for the current robot, it will be overwritten and recompiled.

The point data is stored in the compact flush inside of the controller. Therefore, ImportPoints starts
writing into the compact flush. Frequent writing into the compact flush will shorten the compact flush
lifetime. We recommend using ImportPoints only for saving the point data.

Potential Errors
File Does Not Exist

If sourcePath does not exist, an error will occur.
A Path Cannot be Specified

If fileName contains a path, an error will occur.
Point file for another robot.

If fileName is a point file for another robot, an error will occur

See Also

Dir, LoadPoints, Robot, SavePoints

ImportPoints Statement Example

Function main
 Robot 1
 ImportPoints "c:\mypoints\model1.pts", "robot1.pts"
 LoadPoints "robot1.pts"
Fend

> S

In Function

252 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

In Function

Returns the status of the specified Byte port. Each port contains 8 input channels.

Syntax
In(byteportNumber)

Parameters
byteportNumber Integer number representing one eight bit port (one byte).

Return Values
Returns an integer value between 0-255. The return value is 8 bits, with each bit corresponding to 1
input channel.

Description
In provides the ability to look at the value of 8 input channels at the same time. The In instruction can
be used to store the 8 I/O channels status into a variable or it can be used with the Wait instruction to
Wait until a specific condition which involves more than 1 I/O channel is met.

Since 8 channels are checked at a time, the return values range from 0-255. Please review the chart
below to see how the integer return values correspond to individual input channels.

Input Channel Result (Using Byte port #0)
Return Value 7 6 5 4 3 2 1 0

1 Off Off Off Off Off Off Off On
5 Off Off Off Off Off On Off On

15 Off Off Off Off On On On On
255 On On On On On On On On

Input Channel Result (Using Byte port #2)

Return Value 23 22 21 20 19 18 17 16
3 Off Off Off Off Off Off On On
7 Off Off Off Off Off On On On

32 Off Off On Off Off Off Off Off
255 On On On On On On On On

See Also

InBCD, MemIn, MemOff, MemOn, MemSw, Off, On, OpBCD, Oport, Out, Sw, Wait

F

In Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 253

In Function Example
For the example below lets assume that input channels 20, 21, 22, and 23 are all connected to
sensory devices such that the application should not start until each of these devices are returning an
On signal indicating everything is OK to start. The program example gets the 8 input channels status
of byte port 2 and makes sure that channels 20, 21, 22, and 23 are each On before proceeding. If they
are not On (i.e. returning a value of 1) an error message is given to the operator and the task is
stopped.

In the program, the variable "var1" is compared against the number 239 because in order for inputs 20,
21, 22, and 23 to all be On, then the result of In(2) will be 240 or larger. (We don't care about Inputs
16, 17, 18, and 19 in this case so any values between 240-255 will allow the program to proceed.)

Function main
 Integer var1
 var1 = In(2) 'Get 8 input channels status of byte port 2
 If var1 > 239 Then
 Go P1
 Go P2
 'Execute other motion statements here
 '.
 '.
 Else
 Print "Error in initialization!"
 Print "Sensory Inputs not ready for cycle start"
 Print "Please check inputs 20,21,22, and 23 for"
 Print "proper state for cycle start and then"
 Print "start program again"
 EndIf
Fend

We cannot set inputs from the command window but we can check them. For the examples shown
below, we will assume that the Input channels 1, 5, and 15 are On. All other inputs are Off.

> print In(0)
34
> print In(1)
128
> print In(2)
0

InBCD Function

254 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

InBCD Function

Returns the input status of 8 inputs using BCD format. (Binary Coded Decimal)

Syntax
InBCD(portNumber)

Parameters
portNumber Integer number representing one eight bit port (one byte).

Return Values
Returns as a Binary Coded Decimal (0-9), the input status of the input port (0-99).

Description
InBCD simultaneously reads 8 input lines using the BCD format. The portNumber parameter for the
InBCD instruction defines which group of 8 inputs to read where portNumber = 0 means inputs 0-7,
portNumber = 1 means inputs 8-15, etc.

The resulting value of the 8 inputs is returned in BCD format. The return value may have 1 or 2 digits
between 0 and 99. The 1st digit (or 10's digit) corresponds to the upper 4 outputs of the group of 8
outputs selected by portNumber. The 2nd digit (or 1's digit) corresponds to the lower 4 outputs of the
group of 8 outputs selected by portNumber.

Since valid entries in BCD format range from 0-9 for each digit, every I/O combination cannot be met.
The table below shows some of the possible I/O combinations and their associated return values
assuming that portNumber is 0.

Input Settings (Input number)
Return Value 7 6 5 4 3 2 1 0

01 Off Off Off Off Off Off Off On
02 Off Off Off Off Off Off On Off
03 Off Off Off Off Off Off On On
08 Off Off Off Off On Off Off Off
09 Off Off Off Off On Off Off On
10 Off Off Off On Off Off Off Off
11 Off Off Off On Off Off Off On
99 On Off Off On On Off Off On

Notice that the Binary Coded Decimal format only allows decimal values to be specified. This means
that through using Binary Coded Decimal format it is impossible to retrieve a valid value if all inputs for
a specific port are turned on at the same time when using the InBCD instruction. The largest value
possible to be returned by InBCD is 99. In the table above it is easy to see that when 99 is the return
value for InBCD, all inputs are not on. In the case of a return value of 99, inputs 0, 3, 4, and 7 are On
and all the others are Off.

F

InBCD Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 255

Notes
Difference between InBCD and In

The InBCD and In instructions are very similar in the SPEL+ language. However, there is one major
difference between the two. This difference is shown below:

- The InBCD instruction uses the Binary Coded Decimal format for specifying the return value
format for the 8 inputs. Since Binary Coded Decimal format precludes the values of &HA, &HB,
&HC, &HD, &HE or &HF from being used, all combinations for the 8 inputs cannot be satisfied.

- The In instruction works very similarly to the InBCD instruction except that In allows the return
value for all 8 inputs to be used. (i.e. 0-255 vs. 0-99 for InBCD) This allows all possible
combinations for the 8 bit input groups to be read.

See Also

In, MemOff, MemOn, MemOut, MemSw, Off, On, OpBCD, Oport, Out, Sw, Wait

InBCD Example
Some simple examples from the Command window are as follows:

Assume that inputs 0, 4, 10, 16, 17, and 18 are all On (The rest of the inputs are Off).

> Print InBCD(0)
11
> Print InBCD(1)
04
> Print InBCD(2)
07
>

Inertia Statement

256 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Inertia Statement

Specifies load inertia and eccentricity for current robot.

Syntax
Inertia [loadInertia], [eccentricity]
Inertia

Parameters
loadInertia Optional. Real expression that specifies total moment of inertia in kgm2 around the center

of the end effector joint, including end effector and part.
eccentricity Optional. Real expression that specifies eccentricity in mm around the center of the end

effector joint, including end effector and part.

Return Values
When parameters are omitted, the current Inertia parameters are displayed.

Description
Use the Inertia statement to specify the total moment of inertia for the load on the end effector joint.
This allows the system to more accurately compensate acceleration, deceleration, and servo gains for
end effector joint. You can also specify the distance from the center of end effector joint to the center
of gravity of the end effector and part using the eccentricity parameter.

See Also
Inertia Function

Inertia Statement Example

Inertia 0.02, 1

>

Inertia Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 257

Inertia Function

Returns inertia parameter value.

Syntax
Inertia(paramNumber)

Parameters
paramNumber Integer expression which can have the following values:
 0: Causes function to return 1 if robot supports inertia parameters or 0 if not.
 1: Causes function to return load inertia in kgm2.
 2: Causes function to return eccentricity in mm.

Return Values
Real value of the specified setting.

See Also
Inertia Statement

Inertia Function Example

Real loadInertia, eccentricity

loadInertia = Inertia(1)
eccentricity = Inertia(2)

F

InPos Function

258 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

InPos Function

Returns the position status of the specified robot.

Syntax
InPos

Return Values
True if position has been completed successfully, otherwise False.

See Also
CurPos, FindPos, WaitPos

InPos Function Example

Function main

 P0 = XY(0, -100, 0, 0)
 P1 = XY(0, 100, 0, 0)

 Xqt MonitorPosition
 Do
 Jump P0
 Wait .5
 Jump P1
 Wait .5
 Loop

Fend

Function MonitorPosition

 Boolean oldInPos, pos

 Do
 Pos = InPos
 If pos <> oldInPos Then
 Print "InPos = ", pos
 EndIf
 oldInPos = pos
 Loop

Fend

F

Input Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 259

Input Statement

Receives input data from the display device and stored in a variable(s).

Syntax
Input varName [, varName, varName,...]

Parameters
varName Variable name. Multiple variables can be used with the Input command as long

as they are separated by commas.

Description
Input receives data from the display device and assigns the data to the variable(s) used with the Input
instruction.

When executing the Input instruction, a (?) prompt appears at the display device. After inputting data
press the return key (Enter) on the keyboard.

Notes
Rules for Numeric Input

When inputting numeric values and non-numeric data is found in the input other than the delimiter
(comma), the Input instruction discards the non-numeric data and all data following that non-numeric
data.

Rules for String Input
When inputting strings, numeric and alpha characters are permitted as data.

Other Rules for the Input Instruction
- When more than one variable is specified in the instruction, the numeric data input intended for each

variable has to be separated by a comma (",") character.
- Numeric variable names and string variable names are allowed. However, the input data type must

match the variable type.

Potential Errors
Number of variables and input data differ

For multiple variables, the number of input data must match the number of Input variable names.
When the number of the variables specified in the instruction is different from the number of numeric
data received from the keyboard, an Error 2505 will occur.

See Also

Input #, Line Input, Line Input #, Print, String

> S

Input Statement

260 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Input Statement Example
This is a simple program example using Input statement.

Function InputNumbers
 Integer A, B, C

 Print "Please enter 1 number"
 Input A
 Print "Please enter 2 numbers separated by a comma"
 Input B, C
 Print "A = ", A
 Print "B = ", B, "C = ", C
Fend

A sample session of the above program running is shown below:
(Use the Run menu or F5 key to start the program)

Please enter 1 number
?-10000
Please enter 2 numbers separated by a comma
?25.1, -99
-10000
25.1 -99
B = 25.1 C = -99
>

Input # Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 261

Input # Statement

Allows string or numeric data to be received from a file, communications port, or
database and stored in one or more variables.

Syntax
Input #portNumber, varName [, varName, varName,...]

Parameters

#portNumber The ID number that specifies a file, communication port, database, or device.
The File number can be specified in ROpen, WOpen, and AOpen statements.
Communication port number can be specified in OpenCom (RS-232C) and
OpenNet (TCP/IP) statements.
The database number can be specified in OpenDB statement.

Device ID is:
 21 RC+
 24 TP

varName Variable name to receive the data.
Description

The Input # instruction receives numeric or string data from the device specified by handle, and
assigns the data to the variable(s).

Notes
Rules for Numeric Input

When inputting numeric values and non-numeric data is found in the input other than the delimiter
(comma), the Input instruction discards the non-numeric data and all data following that non-numeric
data.

Rules for String Input
When inputting strings, numeric and alpha characters are permitted as data.

Maximum data length
This command can handle up to 256 bytes.
However, the target is the database, it can handle up to 4096 bytes.

Other Rules for the Input Instruction

- When more than one variable is specified in the instruction, the numeric data input intended for each
variable has to be separated by a comma (",") character or blank (“ ”).

- When more than one string variable or both of numeric variable and string barialble is specified, the
numeric data has to be separated by a comma (“,”) character or blank (“ “).

- The input data type must match the variable type.

The following programs are examples to exchange the string variable and numeric variable between
the controllers using a communication port.

Sending end (Either pattern is OK.)
Print #PortNum, "$Status,", InData, OutData
Print #PortNum, "$Status", ",",InData, OutData

Receiving end
Input #PortNum, Response$, InData, OutData

> S

Input # Statement

262 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Potential Errors
Number of variables and input data differ

When the number of the variables specified in the instruction is different from the number of numeric
data received from the device, an Error 30 will occur.

See Also

Input, Line Input, Line Input #, Print #

Input # Statement Example

This function shows some simple Input # statement examples.

Function GetData
 Integer A
 String B$

 OpenCom #1
 Print #1, "Send"
 Input #1, A 'Get a numeric value from Port#1
 Input #1, B$ 'Get a string from Port#1
 CloseCom #1
Fend

InputBox Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 263

InputBox Statement

Displays a prompt in a dialog box, waits for the operator to input text or choose a button,
and returns the contents of the box.

Syntax
InputBox prompt, title, default, data$

Parameters
prompt String expression displayed as a message in the dialog box.
title String expression displayed in the title bar of the dialog box.
default String expression displayed in the text box as the default response. If no default

is desired, use an empty string ("").
data$ A string variable which will contain what the operator entered. If the operator

clicks Cancel, this string will be "@".

Description
InputBox displays the dialog and waits for the operator to click OK or Cancel. data is a string that
contains what the operator typed in.

See Also
MsgBox

InputBox Statement Example
This function shows an InputBox example.

Function GetPartName$ As String
 String prompt$, title$, data$

 prompt$ = "Enter part name:"
 title$ = "Sample Application"
 InputBox prompt$, title$, "", data$
 If data$ <> "@" Then
 GetPartName$ = data$
 EndIf
Fend

The following picture shows the example output from the InputBox example code shown above.

> S

InReal Function

264 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

InReal Function

Returns the input data of 2 words (32 bits) as the floating-point data (IEEE754 compliant)
of 32 bits.

Syntax
InReal(WordPortNumber)

Parameter
WordPortNumber Integer expression representing the I/O Input Word.

Return Values

Returns the input port status in Real type number.

Description
From the input word port specified by the word port number, retrieve the 2 input word values as
IEEE754 Real type value. Input word label can be used for the word port number parameter.
InReal Function cannot be used for the Wait command, or the condition of Till, Find, Sense.

See Also

In, InW, InBCD, Out, OutW, OpBCD, OutReal

InW Function Example

Real realVal

realVal = InReal(0)

F

InsideBox Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 265

InsideBox Function

Returns the check status of the approach check area.

Syntax
InsideBox(AreaNum [, robotNumber | All])

Parameters
AreaNum Integer expression from 1 to 15 representing which approach check area to return

status for.
robotNumber Integer value that contains the robot number you want to search.

If omitted, the current robot will be specified.
If you specify All, True is returned if one robot is in the check area.

Return Values

True if the robot end effector approaches the specified approach check area, otherwise False.

Note
You can use the Wait statement with InsideBox to wait for the result of the InsideBox function in
EPSON RC+ 5.0, however you cannot in EPSON RC+ 6.0. In this case, use the GetRobotInsideBox
function instead of the InsideBox function.

See Also

Box, BoxClr, BoxDef, GetRobotInsideBox, InsidePlane

InsideBox Function Example

InsideBox function Example

The following program checks Robot 1 is in the check area (Box 3) or not.

Function PrintInsideBox
If InsideBox(3,1) = True Then

Print “Inside Box3”
Else

Print “Outside Box3”
Endif

Fend

F

InsidePlane Function

266 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

InsidePlane Function

Returns the check status of the approach check plane.

Syntax
InsidePlane(PlaneNum [, robotNumber | All])

Parameters
PlaneNum Integer expression from 1 to 15 representing which approach check plane to

return status for.
robotNumber Integer value that contains the robot number you want to search.

If omitted, the current robot will be specified.
If you specify All, True is returned if one robot is in the check area.

Return Values

True if the robot end effector approaches the specified approach check plane, otherwise False.

See Also
InsideBox, GetRobotInsidePlane, Plane, PlaneClr, PlaneDef

Note
You can use the Wait statement with InsidePlane to wait for the result of the InsidePlane function in
EPSON RC+ 5.0, however you cannot in EPSON RC+ 6.0.
In this case, use the GetRobotInsidePlane function instead of the InsidePlane function.

InsidePlane Function Example

This is an example to check Robot 1 is in the check plane (Plane 3).

Function PrintInsidePlane

If InsidePlane(3,1) = True Then
Print “Inside Plane3”

Else
Print “Outside Plane3”

Endif
Fend

F

InStr Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 267

InStr Function

Returns position of one string within another.

Syntax
InStr(string, searchString)

Parameters
string String expression to be searched.
searchString String expression to be searched for within string.

Return Values
Returns the position of the search string if the location is found, otherwise -1.

See Also
Mid$

Instr Function Example

Integer pos

pos = InStr("abc", "b")

F

Int Function

268 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Int Function

Converts a Real number to Integer. Returns the largest integer that is less than or equal to the
specified value.

Syntax
Int(number)

Parameters
number A real number expression.

Return Values
Returns an Integer value of the real number used in number.

Description
Int(number) takes the value of number and returns the largest integer that is less than or equal to
number.

Note
For Values Less than 1 (Negative Numbers)

If the parameter number has a value of less than 1 then the return value have a larger absolute value
than number. (For example, if number = -1.35 then -2 will be returned.)

See Also

Abs, Atan, Atan2, Cos, Mod, Not, Sgn, Sin, Sqr, Str$, Tan, Val

Int Function Example
Some simple examples from the Command window are as follows:

> Print Int(5.1)
5
> Print Int(0.2)
0
> Print Int(-5.1)
-6
>

F

Integer Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 269

Integer Statement

Declares variables of type Integer. (2 byte whole number).

Syntax
Integer varName [(subscripts)] [, varName [(subscripts)]...]

Parameters
varName Variable name which the user wants to declare as type integer.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared.

The subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 and the

available number of array elements is the upper bound value + 1.
 When specifying the upper bound value, make sure the number of total elements

is within the range shown below:
Local variable 2000
Global Preserve variable 4000
Global variable and module variable 100000

Description
Integer is used to declare variables as type integer. Variables of type integer can contain whole
numbers with values from -32768 to 32767. Local variables should be declared at the top of a function.
Global and module variables must be declared outside of functions.

See Also
Boolean, Byte, Double, Global, Long, Real, String

Integer Statement Example
The following example shows a simple program that declares some variables using Integer.

Function inttest
 Integer A(10) 'Single dimension array of integer
 Integer B(10, 10) 'Two dimension array of integer
 Integer C(5, 5, 5) 'Three dimension array of integer
 Integer var1, arrayvar(10)
 Integer i
 Print "Please enter an Integer Number"
 Input var1
 Print "The Integer variable var1 = ", var1
 For i = 1 To 5
 Print "Please enter an Integer Number"
 Input arrayvar(i)
 Print "Value Entered was ", arrayvar(i)
 Next i
Fend

S

InW Function

270 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

InW Function

Returns the status of the specified input word port. Each word port contains 16 input bits.

Syntax
InW(WordPortNum)

Parameters
WordPortNum Integer expression representing the I/O Input Word.

Return Values
Returns the current status of inputs (long integers from 0 to 65535).

See Also
In, Out, OutW

InW Function Example

Long word0

word0 = InW(0)

F

IOLabel$ Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 271

IOLabel$ Function

Returns the I/O label for a specified input or output bit, byte, or word.

Syntax
IOLabel$(IOType, IOWidth, portNumber)

Parameters
IOType Integer expression representing the type of I/O.

0 - Input
1 - Output
2 - Memory

IOWidth Integer expression representing the width of the port: 1(bit), 8 (byte), or 16 (word).
portNumber Integer expression representing the bit, byte, or word port number to return the label for.

Return Values
String containing the label.

See Also
PLabel$, IONumber

IOLabel$ Function Example

Integer i

For i = 0 To 15
 Print "Input ", i, ": ", IOLabel$(0, 1, i)
Next i

F

IONumber Function

272 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

IONumber Function

Returns the I/O number of the specified I/O label.

Syntax
IONumber(IOlabel)

Parameters
IOlabel String expression that specifies the standard I/O or memory I/O label.

Return Values
Returns the I/O port number (bit, byte, word) of the specified I/O label. If there is no such I/O label, an
error will be generated.

See Also
IOLabel$

IONumber Function Example

Integer IObit

IObit = IONumber("myIO")

IObit = IONUmber("Station" + Str$(station) + "InCycle")

F

J1Angle Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 273

J1Angle Statement

Sets the J1Angle attiribute of a point.

Syntax
(1) J1Angle point, [Step]
(2) J1Angle

Parameters
point Pnumber or P(expr) or point label.
Step Optional. Real value that specifies the set value.

Description

The J1Angle attribute can be used for the RS robot series. It specifies the angle of the Joint 1 when
both X and Y coordinate values of a point are “0” (singularity). For other robot series points, J1Angle
has no meaning.
If Step is omitted, the J1Angle value for the specified point will be displayed.
If both parameters are omitted, the J1Angle value of the current robot position will be displayed.

See Also
Hand, J1Angle function, J1Flag, J2Flag

J1Angle Example

J1Angle P0, 10.0
J1Angle P(mypoint), 0.0

J1Angle Function

274 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

J1Angle Function

Returns the J1Angle attribute of a point.

Syntax
J1Angle [(point)]

Parameters
point Point expression
 Optional. If omitted, returns the J1Angle setting of the current robot position.

Return Values
Returns the angle of Joint 1 when both X and Y coordinate values of a point are “0” (singularity) in a
real value. The J1Angle attribute can be used for the RS series.

See Also
Hand, J1Flag, J2Flag

J1Angle function Example

Print J1Angle(pick)
Print J1Angle(P1)
Print J1Angle

J1Flag Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 275

J1Flag Statement

Specifies the J1Flag attribute of a point.

Syntax
(1) J1Flag point, [value]
(2) J1Flag

Parameters
point Pnumber or P(expr) or point label.
value Optional. Integer expression.

0 (/J1F0) J1 range is -90 to +270 degrees
 1 (/J1F1) J1 range is from -270 to -90 or +270 to +450 degrees

Return Values
The J1Flag attribute specifies the range of values for joint 1 for one point. If value is ommited, the
J1Flag value for the specified point is displayed. When both parameters are omitted, the J1Flag value
is displayed for the current robot position.

See Also
Hand, J1Flag Function, J2Flag

J1Flag Statement Example

J1Flag P0, 1
J1Flag P(mypoint), 0

> S

J1Flag Function

276 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

J1Flag Function

Returns the J1Flag attribute of a point.

Syntax
J1Flag [(point)]

Parameters
point Optional. Point expression. If point is omitted, then the J1Flag setting of the current robot

position is returned.

Return Values
0 /J1F0
1 /J1F1

See Also
Hand, J1Flag Statement, J2Flag

J1Flag Function Example

Print J1Flag(pick)
Print J1Flag(P1)
Print J1Flag
Print J1Flag(Pallet(1, 1))

F

J2Flag Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 277

J2Flag Statement

Sets the J2Flag attribute of a point.

Syntax
(1) J2Flag point, [value]
(2) J2Flag

Parameters
point Pnumber or P(expr) or point label.
value Optional. Integer expression.

0 (/J2F0) J2 range is -180 to +180 degrees
 1 (/J2F1) J2 range is from -360 to -180 or +180 to +360 degrees

Return Values

The J2Flag attribute specifies the range of values for joint 2 for one point. If value is ommited, the
J2Flag value for the specified point is displayed. When both parameters are omitted, the J2Flag value
is displayed for the current robot position.

See Also
Hand, J1Flag, J2Flag Function

J2Flag Statement Example

J2Flag P0, 1
J2Flag P(mypoint), 0

> S

J2Flag Function

278 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

J2Flag Function

Returns the J2Flag attribute of a point.

Syntax
J2Flag [(point)]

Parameters
point Optional. Point expression. If point is omitted, then the J2Flag setting of the current robot

position is returned.

Return Values
0 /J2F0
1 /J2F1

See Also
Hand, J1Flag, J2Flag Statement

J2Flag Function Example

Print J2Flag(pick)
Print J2Flag(P1)
Print J2Flag
Print J2Flag(P1 + P2)

F

J4Flag Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 279

J4Flag Statement

Sets the J4Flag attribute of a point.

Syntax
(1) J4Flag point, [value]
(2) J4Flag

Parameters
point Pnumber or P(expr) or point label.
value Optional. Integer expression.

0 (/J4F0) J4 range is -180 to +180 degrees
 1 (/J4F1) J4 range is from -360 to -180 or +180 to +360 degrees

Return Values
The J4Flag attribute specifies the range of values for joint 4 for one point. If value is ommited, the
J4Flag value for the specified point is displayed. When both parameters are omitted, the J4Flag value
is displayed for the current robot position.

See Also
Elbow, Hand, J4Flag Function, J6Flag, Wrist

J4Flag Statement Example

J4Flag P0, 1
J4Flag P(mypoint), 0

> S

J4Flag Function

280 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

J4Flag Function

Returns the J4Flag attribute of a point.

Syntax
J4Flag [(point)]

Parameters
point Optional. Point expression. If point is omitted, then the J4Flag setting of the current robot

position is returned.

Return Values
0 /J4F0
1 /J4F1

See Also
Elbow, Hand, Wrist, J4Flag Statement, J6Flag

J4Flag Function Example

Print J4Flag(pick)
Print J4Flag(P1)
Print J4Flag
Print J4Flag(Pallet(1, 1))

F

J6Flag Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 281

J6Flag Statement

Sets the J6Flag attribute of a point.

Syntax
(1) J6Flag point, [value]
(2) J6Flag

Parameters
point Pnumber or P(expr) or point label.
value Integer expression. Range is 0 - 127 (/J6F0 - /J6F127). J6 range for the specified point

is as follows:
 (-180 * (value+1) < J6 <= 180 * value) and (180 * value < J6 <= 180 * (value+1))

Return Values
The J6Flag attribute specifies the range of values for joint 6 for one point. If value is ommited, the
J6Flag value for the specified point is displayed. When both parameters are omitted, the J6Flag value
is displayed for the current robot position.

See Also
Elbow, Hand, J4Flag, J6Flag Function, Wrist

J6Flag Statement Example

J6Flag P0, 1
J6Flag P(mypoint), 0

>

S

J6Flag Function

282 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

J6Flag Function

Returns the J6Flag attribute of a point.

Syntax
J6Flag [(point)]

Parameters
point Optional. Point expression. If point is omitted, then the J6Flag setting of the current robot

position is returned.

Return Values
0 - 127 /J6F0 - /J6F127

See Also
Elbow, Hand, Wrist, J4Flag, J6Flag Statement

J6Flag Function Example

Print J6Flag(pick)
Print J6Flag(P1)
Print J6Flag
Print J6Flag(P1 + P2)

F

JA Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 283

JA Function

Returns a robot point specified in joint angles.

Syntax
JA (j1, j2, j3, j4, [j5, j6] , [j7], [j8, j9])

Parameters
j1 – j9 Real expressions representing joint angles.

For for linear joints, specifies in units of mm.
j5 and j6 are for the 6-axis robot and Joint type 6-axis robot.
j7 is for the Joint type 7-axis robot.
j8 and j9 are for the additional ST axis.

Return Values

A robot point whose location is determined by the specified joint angles.

Description
Use JA to specify a robot point using joint angles.

When the points returned from JA function specify a singularity of the robot, the joint angles of the robot
do not always agree with the joint angles supplied to the JA function as arguments during the execution of
a motion command for the points. To operate the robot using the joint angles specified for the JA function,
avoid a singularity of the robot.

For example:

> go ja(0,0,0,90,0,−90)
> where
WORLD: X: 0.000 mm Y: 655.000 mm Z: 675.000 mm U: 0.000 deg V: -90.000 deg W: -90.000 deg
JOINT: 1: 0.000 deg 2: 0.000 deg 3: 0.000 deg 4: 0.000 deg 5: 0.000 deg 6: 0.000 deg
PULSE: 1: 0 pls 2: 0 pls 3: 0 pls 4: 0 pls 5: 0 pls 6: 0 pls

> go ja(0,0,0,90,0.001,−90)
> where
WORLD: X: -0.004 mm Y: 655.000 mm Z: 675.000 mm U: 0.000 deg V: -90.000 deg W: -89.999 deg
JOINT: 1: 0.000 deg 2: 0.000 deg 3: 0.000 deg 4: 90.000 deg 5: 0.001 deg 6: -90.000 deg
PULSE: 1: 0 pls 2: 0 pls 3: 0 pls 4: 2621440 pls 5: 29 pls 6: -1638400 pls

See Also

AglToPls, XY

JA Function Example

P10 = JA(60, 30, -50, 45)
Go JA(135, 90, -50, 90)
P3 = JA(0, 0, 0, 0, 0, 0)

F

Joint Statement

284 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Joint Statement

Displays the current position for the robot in joint coordinates.

Syntax
Joint

See Also
Pulse, Where

Joint Statement Example

>joint
JOINT: 1: -6.905 deg 2: 23.437 deg 3: -1.999 mm 4: -16.529 deg
>

>

JRange Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 285

JRange Statement

Defines the permissible working range of the specified joint in pulses.

Syntax
JRange jointNumber, lowerLimit, upperLmit

Parameters
jointNumber Integer expression between 1 ~ 9 representing the joint for which JRange will be

specified.
The additional S axis is 8 and T axis is 9.

lowerLmit Long integer expression representing the encoder pulse count position for the lower
limit range of the specified joint.

upperLmit Long Integer expression representing the encoder pulse count position for the upper
limit range of the specified joint.

Description

Defines the permissible working range for the specified joint with upper and lower limits in encoder
pulse counts. JRange is similar to the Range command. However, the Range command requires that
all joint range limits be set while the JRange command can be used to set each joint working limits
individually thus reducing the number of parameters required. To confirm the defined working range,
use the Range command.

Notes
Lower Limits Must Not Exceed Upper Limits:

The Lower limit defined in the JRange command must not exceed the Upper limit. A lower limit in
excess of the Upper limit will cause an error, making it impossible to execute a motion command.

Factors Which can Change JRange:
Once JRange values are set they remain in place until the user modifies the values either by the
Range or JRange commands. Turning controller power off will not change the JRange joint limit
values.

Maximum and Minimum Working Ranges:
Refer to the specifications in the Robot manual for maximum working ranges for each robot model
since these vary from model to model.

See Also

Range, JRange Function

JRange Statement Example
The following examples are done from the Command window:

> JRange 2, -6000, 7000 'Define the 2nd joint range

> JRange 1, 0, 7000 'Define the 1st joint range

> S

JRange Function

286 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

JRange Function

Returns the permissible working range of the specified joint in pulses.

Syntax
JRange(jointNumber, paramNumber)

Parameters
jointNumber Specifies reference joint number (integer from 1 ~ 9) by an expression or numeric

value.
 The additional S axis is 8 and T axis is 9.
paramNumber Integer expression containing one of two values:
 1: Specifies lower limit value.
 2: Specifies upper limit value.

Return Values
Range setting (integer value, pulses) of the specified joint.

See Also
Range, JRange Statement

JRange Function Example

Long i, oldRanges(3, 1)

For i = 0 To 3
 oldRanges(i, 0) = JRange(i + 1, 1)
 oldRanges(i, 1) = JRange(i + 1, 2)
Next i

F

JS Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 287

JS Function

Jump Sense detects whether the arm stopped prior to completing a Jump, Jump3, or Jump3CP
instruction which used a Sense input or if the arm completed the move.

Syntax
JS

Return Values
Returns a True or a False.

True : When the arm was stopped prior to reaching its target destination because a Sense
Input condition was met JS returns a True.

False : When the arm completes the normal move and reaches the target destination as
defined in the Jump instruction JS returns a False.

Description

JS is used in conjunction with the Jump and Sense instructions. The purpose of the JS instruction is to
provide a status result as to whether an input condition (as defined by the Sense instruction) is met
during motion caused by the Jump instruction or not. When the input condition is met, JS returns a
True. When the input condition is not met and the arm reaches the target position, JS returns a False.

JS is simply a status check instruction and does not cause motion or specify which Input to check
during motion. The Jump instruction is used to initiate motion and the Sense instruction is used to
specify which Input (if any) to check during Jump initiated motion.

Note
JS Works only with the Most Recent Jump, Jump3, Jump3CP Instruction:

JS can only be used to check the most recent Jump instruction's input check (which is initiated by the
Sense instruction.) Once a 2nd Jump instruction is initiated, the JS instruction can only return the
status for the 2nd Jump instruction. The JS status for the first Jump is gone forever. So be sure to
always do any JS status check for Jump instructions immediately following the Jump instruction to be
checked.

See Also

JT, Jump, Jump3, Jump3CP, Sense

JS Function Example

Function SearchSensor As Boolean
 Sense Sw(5) = On

 Jump P0
 Jump P1 Sense
 If JS = TRUE Then
 Print "Sensor was found"
 SearchSensor = TRUE
 EndIf
Fend

F

JT Function

288 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

JT Function

Returns the status of the most recent Jump, Jump3, or Jump3CP instruction for the current
robot.

Syntax
JT

Return Values
JT returns a long with the following bits set or clear:

Bit 0 Set to 1 when rising motion has started or rising distance is 0.
Bit 1 Set to 1 when horizontal motion has started or horizontal distance is 0.
Bit 2 Set to 1 when descent motion has started or descent distance is 0.
Bit 16 Set to 1 when rising motion has completed or rising distance is 0.
Bit 17 Set to 1 when horizontal motion has completed or horizontal distance is 0.
Bit 18 Set to 1 when descent motion has completed or descent distance is 0.

Description
Use JT to determine the status of the most recent Jump command that was stopped before completion
by Sense, Till, abort, etc.

See Also
JS, Jump, Jump3, Jump3CP, Sense, Till

JT Function Example

Function SearchTill As Boolean

 Till Sw(5) = On

 Jump P0
 Jump P1 Till
 If JT And 4 Then
 Print "Motion stopped during descent"
 SearchTill = TRUE
 EndIf
Fend

F

JTran Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 289

JTran Statement

Perform a relative move of one joint.

Syntax
JTran jointNumber, distance

Parameters
jointNumber Integer expression representing which joint to move.
 The additional S axis is 8 and T axis is 9.
distance Real expression representing the distance to move in degrees for rotational joints

or millimeters for linear joints.

Description
Use JTran to move one joint a specified distance from the current position.

See Also
Go, Jump, Move, Ptran

JTran Statement Example

JTran 1, 20

S

Jump Statement

290 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Jump Statement

Moves the arm from the current position to the specified destination point using
point to point motion by first moving in a vertical direction up, then horizontally and then
finally vertically downward to arrive on the final destination point.

Syntax
Jump destination [CarchNumber] [LimZ zLimit] [CP] [searchExpr] [!...!] [SYNC]

Parameters
destination The target destination of the motion using a point expression.
archNumber Optional. The arch number (archNumber) specifies which Arch Table entry to use for

the Arch type motion caused by the Jump instruction. archNumber must always be
proceeded by the letter C. (Valid entries are C0-C7.)

zLimit Optional. This is a Z limit value which represents the maximum position the Z joint
will travel to during the Jump motion. This can be thought of as the Z Height Ceiling
for the Jump instruction. Any valid Z joint Coordinate value is acceptable.

CP Optional. Specifies continuous path motion.
searchExpr Optional. A Sense, Till or Find expression.

Sense | Till | Find
Sense Sw(expr) = {On | Off}
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

!...! Optional. Parallel Processing statements can be added to the Jump instruction to
cause I/O and other commands to execute during motion.

SYNC Reserves a motion command. The robot will not move until SyncRobots is executed.

Description
Jump moves the arm from the current position to destination using what is called Arch Motion. Jump
can be thought of as 3 motions in 1. For example, when the Arch table entry defined by archNumber is
7, the following 3 motions will occur.

1) The move begins with only Z-joint motion until it reaches the Z joint height calculated by the
Arch number used for the Jump command.

2) Next the arm moves horizontally (while still moving upward in Z) towards the target point
position until the upper Z Limit (defined by LimZ) is reached. Then the arm begins to move
downward in the Z direction (while continuing X, Y and U joint motion) until the final X, and Y
and U joint positions are reached.

3) The Jump instruction is then completed by moving the arm down with only Z-joint motion until
the target Z-joint position is reached.

The coordinates of destination (the target position for the move) must be taught previously before
executing the Jump instruction. The coordinates cannot be specified in the Jump instruction itself.
Acceleration and deceleration for the Jump is controlled by the Accel instruction. Speed for the move
is controlled by the Speed instruction.

archNumber Details
The Arch for the Jump instruction can be modified based on the archNumber value optionally
specified with the Jump instruction. This allows the user to define how much Z to move before
beginning the X, Y, and U joint motion. (This allows the user to move the arm up and out of the way of
parts, feeders and other objects before beginning horizontal motion.) Valid archNumber entries for the
Jump instruction are between C0-C7. The Arch table entries for C0-C6 are user definable with the
Arch instruction. However, C7 is a special Arch entry which always defines what is called Gate Motion.
Gate Motion means that the robot first moves Z all the way to the coordinate defined by LimZ before
beginning any X, Y, or U joint motion. Once the LimZ Z limit is reached, X, Y and U joint motion begins.
After the X, Y, and U joints each reaches its final destination position, then the Z joint can begin

> S

Jump Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 291

moving downward towards the final Z joint coordinate position as defined by destination (the target
point). Gate Motion looks as follows:

Origin Pt.

Destination Pt.
Pend

LIMZ

LimZ Details
LimZ zLimit specifies the upper Z coordinate value for the horizontal movement plane in the current
local coordinate system. The specified arch settings can cause the X, Y, and U joints to begin
movement before reaching LimZ, but LimZ is always the maximum Z height for the move. When the
LimZ optional parameter is omitted, the previous value specified by the LimZ instruction is used for the
horizontal movement plane definition.

It is important to note that the LimZ zLimit height limit specification is the Z value for the local robot
coordinate system. It is not the Z value for Arm or Tool. Therefore take the necessary precautions
when using tools or hands with different operating heights.

Sense Details
The Sense optional parameter allows the user to check for an input condition or memory I/O condition
before beginning the final Z motion downward. If satisfied, this command completes with the robot
stopped above the target position where only Z motion is required to reach the target position. It is
important to note that the robot arm does not stop immediately upon sensing the Sense input modifier.

The JS or Stat commands can then be used to verify whether the Sense condition was satisfied and
the robot stopped prior to its target position or that the Sense condition was not satisfied and the robot
continued until stopping at its target position.

Till Details
The optional Till qualifier allows the user to specify a condition to cause the robot to decelerate to a
stop prior to completing the Jump. The condition specified is simply a check against one of the I/O
inputs or one of the memory I/O. This is accomplished through using either the Sw or MemSw function.
The user can check if the input is On or Off and cause the arm to decelerate and stop based on the
condition specified.

The Stat function can be used to verify whether the Till condition has been satisfied and this command
has been completed, or the Till condition has not been satisfied and the robot stopped at the target
position.

Jump Statement

292 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Notes
Jump cannot be executed for 6-axis robots

Use Jump3 or Jump3CP for 6-axis robots.

Jump Motion trajectory changes depending on motion and speed

Jump motion trajectory is comprised of vertical motion and horizontal motion. It is not a continuous
path trajectory. The actual Jump trajectory of arch motion is not determined by Arch parameters alone.
It also depends on motion and speed.

Always use care when optimizing Jump trajectory in your applications. Execute Jump with the desired
motion and speed to verify the actual trajectory.

When speed is lower, the trajectory will be lower. If Jump is executed with high speed to verify an arch
motion trajectory, the end effector may crash into an obstacle with lower speed.

In a Jump trajectory, the depart distance increases and the approach distance decreases when the
motion speed is set high. When the fall distance of the trajectory is shorter than the expected, lower
the speed and/or the deceleration, or change the fall distance to be larger.

Even if Jump commands with the same distance and speed are executed, the trajectory is affected by
motion of the robot arms. As a general example, for a SCARA robot the vertical upward distance
increases and the vertical downward distance decreases when the movement of the first arm is large.
When the vertical fall distance decreases and the trajectory is shorter than the expected, lower the
speed and/or the deceleration, or change the fall distance to be larger.

Omitting archNumber Parameter
If the archnum optional parameter is omitted, the default Arch entry for use with the Jump instruction is
C7. This will cause Gate Motion, as described above.

Difference between Jump and Jump3, Jump3CP
The Jump3 and Jump3CP instructions can be used for 6-axis robots. On the other hand the Jump
instruction cannot be used for 6-axis robots. For SCARA robots (including RS series), using the Jump
instruction shortens the joint motion time for depart and approach motion. The depart and approach
motions in Jump3 can be executed along the Z axis and in other directions.

Difference between Jump and Go
The Go instruction is similar to Jump in that they both cause Point to Point type motion, however there
are many differences. The most important difference is that the Go instruction simply causes Point to
Point motion where all joints start and stop at the same time (they are synchronized). Jump is different
since it causes vertical Z movement at the beginning and end of the move. Jump is ideal for pick and
place type applications.

Decelerating to a Stop With the Jump Instruction
The Jump instruction always causes the arm to decelerate to a stop prior to reaching the destination
point.

Proper Speed and Acceleration Instructions with Jump:
The Speed and Accel instructions are used to specify the speed and acceleration of the robot during
Jump motion. Pay close attention to the fact that Speed and Accel apply to point to point type motion
(Go, Jump, Etc.). while linear and circular interpolated motion instructions such as Move or Arc use the
SpeedS and AccelS instructions. For the Jump instruction, it is possible to separately specify speeds
and accelerations for Z joint upward motion, horizontal travel including U joint rotation, and Z joint
downward motion.

Jump Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 293

Pass function of Jump
When the CP parameter is specified for Jump with 0 downward motion, the Jump horizontal travel
does not decelerate to a stop but goes on smoothly to the next PTP motion.
When the CP parameter is specified for a PTP motion command right before a Jump with 0 upward
motion, the PTP motion does not decelerate to a stop but connects smoothly with the Jump horizontal
travel.
This is useful when you want to replace the horizontal travel of Jump (a PTP motion) with several PTP
motions.
(Example)

Go P1
Jump P2 :Z(-50) C0 LimZ -50 CP
Go P3 :Z(0) CP
Jump P4 C0 LimZ 0

Potential Errors
LimZ Value Not High Enough

When the current arm position of the Z joint is higher than the value set for LimZ and a Jump
instruction is attempted, an Error 4005 will occur.

See Also

Accel, Arc, Arch, Go, JS, JT, LimZ, Point Expression, Pulse, Sense, Speed, Stat, Till

Jump Statement Example

The example shown below shows a simple point to point move between points P0 and P1 and then
moves back to P0 using the Jump instruction. Later in the program the arm moves using the Jump
instruction. If input #4 never goes high then the arm starts the approach motion and moves to P1. If
input #4 goes high then the arm does not execute the approach motion.

Function jumptest
 Home
 Go P0
 Go P1
 Sense Sw(4) = On
 Jump P0 LimZ -10
 Jump P1 LimZ -10 Sense 'Check input #4
 If Js(0) = 1 Then
 Print "Input #4 came on during the move and"
 Print "the robot stopped prior to arriving on"
 Print "point P1."
 Else
 Print "The move to P1 completed successfully."
 Print "Input #4 never came on during the move."
 EndIf
Fend

> Jump P10+X50 C0 LimZ-20 Sense !D50;On 0;D80;On 1!

P2

P1

P3

P4

Jump3, Jump3CP Statements

294 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Jump3, Jump3CP Statements

3D gate motion. Jump3 is a combination of two CP motions and one PTP motion.
Jump3CP is a combination of three CP motions.

Syntax
(1) Jump3 depart, approach, destination [CarchNumber] [CP] [LJM [orientationFlag]] [searchExpr]

[!...!] [SYNC]
(2) Jump3CP depart, approach, destination [ROT] [CarchNumber] [CP] [LJM [orientationFlag]]

[searchExpr] [!...!] [SYNC]

Parameters
depart The departure point above the current position using a point expression.
approach The approach point above the destination position a point expression.
destination The target destination of the motion using a point expression.
ROT Optional. :Decides the speed/acceleration/deceleration in favor of tool rotation.
archNumber Optional. The arch number (archNumber) specifies which Arch Table entry to use for

the Arch type motion caused by the Jump instruction. archNumber must always be
proceeded by the letter C. (Valid entries are C0-C7.)

CP Optional. Specifies continuous path motion.
LJM Optional. Convert the target destination using LJM function.
orientationFlag Optional. Specifies a parameter that selects an orientation flag for LJM function.
searchExpr Optional. A Sense, Till or Find expression.

Sense | Till | Find
Sense Sw(expr) = {On | Off}
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

!...! Optional. Parallel Processing statements can be added to the Jump instruction to
cause I/O and other commands to execute during motion.

SYNC Reserves a motion command. The robot will not move until SyncRobots is executed.

Description
Moves the arm from the current position to the destination point with 3D gate motion. 3D gate motion
consists of depart motion, span motion, and approach motion. The depart motion form the current
position to the depart point is always CP motion. The span motion from the depart point to the start
approach point is PTP motion in Jump3, and the CP motion in Jump3CP.
The approach motion from the starting approach point to the target point is always CP motion.

 Span motion

PTP/CP

Depart
motion
CP

Current position

Destination point

Depart point

Approach point

Approach motion
CP

> S

Jump3, Jump3CP Statements

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 295

Arch motion is achieved by specifying the arch number. The arch motion for Jump3, Jump3CP is as
shown in the figure below. For arch motion to occur, the Depart distance must be greater than the
arch upward distance and the Approach distance must be greater than the arch downward distance.

Jump3CP uses the SpeedS speed value and AccelS acceleration and deceleration values. Refer to
Using Jump3CP with CP below on the relation between the speed/acceleration and the
acceleration/deceleration. If, however, the ROT modifier parameter is used, Jump3CP uses the
SpeedR speed value and AccelR acceleration and deceleration values. In this case SpeedS speed
value and AccelS acceleration and deceleration value have no effect.

Usually, when the move distance is 0 and only the tool orientation is changed, an error will occur.
However, by using the ROT parameter and giving priority to the acceleration and the deceleration of
the tool rotation, it is possible to move without an error. When there is not an orientational change with
the ROT modifier parameter and movement distance is not 0, an error will occur.

Also, when the tool rotation is large as compared to move distance, and when the rotation speed
exceeds the specified speed of the manipulator, an error will occur. In this case, please reduce the
speed or append the ROT modifier parameter to give priority to the rotational speed/acceleration/
deceleration.

Notes
LimZ does not affect Jump3 and Jump3CP

LimZ has no affect on Jump3 or Jump3CP since the span motion is not necessarily perpendicular to
the Z axis of the coordinate system.

Jump3 span motion is PTP (point to point)
It is difficult to predict Jump3 span motion trajectory. Therefore, be careful that the robot doesn't
collide with peripheral equipment and that robot arms don’t collide with the robot.

Using Jump3, Jump3CP with CP
The CP parameter causes the arm to move to destination without decelerating or stopping at the point
defined by destination. This is done to allow the user to string a series of motion instructions together
to cause the arm to move along a continuous path while maintaining a specified speed throughout all
the motion. The Jump3 and Jump3CP instructions without CP always cause the arm to decelerate to
a stop prior to reaching the point desination.

Pass function of Jump3
When the CP parameter is specified for Jump3 with 0 approach motion, the Jump3 span motion does
not decelerate to a stop but goes on smoothly to the next PTP motion.

Depart point

ARCH Upward

ARCH downward

Approach distance

Depart distance

 Start approach point

Jump3, Jump3CP Statements

296 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

When the CP parameter is specified for a PTP motion command right before Jump3 with 0 depart
motion, the PTP motion does not decelerate to a stop but connects smoothly with the Jump3 span
motion.
This is useful when you want to replace the span motion of Jump3 (a PTP motion) with several PTP
motions.

Pass function of Jump3CP
When the CP parameter is specified for Jump3CP with 0 approach motion, the Jump3CP span motion
does not decelerate to a stop but goes on smoothly to the next CP motion.
When the CP parameter is specified for a CP motion command right before Jump3CP with 0 depart
motion, the CP motion does not decelerate to a stop but connects smoothly with the Jump3CP span
motion.
This is useful when you want to replace the span motion of Jump3CP (a CP motion) with several CP
motions.
 (Example 1)

Jump3 P1,P2,P2 CP
Go P3,P4 CP
Jump3 P4,P5,P5+tlz(50)

(Example 2)

Jump3CP P1,P2,P2 CP
Move P3,P4 CP
Jump3CP P4,P5,P5+tlz(50)

Using Jump3, Jump3CP with LJM

With LJM parameter, the program using LJM function can be more simple.
For ecample, the following four-line program

P11 = LJM(P1, Here, 2)
P12 = LJM(P2, P11, 2)
P13 = LJM(P3, P12, 2)
Jump3 P11, P12, P13

can be… the one-line program.
 Jump3 P1, P2, P3 LJM 2
LJM parameter is available for 6-axis and RS series robots.
Jump3CP span motion is straight line (CP) motion and it cannot switch the wrist orientation along the
way. Therefore, do not use the orientationFlag (LJM 1) of LJM function which is able to switch the
wrist orientation.

Caution for Arch motion
Jump3 Motion trajectory changes depending on motion and speed

Jump3 motion trajectory is comprised of depart, span, and approach motions. It is not a continuous
path trajectory. The actual Jump3 trajectory of arch motion is not determined by Arch parameters
alone. It also depends on motion and speed.

Always use care when optimizing Jump3 trajectory in your applications. Execute Jump3 with the
desired motion and speed to verify the actual trajectory.

When speed is lower, the trajectory will be lower. If Jump3 is executed with high speed to verify an
arch motion trajectory, the end effector may crash into an obstacle with lower speed.

In a Jump3 trajectory, the depart distance increases and the approach distance decreases when the
motion speed is set high. When the approach distance of the trajectory is shorter than the expected,
lower the speed and/or the deceleration, or change the approach distance to be larger.

Even if Jump commands with the same distance and speed are executed, the trajectory is affected by
motion of the robot arms.

 P2
P1

P3

P4

P5

End Start

Jump3, Jump3CP Statements

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 297

Potential acceleration errors
When the majority of depart (approach) motion uses the same joint as the span motion

An acceleration error may occur during an arch motion execution by the Jump3 andJump3CP
commands. This error is issued frequently when the majority of the motion during depart or approach
uses the same joint as the span motion. To avoid this error, reduce the acceleration/deceleration
speed of the span motion using Accel command for Jump3 or using AccelS command for Jump3CP.
Depending on the motion and orientation of the robot, it may also help to reduce the acceleration and
deceleration of the depart motion (approach motion) using the AccelS command.

See Also

Accel, Arc, Arch, Go, JS, JT, Point Expression, Pulse, Sense, Speed, Stat, Till

Jump3 Statement Example

' 6 axis robot motion which works like Jump of SCARA robot
Jump3 Here :Z(100), P3 :Z(100), P3

' Depart and approach use Z tool coordinates
Jump3 Here -TLZ(100), P3 -TLZ(100), P3

' Depart uses base Z and approach uses tool Z
Jump3 Here +Z(100), P3 -TLZ(100), P3

' Example for the depart motion from P1 in Tool 1 and the approach
motion to P3 in Tool 2

Arch 0,20,20
Tool 1
Go P1

P2 = P1 -TLZ(100)
Tool 2
Jump3 P2, P3-TLZ(100), P3 C0

LatchEnable Statement

298 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

LatchEnable Statement

This function does not work with EPSON RC+ 6.0 Ver.6.2.0.

Enable / Disable the latch function for the robot position by the R-I/O input.

Syntax
LatchEnable { On | Off }

Parameters
On | Off On : Enables the latch function of the robot position.

Off : Disables the latch function of the robot position.

Result
When the parameter is omitted, displays that the current latch function is ON or OFF.

Discription
Enables / Disables the latch function for the roobt position using the trigger input signals connected to
the R-I/O. It latches the robot position with the first trigger input after you enable the latch function.
To repeatedly latch the robot position, execute LatchEnable Off and then execute LatchEnable On
again. To use the command repeatedly, it needs at least 60 ms interval for the each command
processing time but you do not need to consider the command executing time.

Note
Before enabling the latch function, set the trigger input port and trigger signal logic using SetLatch.

See Also

LatchPos Function, LatchState Function, SetLatch

LatchEnable Example

Function main
 SetLatch 24, SETLATCH_TRIGGERMODE_LEADINGEDGE
 LatchEnable On 'Enables the latch function
 Go P1
 Wait LatchState = True 'Wait a trigger
 Print LatchPos 'Display the latched position
 LatchEnable Off 'Disable the latch function
Fend

> S

LatchState Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 299

LatchState Function

This function does not work with EPSON RC+ 6.0 Ver.6.2.0.

Returns the latch state of robot position using the R-I/O.

Syntax
LatchState

Return Values
Returns True when the robot position has been latched, False when the latch is not finished.
When confirmed the latch completion, acquires the lached position information by LatchPos Function.

See Also
LatchEnable, LatchPos Function, SetLatch, Wait

LatchState Function Example

Function main
 SetLatch 24, SETLATCH_TRIGGERMODE_LEADINGEDGE
 LatchEnable On 'Enables the latch function
 Go P1
 Wait LatchState = True 'Wait a trigger
 Print LatchPos 'Display the latched position
 LatchEnable Off 'Disable the latch function
Fend

F

LatchPos Function

300 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

LatchPos Function

This function does not work with EPSON RC+ 6.0 Ver.6.2.0.

Returns the robot position latched using the R-I/O input signal.

Syntax
LatchPos

Return Values
Returns the robot position, according to the Tool and Arm settings at function call, latched using the R-
I/O input signal in point data.
Executing this function needs approx. 15 msec for processing.

See Also
LatchEnable, LatchState Function, SetLatch

LatchPos Function Example

Function main
 SetLatch 24, SETLATCH_TRIGGERMODE_LEADINGEDGE
 LatchEnable On 'Enables the latch function
 Go P1
 Wait LatchState = True 'Wait a trigger
 Print LatchPos 'Display the latched position
 LatchEnable Off 'Disable the latch function
Fend

To assing the return value of LatchPos to the point data:

P2 = LatchPos

F

LCase$ Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 301

LCase$ Function

Returns a string that has been converted to lowercase.

Syntax
LCase$(string)

Parameters
string A valid string expression.

Return Values
The converted lower case string.

See Also
LTrim$, Trim$, RTrim$, UCase$

LCase$ Function Example

str$ = "Data"
str$ = LCase$(str$) ' str$ = "data"

F

Left$ Function

302 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Left$ Function

Returns a substring from the left side of a string expression.

Syntax
Left$(string, count)

Parameters
string String expression from which the leftmost characters are copied.
count The number of characters to copy from string starting with the leftmost character.

Return Values
Returns a string of the leftmost number characters from the character string specified by the user.

Description
Left$ returns the leftmost number characters of a string specified by the user. Left$ can return up to
as many characters as are in the character string.

See Also
Asc, Chr$, InStr, Len, Mid$, Right$, Space$, Str$, Val

Left$ Function Example
The example shown below shows a program which takes a part data string as its input and parses out
the part number, part name, and part count.

Function ParsePartData(DataIn$ As String, ByRef PartNum$ As String,
ByRef PartName$ As String, ByRef PartCount As Integer)

 Integer pos
 String temp$

 pos = Instr(DataIn$, ",")
 PartNum$ = Left$(DataIn$, pos - 1)

 DataIn$ = Right$(datain$, Len(DataIn$) - pos)
 pos = Instr(DataIn$, ",")

 PartName$ = Left$(DataIn$, pos - 1)

 PartCount = Val(Right$(datain$, Len(DataIn$) - pos))

Fend

Some other example results from the Left$ instruction from the Command window.

> Print Left$("ABCDEFG", 2)
 AB

> Print Left$("ABC", 3)
 ABC

F

Len Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 303

Len Function

Returns the number of characters in a character string.

Syntax
Len(string)

Parameters
string String expression.

Return Values
Returns an integer number representing the number of characters in the string string which was given
as an argument to the Len instruction.

Description
Len returns an integer number representing the number of characters in a string specified by the user.
Len will return values between 0-255 (since a string can contain between 0-255 characters).

See Also
Asc, Chr$, InStr, Left$, Mid$, Right$, Space$, Str$, Val

Len Function Example
The example shown below shows a program which takes a part data string as its input and parses out
the part number, part name, and part count.

Function ParsePartData(DataIn$ As String, ByRef PartNum$ As String,
ByRef PartName$ As String, ByRef PartCount As Integer)

 Integer pos
 String temp$

 pos = Instr(DataIn$, ",")
 PartNum$ = Left$(DataIn$, pos - 1)

 DataIn$ = Right$(datain$, Len(DataIn$) - pos)
 pos = Instr(DataIn$, ",")

 PartName$ = Left$(DataIn$, pos - 1)

 PartCount = Val(Right$(datain$, Len(DataIn$) - pos))

Fend

Some other example results from the Len instruction from the command window.

> ? len("ABCDEFG")
7

> ? len("ABC")
3

> ? len("")
0
>

F

LimitTorque Statement

304 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

LimitTorque Statement

Sets / returns the upper torque value in High power mode.

Syntax
(1) LimitTorque AllMax
(2) LimitTorque j1Max, j2Max, j3Max, j4Max
(3) LimitTorque j1Max, j2Max, j3Max, j4Max, j5Max, j6Max
(4) LimitTorque

Parameters
AllMax Specify the percentage of high power torque upper limit value for all axes to the

maximum momentary torque of each axis by an integer number
j #n Max Specify the percentage of high power torque upper limit value for axis #n to the

maximum momentary torque of axis #n by an integer number

Return Values
Returns the current LimitTorque value if the parameter is omitted.

Description
Sets the upper limit value of torque in high power mode. Normally, the maximum torque is set and
there is no need to change this setting value. This statement is useful to restrict the torque not to
exceed which is necessary for the specific motion in order to reduce damage to the manipulator and
equipment caused by collision with peripherals.
The upper limit value is a measured peak torque in specific motion measured by PTRQ with allowance
considering the variation added (approximately 10%).

The torque lower than the upper limit for Low power mode cannot be set by this command. The
smallest values vary for models and joints. Display the setting value and confirm the actual upper limit
value after setting the value.

In any of the following cases, LimitTorque becomes the default value.

Controller startup
Motor On
SFree, SLock, or Brake is executed
Reset or Reset Error is executed
Task end by STOP switch or Quit All

Note
Too low LimitTorque setting

LimitTorque limits the torque for the specific motion as the upper limit value to operate the manipulator
with the set acceleration/deceleration regardless of the torque size necessary for the motion. As a
result of this, if the motion requires larger torque than the set upper limit value, the roobt may not be
able to operate properly and cause vibrational motion ,noise, or position deviation and overrun. Make
sure to measure PTRQ before using the torque control. If the above problems occur, set the upper
limit value larger and adjust the value so that the manipulator can operate properly.

S

LimitTorque Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 305

See Also
LimitTorque Function, Power, PTrq, RealTorque

LimitTorque Example
Following is the example which operates the manipulator with the maximum torque of Joint #1 at 80 %.

Function main
 Motor On
 Power high
 Speed 100; Accel 100,100
 LimitTorque 80,100,100,100 'Restricts the maximum torque of Joint #1 to 80 %
 Jump P1 'Executes the Jump motion
Fend

LimitTorque Function

306 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

LimitTorque Function

Returns the setting value of LimitTorque command.

Syntax
LimitTorque(jointNumber)

Parameters
jointNumber Integer expression ranging from 1 to 9.

Additional S axis is 8, and T axis is 9.

Return Values
Returns an integer number representing the setting value of LimitTorque command.

See Also
LimitTorque

Len Function Example

Print LimitTorque(1) ‘Displays the LimitTorque value of Joint #1.

F

LimZ Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 307

LimZ Statement

Determines the default value of the Z joint height for Jump commands.

Syntax
(1) LimZ zLimit
(2) LimZ

Parameters
zLimit A coordinate value within the movable range of the Z joint.

Return Values
Displays the current LimZ value when parameter is omitted.

Description
LimZ determines the maximum Z joint height which the arm move to when using the Jump instruction,
wherein the robot arm raises on the Z joint, moves in the X-Y plane, then lowers on the Z joint. LimZ
is simply a default Z joint value used to define the Z joint ceiling position for use during motion caused
by the Jump instruction. When a specific LimZ value is not specified in the Jump instruction, the last
LimZ setting is used for the Jump instruction.

Note
Resetting LimZ to 0

Restarting the controller, or executing the SFree, SLock, Motor On commands will initialize LimZ to 0.

LimZ Value is Not Valid for Arm, Tool, or Local Coordinates:
LimZ Z joint height limit specification is the Z joint value for the robot coordinate system. It is not the Z
joint value for Arm, Tool, or Local coordinates. Therefore take the necessary precautions when using
tools or end effectors with different operating heights.

LimZ does not affect Jump3 and Jump3CP
LimZ has no affect on Jump3 or Jump3CP since the span motion is not necessarily perpendicular to
the Z axis of the coordinate system.

See Also

Jump

LimZ Statement Example
The example below shows the use of LimZ in Jump operations.

Function main
 LimZ -10 'Set the default LimZ value
 Jump P1 'Move up to Z=-10 position for Jump
 Jump P2 LimZ -20 'Move up to Z=-20 position for Jump
 Jump P3 'Move up to Z=-10 position for Jump
Fend

> S

LimZ Function

308 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

LimZ Function

Returns the current LimZ setting.

Syntax
LimZ

Return Values
Real number containing the current LimZ setting.

See Also
LimZ Statement

LimZ Function Example

Real savLimz

savLimz = LimZ
LimZ -25
Go pick
LimZ savLimZ

F

Line Input Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 309

Line Input Statement

Reads input data of one line and assigns the data to a string variable.

Syntax
Line Input stringVar$

Parameters
stringVar$ A string variable name. (Remember that the string variable must end with the

$ character.)

Description
Line Input reads input data of one line from the display device and assigns the data to the string
variable used in the Line Input instruction. When the Line Input instruction is ready to receive data from
the user, it causes a "?" prompt to be displayed on the display device. The input data line after the
prompt is then received as the value for the string variable. After inputting the line of data press the
[ENTER] key.

See Also
Input, Input #, Line Input#, ParseStr

Line Input Example
The example below shows the use of Line Input.

Function Main
 String A$
 Line Input A$ 'Read one line input data into A$
 Print A$
Fend

Run the program above using the F5 key or Run menu from EPSON RC+ main
screen. A resulting run session may be as follows:

?A, B, C
A, B, C

> S

Line Input # Statement

310 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Line Input # Statement

Reads data of one line from a file, communication port, database, or the device.

Syntax
Line Input #portNumber, stringVar$

Parameters
portNumber The communications handle or the device ID. Communication handles can be

specified in OpenCom (RS232) and OpenNet (TCP/IP) statements.
 Device ID integers are as follows.

21 RC+
23 OP
24 TP

stringVar$ A string variable. (Remember that string variables must end with a $ character.)

Description
Line Input # reads string data of one line from the device specified with the portNumber parameter,
and assigns the data to the string variable stringVar$.

See Also
Input, Input #, Line Input

Line Input # Example
This example receives the string data from the communication port number 1, and assigns the data to
the string variable A$.

Function lintest
 String a$
 Print #1, "Please input string to be sent to robot"
 Line Input #1, a$
 Print "Value entered = ", a$
Fend

> S

LJM Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 311

LJM Function

Returns the point data with the orientation flags converted to enable least joint motion when
moving to a specified point based on the reference point.

Syntax
LJM (Point, [refPoint, [orientationFlag]])

Parameters
Point Specifies point data.
refPoint Specifies the reference point data. When this is omitted, the reference point is

the current position (Here).
orientationFlag

6-axis robot 1: Converts the wrist orientation (Wrist Flag), J4Flag or J6Flag. (default)
 2: Converts the J4Flag or J6Flag.

RS series 1: Converts the hand orientation (Hand Flag), J1Flag or J2Flag. (default)
 2: Converts the hand orientation (Hand Flag), J1Flag or J2Flag.
 Prevents the U axis from moving out of motion range at flag convert.

Description
When the 6-axis robot moves to a point calculated by such as pallet or relative offsets, the wrist part
may rotate to an unintended direction. The point calculation above does not depend on robot models
and results in motion without converting the required point flag.
LJM function can be used to convert the point flag to prevent the unintended wrist rotation.

In the same way, when the RS series robot moves to a point calculated by such as pallet or relative
offsets, Arm #1 may rotate to an unintended direction. LJM function can be used to convert the point
flag to prevent the unintended rotation of Arm #1.

In addition, the U axis of an RS series robot may go out of motion range when the orientation flag is
converted, which will cause an error.
To prevent this error, the LJM function adjusts the U axis target angle so that it is inside the motion
range. This is available when “2” is selected for orientationFlag.

Returns the specified point for all robots except the 6-axis and RS series robot.

Note
The reference point omission and Parallel Processing

You cannot use both of the parallel point omission and parallel processing in one motion command like
this:

Go LJM(P10) ! D10; MemOn 1 !
Be sure to change the program like this:

P999 = Here
Go LJM(P10,P999) ! D10; MemOn 1 !

See Also

Pallet

F

LJM Function

312 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

LJM Function Example

Function main
 Integer i, j

 P0 = XY(300, 300, 300, 90, 0, 180)
 P1 = XY(200, 280, 150, 90, 0, 180)
 P2 = XY(200, 330, 150, 90, 0, 180)
 P3 = XY(-200, 280, 150, 90, 0, 180)

 Pallet 1, P1, P2, P3, 10, 10

 Motor On
 Power High
 Speed 50; Accel 50, 50
 SpeedS 1000; AccelS 5000

 Go P0
 P11 = P0 -TLZ(50)

 For i = 1 To 10
 For j = 1 To 10
 'Specify points
 P10 = P11 'Depart point
 P12 = Pallet(1, i, j) 'Target point
 P11 = P12 -TLZ(50) 'Start approach point
 'Converting each point to LJM
 P10 = LJM(P10)
 P11 = LJM(P11, P10)
 P12 = LJM(P12, P11)
 'Execute motion
 Jump3 P10, P11, P12 C0
 Next
 Next
Fend

Function main2
 P0 = XY(300, 300, 300, 90, 0, 180)
 P1 = XY(400, 0, 150, 90, 0, 180)
 P2 = XY(400, 500, 150, 90, 0, 180)
 P3 = XY(-400, 0, 150, 90, 0, 180)
 Pallet 1, P1, P2, P3, 10, 10

 Motor On
 Power High
 Speed 50; Accel 50, 50
 SpeedS 1000; AccelS 5000

 Go P0

 Do
 ' Specify points
 P10 = Here -TLZ(50) 'Depart point
 P12 = Pallet(1, Int(Rnd(9)) + 1, Int(Rnd(9)) + 1) 'Target point
 P11 = P12 -TLZ(50) 'Start approach point

 If TargetOK(P11) And TargetOK(P12) Then 'Point chaeck
 ' Converting each point to LJM
 P10 = LJM(P10)
 P11 = LJM(P11, P10)
 P12 = LJM(P12, P11)
 'Execute motion
 Jump3 P10, P11, P12 C0
 EndIf
 Loop
Fend

LoadPoints Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 313

LoadPoints Statement

Loads a point file into the point memory area for the current robot.

Syntax
LoadPoints fileName [, Merge]

Parameters
fileName String expression containing the specific file to load into the current robot's point

memory area. The extension must be .PTS. The file must exist in the current
project for the current robot.
You cannot specify a file path and fileName doesn’t have any effect from ChDisk.
See ChDisk for the details.

Merge Optional. If supplied, then the current points are not cleared before loading the
new points. Points in the file are added to the current points. If a point exists in
the file, it will overwrite the point in memory.

Description

LoadPoints loads point files from disk into the main memory area of the controller for the current robot.

Use Merge to combine point files. For example, you could have one main point file that includes
common points for locals, parking, etc in the range 0 - 100. Then use Merge to load other point files
for each part being run without clearing the common points. The range could be 101 - 999.

Potential Errors
A Path Cannot be Specified

If fileName contains a path, an error will occur. Only a file name in the current project can be specified.
File Does Not Exist

If fileName does not exist, an error will occur.
Point file not for the current robot

If fileName is not a point file for the current robot, the following error will be issued: Point file not found
for current robot. To correct this, add the Point file to the robot in the Project editor, or execute
SavePoints or ImportPoints.

See Also
Dir, ImportPoints, Robot, SavePoints

LoadPoints Statement Example
Function main
 ' Load common points for the current robot
 LoadPoints "R1Common.pts"

 ' Merge points for part model 1
 LoadPoints "R1Model1.pts", Merge

 Robot 2
 ' Load point file for the robot 2
 LoadPoints "R2Model1.pts"

Fend

> S

Local Statement

314 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Local Statement

Defines and displays local coordinate systems.

Syntax
(1) Local localNumber, (pLocal1 : pBase1), (pLocal2 : pBase2), [{ L | R }], [BaseU]
(2) Local localNumber, pCoordinateData
(3) Local localNumber, pOrigin, [pXaxis], [pYaxis], [{ X | Y }]
(4) Local localNumber

Parameters
localNumber The local coordinate system number. A total of 15 local coordinate systems (of

the integer value from 1 to 15) may be defined.
pLocal1, pLocal2 Point variables with point data in the local coordinate system.
pBase1, pBase2 Point variables with point data in the base coordinate system.
L | R Optional. Align local origin to left (first) or right (second) base points.
BaseU Optional. When supplied, U axis coordinates are in the base coordinate system.

When omitted, U axis coordinates are in the local coordinate system.
pCoordinateData Point data representing the coordinate data of the origin and direction.
pOrigin Integer expression representing the origin point using robot coordinate system.
pXaxis Optional. Integer expression representing a point along the X axis using robot

coordinate system if X alignment is specified.
pYaxis Optional. Integer expression representing a point along the Y axis using robot

coordinate system if Y alignment is specified.
X | Y If X alignment is specified, then pXaxis lies on the X axis of the local. The Y axis

and Z axis are calculated to be orthogonal to X in the plane that is created by the
3 local points. If Y alignment is specified, then pYaxis lies on the Y axis of the
local. The X axis and Z axis are calculated to be orthogonal to Y in the plane that
is created by the 3 local points.

Description

(1) Local defines a local coordinate system by specifying 2 points, pLocal1 and pLocal2, contained in
it that coincide with two points, pBase1 and pBase2, contained in the base coordinate system.

Example:
Local 1, (P1:P11), (P2:P12)

P1 and P2 are local coordinate system points. P11 and P12 are base coordinate system points.

If the distance between the two specified points in the local coordinate system is not equal to that
between the two specified points in the base coordinate system, the XY plane of the local
coordinate system is defined in the position where the midpoint between the two specified points in
the local coordinate system coincides with that between the two specified points in the base
coordinate system.

Similarly, the Z axis of the local coordinate system is defined in the position where the midpoints
coincide with each other.

> S

Local Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 315

(2) Defines a local coordinate system by specifying the origin and axis rotation angles with respect to
the base coordinate system.

Example:

Local 1, XY(x, y, z, u)
Local 1, XY(x, y, z, u, v, w)
Local 1, P1

(3) Defines a 3D local coordinate system by specifying the origin point, x axis point, and y axis point.

Only the X, Y, and Z coordinates of each point are used. The U, V, and W coordinates are ignored.
When the X alignment parameter is used, then pXaxis is on the X axis of the local and only the Z
coordinate of pYaxis is used. When the Y alignment parameter is used, then pYaxis is on the Y
axis of the local and only the Z coordinate of pXaxis is used.

Example:

Local 1, P1, P2, P3
Local 1, P1, P2, P3, X
Local 1, P1, P2, P3, Y

(4) Displays the specified local settings.

Using L and R parameters
While Local basically uses midpoints for positioning the axes of your local coordinate system as
described above, you can optionally specify left or right local by using the L and R parameters.

Left Local
Left local defines a local coordinate system by specifying point pLocal1 corresponding to point pBase1
in the base coordinate system (Z axis direction is included.)

Right Local
Right local defines a local coordinate system by specifying point pLocal2 corresponding to point
pBase2 in the base coordinate system. (Z axis direction is included.)

Using the BaseU parameter
If the BaseU parameter is omitted, then the U axis of the local coordinate system is automatically
corrected in accordance with the X and Y coordinate values of the specified 4 points. Therefore, the 2
points in the base coordinate system may initially have any U coordinate values.

It may be desired to correct the U axis of the local coordinate system based on the U coordinate values
of the two points in the base coordinate system, rather than having it automatically corrected (e.g.
correct the rotation axis through teaching). To do so, supply the BaseU parameter.

See Also
ArmSet, Base, ECPSet, LocalClr, TLSet, Where

Local Statement

316 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Local Examples
Here are some examples from the command window:

Left aligned local:

> p1 = 0, 0, 0, 0/1
> p2 = 100, 0, 0, 0/1
> p11 = 150, 150, 0, 0
> p12 = 300, 150, 0, 0
> local 1, (P1:P11), (P2:P12), L
> p21 = 50, 0, 0, 0/1
> go p21

Local defined with only the origin point:

> local 1, 100, 200, -20

Local defined with only the origin point rotated 45 degrees about the X axis:

> local 2, 50, 200, 0, 0, 45

3D Local with p2 aligned with the X axis of the local:

> local 3, p1, p2, p3, x

3D Local with p3 aligned with the Y axis of the local:

> local 4, p1, p2, p3, y

Local Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 317

Local Function

Returns the local number of a point.

Syntax
Local(localNumber)

Parameters
localNumber local coordinate system number (integer from 1 to 15) using an expression or

numeric value.

Return Values
Specified local coordinate system data as point data.

See Also
Local Statement

Local Function Example

P1 = Local(1)

F

LocalClr Statement

318 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

LocalClr Statement

Clears (undefines) a local coordinate system.

Syntax
LocalClr localNumber

Parameters
localNumber Integer expression representing which of 15 locals (integer from 1 to 15) to clear

(undefine).

See Also
Arm, ArmSet, ECPSet, Local, Tool, TLClr, TLSet

LocalClr Example

LocalClr 1

> S

LocalDef Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 319

LocalDef Function

Returns local definition status.

Syntax
LocalDef (localCoordinateNumber)

Parameters
localCoordinateNumber Integer expression representing which local coordinate to return status for.

Return Values
True if the specified local has been defined, otherwise False.

See Also
Arm, ArmClr, ArmSet, ECPSet, Local, LocalClr, Tool, TLClr, TLSet

LocalDef Example

Function DisplayLocalDef(localNum As Integer)

 If LocalDef(localNum) = False Then
 Print "Local ", localNum, "is not defined"
 Else
 Print "Local 1: ",
 Print Local(localNum)
 EndIf
Fend

> F

Lof Function

320 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Lof Function

Checks whether the specified RS-232 or TCP/IP port has any lines of data in its buffer.

Syntax
Lof (fileNumber As Integer)

Parameters
fileNumber A Number specified with OpenCom (RS-232C) or OpenNet (TCP/IP) statement.

Return Values
The number of lines of data in the buffer. If there is no data in the buffer, Lof returns 0.

Description
Lof checks whether or not the specified port has received data lines. The data received is stored in the
buffer irrespective of the Input# instruction.
You can wait for the return value of Lof function by executing Wait.

Note

When using PC COM port (1001, 1002), you cannot use Lof function with Wait command.

See Also

ChkCom, ChkNet, Input#, Wait

Lof Function Example
This Command window example prints out the number of lines of data received through the
communication port number 1.

>print lof(1)
 5
>

F

LogIn Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 321

LogIn Statement

Log into EPSON RC+ 6.0 as another user.

Syntax
LogIn logID, password

Parameters
logID String expression that contains user login id.
password String expression that contains user password.

Description
You can utilize EPSON RC+ 6.0 security in your application. For example, you can display a menu
that allows different users to log into the system. Each type of user can have its own security rights.
For more details on security, see the EPSON RC+ 6.0 User's Guide.

When you are running programs in the development environment, the user before programs are
started will be restored after programs stop running.

When running the Operator Window in Auto Mode, the application is logged in as a guest user, unless
Auto LogIn is enabled, in which case the application is logged in as the current Windows user if such
user has been configured in the EPSON RC+ 6.0 system.

Note
This command will only work if the Security option is active.

See Also

GetCurrentUser$ Function

LogIn Statement Example

Integer errCode
errCode = LogIn("operator", "oprpass")

S

Long Statement

322 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Long Statement

Declares variables of type long integer. (4 byte whole number).

Syntax
Long varName [(subscripts)] [, varName [(subscripts)]...]

Parameters
varName Variable name which the user wants to declare as type Long.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared.

The subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 and the

available number of array elements is the upper bound value + 1.
 When specifying the upper bound value, make sure the number of total elements

is within the range shown below:
Local variable 2000
Global Preserve variable 4000
Global variable and module variable 100000

Description

Long is used to declare variables as type Long. Variables of type Long can contain whole numbers
with values between -2,147,483,648 to 2,147,483,647. Local variables should be declared at the top of
a function. Global and module variables must be declared outside of functions.

See Also
Boolean, Byte, Double, Global, Integer, Real, String

Long Statement Example
The following example shows a simple program which declares some variables as Longs using Long.

Function longtest
 Long A(10) 'Single dimension array of long
 Long B(10, 10) 'Two dimension array of long
 Long C(5, 5, 5) 'Three dimension array of long
 Long var1, arrayVar(10)
 Long i
 Print "Please enter a Long Number"
 Input var1
 Print "The Integer variable var1 = ", var1
 For i = 1 To 5
 Print "Please enter a Long Number"
 Input arrayVar(i)
 Print "Value Entered was ", arrayVar(i)
 Next I
Fend

S

LSet$ Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 323

LSet$ Function

Returns the specified string with trailing spaces appended up to the specified length..

Syntax
LSet$ (string, length)

Parameters
string String expression.
length Integer expression for the total length of the string returned.

Return Values
Specified string with trailing spaces appended.

See Also
RSet$, Space$

LSet$ Function Example

temp$ = "123"
temp$ = LSet$(temp$, 10) ' temp$ = "123 "

F

LShift Function

324 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

LShift Function

Shifts numeric data to the left by a user specified number of bits.

Syntax
LShift(number, shiftBits)

Parameters
number Integer expression to be shifted.
shiftBits The number of bits (integer from 0 to 31) to shift number to the left.

Return Values
Returns a numeric result which is equal to the value of number after shifting left shiftBits number of bits.

Description
LShift shifts the specified numeric data (number) to the left (toward a higher order digit) by the
specified number of bits (shiftBits). The low order bits shifted are replaced by 0.

The simplest explanation for LShift is that it simply returns the result of number * 2shiftBits.

Note
Numeric Data Type:

The numeric data number may be any valid numeric data type. LShift works with data types: Byte,
Integer, Long, and Real.

See Also

And, Not, Or, RShift, Xor

LShift Function Example

Function lshiftst
 Integer i
 Integer num, snum
 num = 1
 For i = 1 to 10
 Print "i =", i
 snum = LShift(num, i)
 Print "The shifted num is ", snum
 Next i
Fend

Some other example results from the LShift instruction from the command window.

> Print LShift(2,2)
8
> Print LShift(5,1)
10
> Print LShift(3,2)
12
>

F

LTrim$ Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 325

LTrim$ Function

Returns a string equal to specified string without leading spaces.

Syntax
LTrim$ (string)

Parameters
string String expression.

Return Values
Specified string with leading spaces removed.

See Also
RTrim$, Trim$

LTrim$ Function Example

str$ = " data "
str$ = LTrim$(str$) ' str$ = "data "

F

Mask Operator

326 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Mask Operator

Bitwise mask for Wait statement condition expression.

Syntax
Wait expr1 Mask exrp2

Parameters
expr1 Any valid expression input condition for Wait.
expr2 Any valid expression which returns a numeric result.

Description
The Mask operator is a bitwise And for Wait statement input condition expressions.

See Also
Wait

Mask Operator Example

' Wait for the lower 3 bits of input port 0 to equal 1
Wait In(0) Mask 7 = 1

S

MCal Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 327

MCal Statement

Executes machine calibration for robots with incremental encoders.

Syntax
MCal

Description
It is necessary to calibrate robots which have incremental encoders. This calibration must be executed
after turning on the main power. If you attempt motion command execution, or any command which
requires the current position data without first executing machine calibration, an error will occur.

Machine calibration is executed according to the moving joint order which is specified with the MCordr
command. The default value of MCordr at the time of shipment differs from model to model, so please
refer to the proper manipulator manual for details.

Potential Errors
Attempt to Execution a Motion command without Executing Mcal First

If you attempt motion command execution, or any command which requires the current position data
(e.g. Plist* instruction) without first executing machine calibration, an error will occur.

Absolute encoder robots
Absolute encoder robots do not need MCAL.

Robot Installation Note
Z Joint Space Required for Homing

When the Z joint homes it first moves up and then moves down and settles into the home position.
This means it is very important to properly install the robot so that enough space is provided for the
arm to home the Z joint. It is recommended that a space of 6 mm be provided above the upper limit.
(Do not install tooling or fixtures within a 6 mm space above the robot so enough room is left for proper
Z joint homing.)

See Also

Hofs, Home, Hordr, Mcorg, MCordr

Mcal Example

The following example is done from the monitor window:

> Motor On
> Mcal
>

> Motor On
> Mcal
>

> S INC

MCalComplete Function

328 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

MCalComplete Function

Returns status of MCal.

Syntax

MCalComplete

Return Values

True if MCal has been completed, otherwise False.

See Also

MCal

MCalComplete Example

If Not MCalComplete Then
 MCal
EndIf

F

MCordr Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 329

MCordr Statement

Specifies and displays the moving joint order for machine calibration Mcal.
Required only for robots with incremental encoders.

Syntax
(1) MCordr Step1, Step2, Step3, Step4, [Step5], [Step6], [Step7], [Step8], [Step9]
(2) MCordr

Parameters

Step1 Bit pattern that tells which axes should be calibrated during the 1st step of the Mcal
process. Any number of axes between 0 to all 4 axes may calibrate during the 1st step.
(see below for bit pattern definitions)

Step2 Bit pattern that tells which axes should be calibrated during the 2nd step of the Mcal
process. Any number of axes between 0 to all 4 axes may calibrate during the 2nd step.
(see below for bit pattern definitions)

Step3 Bit pattern that tells which axes should be calibrated during the 3rd step of the Mcal
process. Any number of axes between 0 to all 4 axes may calibrate during the 3rd step.
(see below for bit pattern definitions)

Step4 Bit pattern that tells which axes should be calibrated during the 4th step of the Mcal
process. Any number of axes between 0 to all 4 axes may calibrate during the 4th step.
(see below for bit pattern definitions)

Step5 Bit pattern that tells which axes should be calibrated during the 5th step of the Mcal
process. Any number of axes between 0 to all 4 axes may calibrate during the 5th step.
(see below for bit pattern definitions)

Step6 Bit pattern that tells which axes should be calibrated during the 6th step of the Mcal
process. Any number of axes between 0 to all 4 axes may calibrate during the 6th step.
(see below for bit pattern definitions)

Step7 Bit pattern that tells which axes should be calibrated during the 7th step of the Mcal
process. Any number of axes between 0 to all 4 axes may calibrate during the 7th step.
(see below for bit pattern definitions)

Step8 Bit pattern that tells which axes should be calibrated during the 8th step of the Mcal
process. Any number of axes between 0 to all 4 axes may calibrate during the 8th step.
(see below for bit pattern definitions)

Step9 Bit pattern that tells which axes should be calibrated during the 9th step of the Mcal
process. Any number of axes between 0 to all 4 axes may calibrate during the 9th step.
(see below for bit pattern definitions)

Return Values
Displays current Machine Calibration Order when parameters are omitted.

Description

After the system is powered on, Mcal instruction must be issued prior to any robot arm operation.
When the Mcal instruction is issued each of the 4 axes of the robot will move to their respective
calibration positions.

Specifies joint motion order for the Mcal command. (i.e. Defines which joint will home 1st, which joint
will Mcal 2nd, 3rd, etc.)

The purpose of the MCordr instruction is to allow the user to change the homing order. The homing
order is broken into 9 separate steps. The user then uses MCordr to define the specific axes which
will move to the calibration position (done with the Mcal command) during each step. It is important to
realize that more than 1 joint can be defined to move to the calibration position during a single step.
This means that all four axes can potentially be calibrated at the same time. However, it is

> S INC

MCordr Statement

330 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

recommended that the Z joint normally be defined to move to the calibration position first (in Step 1)
and then allow the other Axes to follow in subsequent steps. (See notes below)

The MCordr instruction expects that a bit pattern be defined for each of the 9 steps. Since there are 4
axes, each joint is assigned a specific bit. When the bit is high (1) (for a specific step), then the
corresponding joint will calibrate. When the bit is low (0), then the corresponding joint will not calibrate
during that step. The joint bit patterns are assigned as follows:

Joint: 1 2 3 4
Bit Number: bit 0 bit 1 bit 2 bit 3
Binary Code: &B000001 &B000010 &B000100 &B001000

 5 6 7 8 9
 bit 4 bit 5 bit 6 bit 7 bit 8
 &B010000 &B100000 &B1000000 &B10000000 &B100000000

Notes
Difference Between MCordr and Hordr

While at first glance the Hordr and MCordr commands may appear very similar there is one major
difference which is important to understand. MCordr is used to define the Robot Calibration joint order
(used with Mcal) while Hordr is used to define the Homing joint order (used with the Home command).

Default MCal Order (Factory Setting)
The default joint calibration order from the factory is that joint 3 will home in Step 1. Then joints 1, 2,
and 4 joints will all home at the same time in step 2. (Steps 3 and 4 are not used in the default
configuration.) The default MCordr values are as follows:
 MCordr &B0100, &B1011, 0, 0

Z Joint should normally be calibrated first
The reason for moving the Z joint first (and by itself) is to allow the tooling to be moved above the work
surface before beginning any horizontal movement. This will help prevent the tooling from hitting
something in the work envelope during the homing process.

MCordr values are maintained
The MCordr Table values are permanently saved and are not changed until either the user changes
them or the robot is redefined.

See Also

Mcal

MCordr Statement Example
Following are some monitor window examples:

This example defines the calibration order as J3 in the first step, J1 in second step, J2 in third step,
and J4 in the fourth step. The order is specified with binary values.

>mcordr &B0100, &B0001, &B0010, &B1000

This example defines the calibration order as J3 in the first step, then J1, J2 and J4 joints
simultaneously in the second step. The order is specified with decimal values.

>mcordr 4, 11, 0, 0

This example displays the current calibration order in decimal numbers.

>mcordr
4, 11, 0, 0
>

MCordr Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 331

MCordr Function

Returns an MCordr parameter setting.

Syntax

MCordr (paramNumber)

Parameters

paramNumber Specifies reference setting numbers (integers from 1 to 9) by an expression or
numeric value.

Return Values

Returns binary values (integers) representing the joint of the specified setting number to execute
machine calibration.

Description

Returns the joint motion order to execute machine calibration by Mcal.

See Also

Mcal

MCordr Function Example

This example uses the MCordr function in a program:

Integer a
a = MCordr(1)

F

MemIn Function

332 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

MemIn Function

Returns the status of the specified memory I/O port. Each port contains 8 memory bits.

Syntax
MemIn(portNumber)

Parameters
portNumber Integer expression representing memory I/O bytes.

Return Values
Returns an integer value between 0-255. The return value is 8 bits, with each bit corresponding to 1
memory I/O bit.

Description
MemIn provides the ability to look at the value of 8 memory I/O bits at the same time. The MemIn
instruction can be used to store the 8 memory I/O bit status into a variable or it can be used with the
Wait instruction to Wait until a specific condition which involves more than 1 memory I/O bit is met.

Since 8 bits are retrieved at a time, the return value ranges from 0-255. Please review the chart below
to see how the integer return values correspond to individual memory I/O bits.

Memory I/O Bit Result (Using Port #0)
Return Value 7 6 5 4 3 2 1 0

1 Off Off Off Off Off Off Off On
5 Off Off Off Off Off On Off On

15 Off Off Off Off On On On On
255 On On On On On On On On

Memory I/O Bit Result (Using Port #31)
Return Value 255 254 253 252 251 250 249 248

3 Off Off Off Off Off Off On On
7 Off Off Off Off Off On On On
32 Off Off On Off Off Off Off Off
255 On On On On On On On On

Notes
Difference Between MemIn and MemSw

The MemSw instruction allows the user to read the value of 1 memory I/O bit. The return value from
MemSw is either a 1 or a 0 which indicates that the memory I/O bit is either On or Off. MemSw can
check each of the memory I/O bits individually. The MemIn instruction is very similar to the MemSw
instruction in that it also is used to check the status of the memory I/O bits. However there is 1 distinct
difference. The MemIn instruction checks 8 memory I/O bits at a time vs. the single bit checking
functionality of the MemSw instruction. MemIn returns a value between 0-255 which tells the user
which of the 8 I/O bits are On and which are Off.

See Also

In, InBCD, Off, MemOff, On, MemOn, OpBCD, Oport, Out, MemOut, Sw, MemSw, Wait

F

MemIn Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 333

MemIn Example
The program example below gets the current value of the first 8 memory I/O bits and then makes sure
that all 8 I/O are currently set to 0 before proceeding. If they are not 0 an error message is given to the
operator and the task is stopped.

Function main
 Integer var1

 var1 = MemIn(0) 'Get 1st 8 memory I/O bit values
 If var1 = 0 Then
 Go P1
 Go P2
 Else
 Print "Error in initialization!"
 Print "First 8 memory I/O bits were not all set to 0"
 EndIf
Fend

Other simple examples from the Command window are as follows:

> memout 0, 1
> print MemIn(0)
1
> memon 1
> print MemIn(0)
3
> memout 31,3
> print MemIn(31)
3
> memoff 249
> print MemIn(31)
1
>

MemInW Function

334 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

MemInW Function

Returns the status of the specified memory I/O word port.
Each word port contains 16 memory I/O bits.

Syntax
MemInW(WordPortNum)

Parameters
WordPortNum Integer expression representing the I/O word port.

Return Values
Returns the current status of the memory I/O (long integers from 0 to 65535).

See Also
MemIn, MemOut, MemOutW

MemInW Function Example

Long word0

word0 = MemInW(0)

F

MemOff Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 335

MemOff Statement

Turns Off the specified bit of the memory I/O.

Syntax
MemOff { bitNumber | memIOLabel }

Parameters
bitNumber Integer expression representing memory I/O bits.
memIOLabel Memory I/O label.

Description
MemOff turns Off the specified bit of memory I/O. The 256 memory I/O bits are typically excellent
choices for use as status bits for uses such as On/Off, True/False, Done/Not Done, etc. The MemOn
instruction turns the memory bit On, the MemOff instruction turns it Off, and the MemSw instruction is
used to check the current state of the specified memory bit. The Wait instruction can also be used with
the memory I/O bit to cause the system to wait until a specified memory I/O status is set.

Note
Memory outputs off

All memory I/O bits are turned off when the controller are restarted. They are not turned off by
Emergency stop, safeguard open, program end, Reset command, or EPSON RC+ restart.

See Also

In, MemIn, InBCD, Off, On, MemOn, OpBCD, Oport, Out, MemOut, Sw, MemSw, Wait

MemOff Statement Example
The example shown below shows 2 tasks each with the ability to initiate motion instructions. However,
a locking mechanism is used between the 2 tasks to ensure that each task gains control of the robot
motion instructions only after the other task is finished using them. This allows 2 tasks to each execute
motion statements as required and in an orderly predictable fashion. MemSw is used in combination
with the Wait instruction to wait until the memory I/O #1 is the proper value before it is safe to move
again. MemOn and MemOff are used to turn on and turn off the memory I/O for proper synchronization.

Function main
 Integer I
 MemOff 1
 Xqt 2, task2
 For i = 1 to 100
 Wait MemSw(1) = Off
 Go P(i)
 MemOn 1
 Next I
Fend

Function task2
 Integer I
 For i = 101 to 200
 Wait MemSw(1) = On
 Go P(i)
 MemOff 1
 Next I
Fend

>

S

MemOff Statement

336 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Other simple examples from the command window are as follows:

> MemOn 1 'Switch memory I/O bit #1 on
> Print MemSw(1)
1
> MemOff 1 'Switch memory I/O bit #1 off
> Print MemSw(1)
0

MemOn Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 337

MemOn Statement

Turns On the specified bit of the memory I/O.

Syntax
MemOn { bitNumber | memIOLabel }

Parameters
bitNumber Integer expression representing memory I/O bits.
memIOLabel Memory I/O label.

Description
MemOn turns on the specified bit of the robot memory I/O. The 256 memory I/O bits are typically used
as task communication status bits. The MemOn instruction turns the memory bit On, the MemOff
instruction turns it Off, and the MemSw instruction is used to check the current state of the specified
memory bit. The Wait instruction can also be used with the memory bit to cause the system to wait
until a specified status is set.

Note
Memory outputs off

All memory I/O bits are turned off when the controller are restarted. They are not turned off by
Emergency stop, safeguard open, program end, Reset command, or EPSON RC+ restart.

See Also

In, MemIn, InBCD, Off, MemOff, On, OpBCD, Oport, Out, MemOut, Sw, MemSw, Wait

MemOn Statement Exampl

The example shown below shows 2 tasks each with the ability to initiate motion instructions. However, a
locking mechanism is used between the 2 tasks to ensure that each task gains control of the robot motion
instructions only after the other task is finished using them. This allows 2 tasks to each execute motion
statements as required and in an orderly predictable fashion. MemSw is used in combination with the Wait
instruction to wait until the memory I/O #1 is the proper value before it is safe to move again. MemOn and
MemOff are used to turn on and turn off the memory I/O for proper synchronization.

Function main
 Integer I
 MemOff 1
 Xqt 2, task2
 For i = 1 to 100
 Wait MemSw(1) = Off
 Go P(i)
 MemOn 1
 Next I
Fend

Function task2
 Integer I
 For i = 101 to 200
 Wait MemSw(1) = On
 Go P(i)
 MemOff 1
 Next I
Fend

> S

MemOn Statement

338 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Other simple examples from the command window are as follows:

> memon 1
> print memsw(1)
1
> memoff 1
> print memsw(1)
0

MemOut Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 339

MemOut Statement

Simultaneously sets 8 memory I/O bits.

Syntax
MemOut portNumber, outData

Parameters
portNumber Integer expression representing memory I/O bit port number. The portNumber selection

corresponds to the following:
Portnum Outputs

0 0-7
1 8-15
. .

outData Integer expression between 0-255 representing the output pattern for the output group

selected by portNumber. If represented in hexadecimal form the range is from &H0 to
&HFF. The lower digit represents the least significant digits (or the 1st 4 outputs) and the
upper digit represents the most significant digits (or the 2nd 4 outputs).

Description

MemOut simultaneously sets 8 memory I/O bits using the combination of the portNumber and outData
values specified by the user to determine which outputs will be set. The portNumber parameter
specifies which group of 8 outputs to use where portNumber = 0 means outputs 0-7, portNumber = 1
means outputs 8-15, etc.

Once a portNumber is selected, a specific output pattern must be defined. This is done using the
outData parameter. The outData parameter may have a value between 0-255 and may be
represented in hexadecimal or integer format. (i.e. &H0-&HFF or 0-255)

The table below shows some of the possible I/O combinations and their associated outData values
assuming that portNumber is 0, and 1 accordingly.

Output Settings When portNumber=0 (Output number)
OutData Value 7 6 5 4 3 2 1 0

01 Off Off Off Off Off Off Off On
02 Off Off Off Off Off Off On Off
03 Off Off Off Off Off Off On On
08 Off Off Off Off On Off Off Off
09 Off Off Off Off On Off Off On
10 Off Off Off On Off Off Off Off
11 Off Off Off On Off Off Off On
99 Off On On Off Off Off On On
255 On On On On On On On On

> S

MemOut Statement

340 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Output Settings When portNumber=1 (Output number)
OutData Value 15 14 13 12 11 10 9 8

01 Off Off Off Off Off Off Off On
02 Off Off Off Off Off Off On Off
03 Off Off Off Off Off Off On On
08 Off Off Off Off On Off Off Off
09 Off Off Off Off On Off Off On
10 Off Off Off On Off Off Off Off
11 Off Off Off On Off Off Off On
99 Off On On Off Off Off On On
255 On On On On On On On On

See Also

In, MemIn, InBCD, MemOff, MemOn, MemSw, Off, On, OpBCD, Oport, Out, Sw, Wait

MemOut Example
The example below shows main task starting a background task called iotask. The iotask is a simple
task to toggle memory I/O bits 0 - 3 On and Off. The MemOut instruction makes this possible using
only 1 command rather than turning each memory I/O bit on and off individually.

Function main
 Xqt 2, iotask
 Go P1
 .
 .
Fend

Function iotask

 Do
 MemOut 0, &H

 Wait 1
 MemOut 0, &H0
 Wait 1
 Loop
Fend

Other simple examples from the command window are as follows:

> MemOut 1,6 'Turns on memory I/O bits 9 & 10
> MemOut 2,1 'Turns on memory I/O bit 8
> MemOut 3,91 'Turns on memory I/O bits 24, 25, 27, 28, and 30

MemOutW Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 341

MemOutW Statement

Simultaneously sets 16 memory I/O bits.

Syntax
MemOutW wordPortNum, outputData

Parameters
wordPortNum Integer expression representing memory I/O words.
outputData Specifies output data (integers from 0 to 65535) using an expression or numeric

value.

Description
Changes the current status of memory I/O port group specified by the word port number to the
specified output data.

See Also
MemIn, MemInW, MemOut

MemOutW Example

MemOutW 0, 25

> S

MemSw Function

342 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

MemSw Function

Returns the status of the specified memory I/O bit.

Syntax
MemSw(bitNumber)

Parameters
bitNumber Integer expression representing the memory I/O bit number.

Return Values
Returns a 1 when the specified bit is On and a 0 when the specified bit is Off.

Description
MemSw returns the status of one memory I/O bit. Valid entries for MemSw range from bit 0 to bit 511.
MemOn turns the specified bit on and MemOff turns the specified bit Off.

See Also
In, MemIn, InBCD, MemOff, MemOn, MemOut, Off, On, OpBCD, Oport, Out, Sw, Wait

MemSw Example

The example shown below shows 2 tasks each with the ability to initiate motion instructions. However,
a locking mechanism is used between the 2 tasks to ensure that each task gains control of the robot
motion instructions only after the other task is finished using them. This allows 2 tasks to each execute
motion statements as required and in an orderly predictable fashion. MemSw is used in combination
with the Wait instruction to wait until the memory I/O bit 1 is the proper value before it is safe to move
again.

Function main
 Integer I
 MemOff 1
 Xqt 2, task2
 For i = 1 to 100
 Wait MemSw(1) = Off
 Go P(i)
 MemOn 1
 Next I
Fend

Function task2
 Integer I
 For i = 101 to 200
 Wait MemSw(1) = On
 Go P(i)
 MemOff 1
 Next I
Fend

Other simple examples from the Command window are as follows:

> memon 1
> print memsw(1)
1
> memoff 1
> print memsw(1)
0

F

MHour Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 343

MHour Function

Returns the accumulated MOTOR ON time of the robot motors.

Syntax

MHour ([robotNumber])

Parameters

robotNumber Specify the robot number to check the MOTOR ON time by an integer value.
 If omitted, currently selected robot will be used.

Return Values

Returns the accumulated MOTOR ON time of the motors by an integer value.

See Also

Time, Hour

MHour Function Example

Robot 2
Print MHour
Print MHour(1)

F

Mid$ Function

344 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Mid$ Function

Returns a substring of a string starting from a specified position.

Syntax
Mid$(string, position, [count])

Parameters
string Source string expression.
position The starting position in the character string for copying count characters.
count Optional. The number of characters to copy from string starting with the character

defined by position. If omitted, then all characters from position to the end of the
string are returned.

Return Values

Returns a substring of characters from string.

Description
Mid$ returns a substring of as many as count characters starting with the position character in string.

See Also
Asc, Chr$, InStr, Left$, Len, Right$, Space$, Str$, Val

Mid$ Function Example
The example shown below shows a program that extracts the middle 2 characters from the string
"ABCDEFGHIJ" and the remainder of the string starting at position 5.

Function midtest
 String basestr$, m1$, m2$
 basestr$ = "ABCDEFGHIJ"
 m1$ = Mid$(basestr$, (Len(basestr$) / 2), 2)
 Print "The middle 2 characters are: ", m1$
 m2$ = Mid$(basestr$, 5)
 Print "The string starting at 5 is: ", m2$
Fend

F

MkDir Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 345

MkDir Statement

Creates a subdirectory on a controller disk drive.

Syntax

MkDir dirName

Parameters

dirName String expression that defines the path and name of the directory to create.
See ChDisk for the details.

Description

Creates a subdirectory in the specified path. If omitted, a subdirectory is created in the current
directory.

Note
- This statement is executable only with PC disk

See Also

ChDir, ChDrive, Dir, RenDir, RmDir

MkDir Example

The following examples are done from the command window:

> MkDir \Data

> MkDir \Data\PTS

> MkDir \TEST1 \TEST2

>

Mod Operator

346 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Mod Operator

Returns the remainder obtained by dividing a numeric expression by another numeric expression.

Syntax
number Mod divisor

Parameters
number The number being divided (the dividend).
divisor The number which number is divided by.

Return Values
Returns the remainder after dividing number by divisor.

Description
Mod is used to get the remainder after dividing 2 numbers. The remainder is a whole number. One
clever use of the Mod instruction is to determine if a number is odd or even. The method in which the
Mod instruction works is as follows: number is divided by divisor. The remainder left over after this
division is then the return value for the Mod instruction.

See Also
Abs, Atan, Atan2, Cos, Int, Not, Sgn, Sin, Sqr, Str$, Tan, Val

Mod Operator Example
The example shown below determines if a number (var1) is even or odd. When the number is even the
result of the Mod instruction will return a 0. When the number is odd, the result of the Mod instruction
will return a 1.

Function modtest
....Integer var1, result

....Print "Enter an integer number:"
....Input var1
....result = var1 Mod 2
....Print "Result = ", result
....If result = 0 Then
........Print "The number is EVEN"
....Else
........Print "The number is ODD"
....EndIf
Fend

Some other example results from the Mod instruction from the Command window.

> Print 36 Mod 6
> 0

> Print 25 Mod 10
> 5
>

Motor Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 347

Motor Statement

Turns motor power for all axes on or off for the current robot.

Syntax
Motor ON | OFF

Parameters
ON | OFF The keyword ON is used to turn the Motor Power on. The keyword OFF is used to turn

Motor Power Off.

Description
The Motor On command is used to turn Motor Power On and release the brakes for all axes. Motor
Off is used to turn Motor Power Off and set the brakes.

In order to move the robot, motor power must be turned on.

After an emergency stop, or after an error has occurred that requires resetting with the Reset
command, execute Reset, and then execute Motor On.

Motor On sets the robot control parameter as below:

Power Low
Fine Default values
Speed Default values
SpeedR Default values
SpeedS Default values
Accel Default values
AccelS Default values
AccelR Default values
PTPBoost Default values
LimZ 0

See Also
Brake, Power, Reset, SFree, SLock

Motor Example
The following examples are done from the command window:

> Motor On

> Motor Off

> S

Motor Function

348 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Motor Function

Returns status of motor power for the current robot.

Syntax
Motor

Return Values
0 = Motors off, 1 = Motors on.

See Also
Motor Statement

Motor Function Example

If Motor = Off Then
 Motor On
EndIf

F

Move Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 349

Move Statement

Moves the arm from the current position to the specified point using linear interpolation
(i.e. moving in a straight line) at a constant tool center point velocity).

Syntax
Move destination [ROT] [ECP] [CP] [searchExpr] [!...!] [SYNC]

Parameters
destination The target destination of the motion using a point expression.
ROT Optional. :Decides the speed/acceleration/deceleration in favor of tool

rotation.
ECP Optional. External control point motion. This parameter is valid when the

ECP option is enabled.
CP Optional. Specifies continuous path motion.
searchExpr Optional. A Till or Find expression.

Till | Find
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

!...! Optional. Parallel Processing statements can be added to execute I/O and
other commands during motion.

SYNC Reserves a motion command. The robot will not move until SyncRobots is
executed.

Description

Move moves the arm from the current position to destination in a straight line. Move coordinates all
axes to start and stop at the same time. The coordinates of destination must be taught previously
before executing the Move instruction. Acceleration and deceleration for the Move is controlled by the
AccelS instruction. Speed for the move is controlled by the SpeedS instruction. If the SpeedS speed
value exceeds the allowable speed for any joint, power to all four joint motors will be turned off, and
the robot will stop.

Move uses the SpeedS speed value and AccelS acceleration and deceleration values. Refer to Using
Move with CP below on the relation between the speed/acceleration and the acceleration/deceleration.
If, however, the ROT modifier parameter is used, Move uses the SpeedR speed value and AccelR
acceleration and deceleration values. In this case SpeedS speed value and AccelS acceleration and
deceleration value have no effect.

Usually, when the move distance is 0 and only the tool orientation is changed, an error will occur.
However, by using the ROT parameter and giving priority to the acceleration and the deceleration of
the tool rotation, it is possible to move without an error. When there is not an orientational change with
the ROT modifier parameter and movement distance is not 0, an error will occur.

Also, when the tool rotation is large as compared to move distance, and when the rotation speed
exceeds the specified speed of the manipulator, an error will occur. In this case, please reduce the
speed or append the ROT modifier parameter to give priority to the rotational
speed/acceleration/deceleration.

When ECP is used, the trajectory of the external control point coresponding to the ECP number
specified by ECP instruction moves straight with respect to the tool coordinate system. In this case, the
trajectory of tool center point does not follow a straight line.

> S

Move Statement

350 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

ECP

Work

TCP

The optional Till qualifier allows the user to specify a condition to cause the robot to decelerate to a
stop prior to completing the Move. The condition specified is simply a check against one of the inputs.
This is accomplished through using the Sw instruction. The user can check if the input is On or Off
and cause the arm to stop based on the condition specified. This feature works almost like an interrupt
where the Move is interrupted (stopped) once the Input condition is met. If the input condition is never
met during the Move then the arm successfully arrives on the point specified by destination. For more
information about the Till qualifier see the Till command.

Notes

Move Cannot
Move cannot execute range verification of the trajectory prior to starting the move itself. Therefore,
even for target positions that are within an allowable range, it is possible for the system to find a
prohibited position along the way to a target point. In this case, the arm may abruptly stop which may
cause shock and a servo out condition of the arm. To prevent this, be sure to perform range
verifications at low speed prior to using Move at high speeds. In summary, even though the target
position is within the range of the arm, there are some Moves which will not work because the arm
cannot physically make it to some of the intermediate positions required during the Move.

Using Move with CP
The CP parameter causes the arm to move to destination without decelerating or stopping at the point
defined by destination. This is done to allow the user to string a series of motion instructions together
to cause the arm to move along a continuous path while maintaining a specific speed throughout all
the motion. The Move instruction without CP always causes the arm to decelerate to a stop prior to
reaching the point destination destination.

Proper Speed and Acceleration Instructions with Move
 The SpeedS and AccelS instructions are used to specify the speed and acceleration of the manipulator

during Move motion. Pay close attention to the fact that SpeedS and AccelS apply to linear and
circular interpolated motion while point to point motion uses the Speed and Accel instructions.

Potential Errors
Attempt to Change Only Tool Orientation

Changing only tool orientation during the move is impossible. If this is attempted, an error will occur. In
this case, use the ROT parameter.

Move Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 351

Joint Overspeed Errors
When the motion requested results in the speed of one of the axes to exceed its maximum allowable
speed an overspeed error occurs. In the case of a motor overspeed error, the robot arm is brought to
a stop and servo power is turned off.

Attempt to Pass the Original Point (RS series)
It is impossible to operate the arm of RS series to pass near an original point. If attempted this, an
overspeed error will occur. For the operation near an original point, take the following actions.
 Lower the speed of SpeedS
 Find a different path to prevent an original point
 Use PTP motion such as Go command instead of Move command.

See Also

AccelS, Arc, CP, Go, Jump, Jump3, Jump3CP, SpeedS, Sw, Till

Move Statement Example
The example shown below shows a simple point to point move between points P0 and P1 and then
moves back to P0 in a straight line. Later in the program the arm moves in a straight line toward point
P2 until input #2 turns on. If input #2 turns On during the Move, then the arm decelerates to a stop
prior to arriving on point P2 and the next program instruction is executed.

Function movetest
 Home
 Go P0
 Go P1
 Move P2 Till Sw(2) = On
 If Sw(2) = On Then
 Print "Input #2 came on during the move and"
 Print "the robot stopped prior to arriving on"
 Print "point P2."
 Else
 Print "The move to P2 completed successfully."
 Print "Input #2 never came on during the move."
 EndIf
Fend

This example uses Move with CP. The diagram below shows arc motion which originated at the point
P100 and then moves in a straight line through P101, at which time the arm begins to form an arc. The
arc is then continued through P102 and on to P103. Next the arm moves in a straight line to P104
where it finally decelerates to a stop. Note that the arm doesn't decelerate between each point until its
final destination of P104. The following function would generate such a motion.

P102

P100

P103 P104

P101

Function CornerArc
 Go P100
 Move P101 CP 'Do not stop at P101
 Arc P102, P103 CP 'Do not stop at P103
 Move P104 'Decelerate to stop at P104
Fend

MsgBox Statement

352 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

MsgBox Statement

Displays a message in a dialog box and waits for the operator to choose a button.

Syntax
MsgBox message$, [type], [title$], [answer]

Parameters
message$ The message that will be displayed.
type Optional. A numeric expression that is the sum of values specifying the number and type

of buttons to display, the icon style to use, the identity of the default button. EPSON RC+
6.0 includes predefined constants that can be used for this parameter. The following
table shows the values that can be used.

Symbolic constant Value Meaning

 MB_OK 0 Display OK button only.
 MB_OKCANCEL 1 Display OK and cancel buttons.
 MB_ABORTRETRYIGNORE 2 Display Abort, Retry, and Ignore

buttons.
 MB_YESNOCANCEL 3 Display Yes, No, and Cancel buttons.
 MB_YESNO 4 Display Yes and No buttons.
 MB_RETRYCANCEL 5 Display Retry and Cancel buttons.
 MB_ICONSTOP 16 Stop sign.
 MB_ICONQUESTION 32 Question mark.
 MB_ICONEXCLAMATION 64 Exclamation mark.
 MB_DEFBUTTON1 0 First button is default.
 MB_DEFBUTTON2 256 Second button is default.

title$ Optional. String expression that is displayed in the title bar of the message box.
answer Optional. An integer variable that receives a value indicating the action taken by the

operator. EPSON RC+ 6.0 includes predefined constants that can be used for this
parameter. The table below shows the values returned in answer.
Symbolic constant Value Meaning

 IDOK 1 OK button selected.
 IDCANCEL 2 Cancel button selected.
 IDABORT 3 Abort button selected.
 IDRETRY 4 Retry button selected.
 IDYES 6 Yes button selected.
 IDNO 7 No button selected.

Description

MsgBox displays specified messages. If you want blank lines, use Chr$(13)+Chr$(10) in the message.
See the example.

See Also
InputBox

> S

MsgBox Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 353

MsgBox Example
This example displays a message box that asks the operator if he/she wants to continue or not. The
message box will display two buttons: Yes and No. A question mark icon will also be displayed. After
MsgBox returns (after the operator clicks a button), then the answer is examined. If it's no, then all
tasks are stopped with the Quit command.

Function msgtest
 String msg$, title$
 Integer mFlags, answer

 msg$ = "Operation complete" + Chr$(13) + Chr$(10)
 msg$ = msg$ + "Ready to continue?"
 title$ = "Sample Application"
 mFlags = MB_YESNO + MB_ICONQUESTION
 MsgBox msg$, mFlags, title$, answer
 If answer = IDNO then
 Quit All
 EndIf
Fend

A picture of the message box that this code will create is shown below.

MyTask Function

354 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

MyTask Function

Returns the task number of the current program.

Syntax
MyTask

Return Values
The task number of the current task. Valid entries are as below:

Normal task 1 ~ 32
Background tasks 65 ~ 80
Trap tasks 257 ~ 267

Description

MyTask returns the task number of the current program with a numeral. The MyTask instruction is
inserted inside a specific program and when that program runs the MyTask function will return the task
number that the program is running in.

See Also
Xqt

MyTask Function Example
The following program switches On and Off the I/O ports from 1 to 8.

Function main
 Xqt 2, task 'Execute task 2.
 Xqt 3, task 'Execute task 3.
 Xqt 4, task 'Execute task 4.
 Xqt 5, task 'Execute task 5.
 Xqt 6, task 'Execute task 6.
 Xqt 7, task 'Execute task 7.
 Xqt 8, task 'Execute task 8.
 Call task
Fend

Function task
 Do
 On MyTask 'Switch On I/O port which has the same number as current task number
 Off MyTask 'Switch Off I/O port which has the same number as current task number
 Loop
Fend

F

Next Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 355

Next Statement

The For/Next instructions are used together to create a loop where instructions located
between the For and Next instructions are executed multiple times as specified by
the user.

Syntax
For var1 = initval To finalval [Step Increment]

statements
Next var1

Parameters
var1 The counting variable used with the For/Next loop. This variable is normally

defined as an integer but may also be defined as a Real variable.
initval The initial value for the counter var1.
finalval The final value of the counter var1. Once this value is met, the For/Next loop is

complete and execution continues starting with the statement following the Next
instruction.

Increment An optional parameter which defines the counting increment for each time the
Next statement is executed within the For/Next loop. This variable may be
positive or negative. However, if the value is negative, the initial value of the
variable must be larger than the final value of the variable. If the increment value
is left out the system automatically increments by 1.

statements Any valid SPEL+ statements can be inserted inside the For/Next loop.

Return Values
None

Description
For/Next executes a set of statements within a loop a specified number of times. The beginning of the
loop is the For statement. The end of the loop is the Next statement. A variable is used to count the
number of times the statements inside the loop are executed.

The first numeric expression (initval) is the initial value of the counter. This value may be positive or
negative as long as the finalval variable and Step increment correspond correctly.

The second numeric expression (finalval) is the final value of the counter. This is the value which once
reached causes the For/Next loop to terminate and control of the program is passed on to the next
instruction following the Next instruction.

Program statements after the For statement are executed until a Next instruction is reached. The
counter variable (var1) is then incremented by the Step value defined by the increment parameter. If
the Step option is not used, the counter is incremented by one.

The counter variable (var1) is then compared with the final value (finalval). If the counter is less than or
equal to the final value (finalval), the statements following the For instruction are executed again. If the
counter variable is greater than the final value (finalval), execution branches outside of the For/Next
loop and continues with the instruction immediately following the Next instruction.

Nesting of For/Next statements is supported up to 10 levels deep. This means that a For/Next Loop
can be put inside of another For/Next loop and so on and so on until there are 10 "nests" of For/Next
loops.

> S

Next Statement

356 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Notes
Negative Step Values

If the value of the Step increment (increment) is negative, the counter variable (var1) is decremented
(decreased) each time through the loop and the initial value (initval) must be greater than the final
value (finalval) for the loop to work.

See Also

For

For/Next Example

Function fornext
 Integer ctr
 For ctr = 1 to 10
 Go Pctr
 Next ctr
 '
 For ctr = 10 to 1 Step -1
 Go Pctr
 Next ctr
Fend

Not Operator

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 357

Not Operator

Performs the bitwise complement on the value of the operand.

Syntax
Not operand

Parameters
operand Integer expression.

Return Values
1’s complement of the value of the operand.

Description
The Not function performs the bitwise complement on the value of the operand. Each bit of the result
is the complement of the corresponding bit in the operand, effectively changing 0 bits to 1, and 1 bits to
0.

See Also
Abs, And, Atan, Atan2, Cos, Int, LShift, Mod, Or, RShift, Sgn, Sin, Sqr, Str$, Tan, Val, Xor

Not Operator Example
This is a simple Command window example on the usage of the Not instruction.

>print not(1)
 -2
>

F

Off Statement

358 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Off Statement

Turns Off the specified output and after a specified time can turn it back on.

Syntax
Off { bitNumber | outputLabel }, [time], [parallel] [,Forced]

Parameters
bitNumber Integer expression representing which Output to turn Off.
outputLabel Output label.
time Optional. Specifies a time interval in seconds for the output to remain Off. After the time

interval expires, the Output is turned back on. (Minimum time interval is 0.01 seconds)
parallel Optional. When a timer is set, the parallel parameter may be used to specify when the

next command executes:
0 - immediately after the output is turned off

(The maximum time interval is 10 seconds.)
1 - after the specified time interval elapses. (default value)

Valid range is 0-2147483 seconds in 0.01 second intervals.
Forced Optional. Usually omitted.

Description

Off turns off (sets to 0) the specified output.

If the time interval parameter is specified, the output bit specified by bitNumber is switched off, and
then switched back on after the time interval elapses. If prior to executing Off, the Output bit was
already off, then it is switched On after the time interval elapses.

The parallel parameter settings are applicable when the time interval is specified as follows:
1: Switches the output off, switches it back on after specified interval elapses, then executes the next
command. (This is also the default value for the parallel parameter. If this parameter is omitted, this is
the same as setting the parameter to 1.)
0: Switches the output off, and simultaneously executes the next command.

Notes
Output bits Configured as Remote Control output

If an output bit which was set up as a system output is specified, an error will occur. Remote control
output bits are turned on or off automatically according to system status.

Outputs and When an Emergency Stop Occurs:
EPSON RC+ has a feature which causes all outputs to go off when an E-Stop occurs. This feature is
set or disabled from Setup | Controller | Preferences.

Forced Flag
This flag is used to turn Off the I/O output at Emergency Stop and Safety Door Open from NoPause
task or NoEmgAbort task (special task using NoPause or NoEmgAbort at Xqt).
Be sure that the I/O outputs change by Emergency Stop and Safety Door Open when designing the
system.

See Also

In, InBCD, MemOn, MemOff, MemOut, MemSw, OpBCD, Oport, Out, Wait

> S

Off Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 359

Off Statement Example
The example shown below shows main task start a background task called iotask. The iotask is a
simple task to turn discrete output bits 1 and 2 on and then off, Wait 10 seconds and then do it again.

Function main
 Xqt 2, iotask
 Go P1
 .
 .
 .
Fend

Function iotask
 Do
 On 1
 On 2
 Off 1
 Off 2
 Wait 10
 Loop
Fend

Other simple examples from the Command window are as follows:

> on 1
> off 1, 10 'Turn Output 1 off, wait 10 secs, turn on again
> on 2
> off 2

OLAccel Statement

360 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

OLAccel Statement

Sets up the automatic adjustment of acceleration/deceleration that is adjusted
according to the overload rating.

Syntax
OLAccel {On | Off}

Parameters
On | Off On: Enables the automatic adjustment of acceleration/deceleration that is adjusted

according to the overload rating.
 Off: Disables the automatic adjustment of acceleration/deceleration that is adjusted

according to the overload rating.

Description
OLAccel can be used to enable the automatic adjustment function of acceleration and
deceleration that is adjusted according to the robot loading rate (OLRate). When OLAccel is On,
the acceleration and deceleration are automatically adjusted in accordance with the robot loading
rate at PTP motion commands. This is done to prevent the over load error by reducing the
acceleration/deceleration automatically when the loading rate is exceeding a certain value at PTP
motion. Heretofore, when users were executing motion with heavy duty that may cause over load
error, users had to stop the robot by the program or adjust the speed and acceleration to prevent
the error. OLAccel statement lessens these measures. However, this statement do not prevent
over load error at all types of cycles. When the cycle has very heavy duty and load, the over load
error may occur. In this case, users need to stop the robot or adjust the speed and acceleration.
In some operation environment, the motor temperature may rise by operating the robot without
over load error and result in over heat error.

This statement is unnecessary at proper load operation.
Use OLRate in the test cycle to check whether the over load error may occur or not.

The OLAccel value initializes to the default values (low acceleration) when any one of the following
conditions occurs:

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

Notes
If OLAccel On is executed to a robot that does not support the automatic adjustment function of
acceleration and deceleration, an error occurs.

See Also

OLAccel Function, OLRate

> S

OLAccel Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 361

OLAccel Statement Example

>olrate on
>olrate
OLACCEL is ON

Function main
Motor On
Power High
Speed 100
Accel 100, 100
OLAccel On
Xqt 2, MonitorOLRate
Do
Jump P0
Jump P1

Loop
Fend

Function MonitorOLRate
Do
'Displays OLRate
OLRate
Wait 1

Loop
Fend

OLAccel Function

362 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

OLAccel Function

Returns the automatic adjustment setting.

Syntax
OLAccel

Return Values
Off = Automatic adjustment of acceleration/deceleration that is adjusted according to the overload

rating is disabled.
On = Automatic adjustment of acceleration/deceleration that is adjusted according to the overload

rating is enabled.

See Also
OLAccel, OLRate

OLAccel Function Example

If OLAccel = Off Then
 Print “OLAccel is off”
EndIf

F

OLRate Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 363

OLRate Statement

Display overload rating for one or all joints for the current robot.

Syntax
OLRate [jointNumber]

Parameters
jointNumber Integer expression from 1 ~ 9.

The additional S axis is 8 and T axis is 9.
Description

OLRate can be used to check whether a cycle is causing stress on the servo system. Factors such as
temperature and current can cause servo errors during applications with high duty cycles. OLRate
can help to check if the robot system is close to having a servo error.

During a cycle, run another task to command OLRate. If OLRate exceeds 1.0 for any joint, then a
servo error will occur.

Servo errors are more likely to occur with heavy payloads. By using OLRate during a test cycle, you
can help insure that the speed and acceleration settings will not cause a servo error during production
cycling.

To get valid readings, you must execute OLRate while the robot is moving.

See Also
OLRate Function

OLRate Statement Example

>olrate
0.10000 0.20000
0.30000 0.40000
0.50000 0.60000

Function main
 Power High
 Speed 50
 Accel 50, 50
 Xqt 2, MonitorOLRate
 Do
 Jump P0
 Jump P1
 Loop
Fend

Function MonitorOLRate
 Do
 OLRate ' Display OLRate
 Wait 1
 Loop
Fend

>

S

OLRate Function

364 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

OLRate Function

Returns overload rating for one joint for the current robot.

Syntax
OLRate(jointNumber)

Parameters
jointNumber Integer expression from 1 ~ 9.

The additional S axis is 8 and T axis is 9.
Return Values

Returns the OLRate for the specified joint. Values are between 0.0 and 2.0.

Description
OLRate can be used to check whether a cycle is causing stress on the servo system. Factors such as
temperature and current can cause servo errors during applications with high duty cycles. OLRate
can help to check if the robot system is close to having a servo error.

During a cycle, run another task to command OLRate. If OLRate exceeds 1.0 for any joint, then a
servo error will occur.

Servo errors are more likely to occur with heavy payloads. By using OLRate during a test cycle, you
can help insure that the speed and acceleration settings will not cause a servo error during production
cycling.

To get valid readings, you must execute OLRate while the robot is moving.

See Also
OLRate Statement

OLRate Function Example

Function main
 Power High
 Speed 50
 Accel 50, 50
 Xqt 2, MonitorOLRate
 Do
 Jump P0
 Jump P1
 Loop
Fend

Function MonitorOLRate
 Integer i
 Real olRates(4)
 Do
 For i = 1 to 4
 olRates(i) = OLRate(i)
 If olRate(i) > .5 Then
 Print "Warning: OLRate(", i, ") is over .5"
 EndIf
 Next i
 Loop
Fend

F

On Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 365

On Statement

Turns on the specified output and after a specified time can turn it back off.

Syntax
On { bitNumber | outputLabel }, [time], [parallel] [,Forced]

Parameters
bitNumber Integer expression representing which Output to turn On.
outputLabel Output label.
time Optional. Specifies a time interval in seconds for the output to remain On. After the time

interval expires, the Output is turned back off. (Minimum time interval is 0.01 seconds)
parallel Optional. When a timer is set, the parallel parameter may be used to specify when the

next command executes:
0 - immediately after the output is turned on

(The maximum time interval is 10 seconds.)
1 - after the specified time interval elapses. (default value)

Valid range is 0-2147483 seconds in 0.01 second intervals.
Forced Optional. Usually omitted.

Description

On turns On (sets to 1) the specified output.
If the time interval parameter is specified, the output bit specified by outnum is switched On, and then
switched back Off after the time interval elapses.

The parallel parameter settings are applicable when the time interval is specified as follows:
1: Switches the output On, switches it back Off after specified interval elapses, then executes the next
command. (This is also the default value for the parallel parameter. If this parameter is omitted, this is
the same as setting the parameter to 1.)
0: Switches the output On, and simultaneously executes the next command.

Notes
Output bits Configured as remote

If an output bit which was set up as remote is specified, an error will occur. Remote output bits are
turned On or Off automatically according to system status. For more information regarding remote,
refer to the EPSON RC+ User's Guide. The individual bits for the remote connector can be set as
remote or I/O from the EPSON RC+ remote configuration dialog accessible from the setup menu.

Outputs and When an Emergency Stop Occurs
The Controller has a feature which causes all outputs to go off when an E-Stop occurs. This feature is
set or disabled from one of the Option Switches. To configure this go to the Setup | Controller |
Preferences.

Forced Flag
This flag is used to turn On the I/O output at Emergency Stop and Safety Door Open from NoPause
task, NoEmgAbort task (special task using NoPause or NoEmgAbort at Xqt), or background tasks.
Be sure that the I/O outputs change by Emergency Stop and Safety Door Open when designing the
system.

See Also

In, InBCD, MemOff, MemOn, Off, OpBCD, Oport, Out, Wait

> S

On Statement

366 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

On Statement Example
The example shown below shows main task start a background task called iotask. The iotask is a
simple task to turn discrete output bits 1 and 2 on and then off, Wait 10 seconds and then do it again.

Function main
 Xqt iotask
 Go P1
 .
 .
 .
Fend

Function iotask
 Do
 On 1
 On 2
 Off 1
 Off 2
 Wait 10
 Loop
Fend

Other simple examples from the command window are as follows:

> on 1
> off 1, 10 'Turn Output 1 off, wait 10 secs, turn on again
> on 2
> off 2

OnErr Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 367

OnErr Statement

Sets up interrupt branching to cause control to transfer to an error handing subroutine when
an error occurs. Allows users to perform error handling.

Syntax
OnErr GoTo {label | 0}

Parameters
label Statement label to jump to when an error occurs.
0 Parameter used to clear OnErr setting.

Description
OnErr enables user error handling. When an error occurs without OnErr being used, the task is
terminated and the error is displayed. However, when OnErr is used it allows the user to "catch" the
error and go to an error handler to automatically recover from the error. Upon receiving an error, OnErr
branches control to the designated label specified in the EResume instruction. In this way the task is
not terminated and the user is given the capability to automatically handle the error. This makes work
cells run much smoother since potential problems are always handled and recovered from in the same
fashion.

When the OnErr command is specified with the 0 parameter, the current OnErr setting is cleared. (i.e.
After executing OnErr 0, if an error occurs program execution will stop)

See Also
Err, EResume

OnErr Example
The following example shows a simple utility program which checks whether points P0-P399 exist. If
the point does not exist, then a message is printed on the screen to let the user know this point does
not exist. The program uses the CX instruction to test each point for whether or not it has been
defined. When a point is not defined control is transferred to the error handler and a message is
printed on the screen to tell the user which point was undefined.

Function errDemo
 Integer i, errNum

 OnErr GoTo errHandler

 For i = 0 To 399
 temp = CX(P(i))
 Next i
 Exit Function
 '
 '
 '***
 '* Error Handler *
 '***
errHandler:
 errNum = Err
 ' Check if using undefined point
 If errNum = 7007 Then
 Print "Point number P", i, " is undefined!"
 Else
 Print "ERROR: Error number ", errNum, " occurred while"
 Print " trying to process point P", i, " !"
 EndIf
 EResume Next
Fend

S

OpBCD Statement

368 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

OpBCD Statement

Simultaneously sets 8 output lines using BCD format. (Binary Coded Decimal)

Syntax
OpBCD portNumber, outData [,Forced]

Parameters
portNumber Integer expression representing I/O output bytes. Where the portNumber selection

corresponds to the following outputs:
PortNumber Outputs

0 0-7
1 8-15
2 16-23
3 24-31
... ...

outData Integer expression between 0-99 representing the output pattern for the output group

selected by portNumber. The 2nd digit (called the 1's digit) represents the lower 4
outputs in the selected group and the 1st digit (called the 10's digit) represents the
upper 4 outputs in the selected group.

Forced Optional. Usually omitted.
Description

OpBCD simultaneously sets 8 output lines using the BCD format. The standard and expansion user
outputs are broken into groups of 8. The portNumber parameter for the OpBCD instruction defines
which group of 8 outputs to use where portNumber = 0 means outputs 0-7, portNumber = 1 means
outputs 8-15, etc..

Once a port number is selected (i.e. a group of 8 outputs has be selected), a specific output pattern
must be defined. This is done in Binary Coded Decimal format using the outdata parameter. The
outdata parameter may have 1 or 2 digits. (Valid entries range from 0 to 99.) The 1st digit (or 10's
digit) corresponds to the upper 4 outputs of the group of 8 outputs selected by portNumber. The 2nd
digit (or 1's digit) corresponds to the lower 4 outputs of the group of 8 outputs selected by portNumber.

Since valid entries in BCD format range from 0-9 for each digit, every I/O combination cannot be met.
The table below shows some of the possible I/O combinations and their associated outnum values
assuming that portNumber is 0.

Output Settings (Output number)
Outnum Value 7 6 5 4 3 2 1 0

01 Off Off Off Off Off Off Off On
02 Off Off Off Off Off Off On Off
03 Off Off Off Off Off Off On On
08 Off Off Off Off On Off Off Off
09 Off Off Off Off On Off Off On
10 Off Off Off On Off Off Off Off
11 Off Off Off On Off Off Off On
99 On Off Off On On Off Off On

Notice that the Binary Coded Decimal format only allows decimal values to be specified. This means
that through using Binary Coded Decimal format it is impossible to turn on all outputs with the OpBCD
instruction. Please note that the maximum value for either digit for outnum is 9. This means that the
largest value possible to use with OpBCD is 99. In the table above it is easy to see that 99 does not
turn all Outputs on. Instead it turns outputs 0, 3, 4, and 7 On and all the others off.

> S

OpBCD Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 369

Notes
Difference between OpBCD and Out

The OpBCD and Out instructions are very similar in the SPEL+ language. However, there is one major
difference between the two. This difference is shown below:
- The OpBCD instruction uses the Binary Coded Decimal format for specifying an 8 bit value to use

for turning the outputs on or off. Since Binary Coded Decimal format precludes the values of &HA,
&HB, &HC, &HD, &HE or &HF from being used, all combinations for setting the 8 output group
cannot be satisfied.

- The Out instruction works very similarly to the OpBCD instruction except that Out allows the range
for the 8 bit value to use for turning outputs on or off to be between 0-255 (vs. 0-99 for OpBCD). This
allows all possible combinations for the 8 bit output groups to be initiated according to the users
specifications.

Output bits Configured as Remote:
If an output bit which was set up as remote is specified to be turned on by OpBCD, an error will occur.
Remote output bits are turned On or Off automatically according to system status. For more
information regarding remote, refer to the EPSON RC+ User's Guide. The individual bits for the remote
connector can be set as remote or I/O from the EPSON RC+ remote configuration dialog accessible
from the setup menu.

Outputs and When an Emergency Stop Occurs:
The Controller has a feature which causes all outputs to go off when an E-Stop occurs. This feature is
set or disabled from one of the Option Switches. To configure this go to Setup | Controller |
Preferences.

Forced Flag
This flag is used to turn On the I/O output at Emergency Stop and Safety Door Open from NoPause
task, NoEmgAbort task (special task using NoPause or NoEmgAbort at Xqt), or background tasks.
Be sure that the I/O outputs change by Emergency Stop and Safety Door Open when designing the
system.

See Also

In, InBCD, MemOff, MemOn, MemSw, Off, On, Oport, Out, Sw, Wait

OpBCD Function Example
The example shown below shows main task start a background task called iotask. The iotask is a
simple task to flip flop between turning outputs 1 & 2 on and then outputs 0 and 3 on. When 1 & 2 are
turned on, then 0 & 3 are also turned off and vice versa.

Function main
 Xqt 2, iotask
 Go P1
 .
 .
Fend

Function iotask
 Do
 OpBCD 0, 6
 OpBCD 0, 9
 Wait 10
 Loop
Fend

Other simple examples from the command window are as follows:

> OpBCD 1,6 'Turns on Outputs 1 and 2
> OpBCD 2,1 'Turns on Output 8
> OpBCD 3, 91 'Turns on Output 24, 28, and 31

OpenDB Statement

370 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

OpenDB Statement

Opens a database or Excel workbook.

Syntax
OpenDB #fileNumber, { SQL | Accel | Eccel }, [DBserverName As String],

{DBname As String | filename As String }

Parameters
fileNumber Integer number from 501 ~ 508
SQL | Accel | Eccel Selects a database type you want to open from [SQL], [Access], and [Excel].
DBserverName If you select [SQL], the SQL server name is specified.

If omitted, LOCAL server is specified. The SQL server on the network cannot
be specified.
If you select [Access] or [Excel], the SQL server name is not specified.

DBname | filename If you select [SQL] as a database, a database name on the SQL server is
specified.
If you select [Access], Access file name is specified.
If omitted the path of Access file name, it searches in the current folder.
See ChDisk for the details.
If you select [Excel], Excel file name is specified.
You can specify Excel 2007 book or Excel 97-2003 book file as Excel file.
If you omitted Excel file name, it searches in the current folder.
See ChDisk for the details.

Description
Opens the specified database using the specified file number.
The specified database must exists in the disk. Otherwise, it causes an error. The specified file
number can be used to indentify the database while it is open, but cannot be used to refer to the
different database until you close the database with the CloseDB command. The file number is used
with the database operation commands (SelectDB, Print#, Input#, CloseDB).

See Also
SelectDB, CloseDB, Input #, Print #

OpenDB Example

Using the SQL database
The following example uses the SQL server 2000 sample database, Northwind and laods the data
from a table.

Integer count, i, eid
String Lastname$, Firstname$, Title$

OpenDB #501, SQL, "(LOCAL)", "Northwind"
count = SelectDB(#501, "Employees")
For i = 0 To count - 1
 Input #501, eid, Lastname$, Firstname$, Title$
 Print eid, ",", Lastname$, ",", Firstname$, ",", Title$
Next
CloseDB #501

OpenDB Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 371

Using Access database
The following example uses Microsoft Access 2007 sample database “Students” and loads the data
from a table.

Integer count, i, eid
String Lastname$, Firstname$, dummy$

OpenDB #502, Access, "c:\MyDataBase\Students.accdb"
count = SelectDB(#502, "Students")
For i = 0 To count - 1
 Input #502, eid, dummy$, Lastname$, Firstname$
 Print eid, ",", Lastname$, ",", Firstname$

Next
CloseDB #502

Information:

By installing AccessRuntime, you can use Access even if the official version of Microsoft Access is
not installed.
AccessRuntime is available on Microsoft download center.

Using Excel workbook
The following example uses Microsoft Excel workbook “StudentsList“ and loads the data from a sheet.

 Integer count, i, eid
 String Lastname$, Firstname$

 OpenDB #503, Excel, "c:\MyDataBase\Students.xls"
 count = SelectDB(#503, "[Students$]")
 For i = 0 To count - 1
 Input #503, eid, Lastname$, Firstname$
 Print eid, ",", Lastname$, ",", Firstname$
 Next
 CloseDB #503

OpenCom Statement

372 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

OpenCom Statement

Open an RS-232 communication port.

Syntax

OpenCom #portNumber

Parameters

portNumber Integer expression for RS-232C port number to open.
The range of port number is:
 Real Part 1 ~ 8
 Windows Part 1001 ~ 1002

Description
You need to connect the specified RS-232C port to the controller.

See Also
ChkCom, CloseCom, SetCom

OpenCom Statement Example

Integer PortNo

PortNo = 1001
OpenCom #PortNo
Print #PortNo, "Data from COM1"
CloseCom #PortNo

S

OpenCom Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 373

OpenCom Function

Acquires the task number that executes OpenCom.

Syntax

OpenCom (portNumber)

Parameters

portNumber Integer expression for RS-232C port number.
The range of port number is:
 Real Part 1 ~ 8
 Windows Part 1001 ~ 1002

Description
Acquires the task number that executes OpenCom.

See Also
ChkCom, CloseCom, OpenCom, SetCom

OpenCom Function Example

Print OpenCom(PortNo)

F

OpenNet Statement

374 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

OpenNet Statement

Open a TCP/IP network port.

Syntax
OpenNet #portNumber As { Client | Server }

Parameters
portNumber Integer expression for TCP/IP port number to open. Range is 201 - 216.

Description
OpenNet opens a TCP/IP port for communication with another computer on the network.

One system should open as Server and the other as Client. It does not matter which one executes
first.

See Also
ChkNet, CloseNet, SetNet

OpenNet Statement Example
For this example, two controllers have their TCP/IP settings configured as follows:

Controller #1:
Port: #201
Host Name: 192.168.0.2
TCP/IP Port: 1000

Function tcpip
 OpenNet #201 As Server
 WaitNet #201
 Print #201, "Data from host 1"
Fend

Controller #2:
Port: #201
Host Name: 192.168.0.1
TCP/IP Port: 1000

Function tcpip
 String data$
 OpenNet #201 As Client
 WaitNet #201
 Input #201, data$
 Print "received '", data$, "' from host 1"
Fend

S

OpenNet Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 375

OpenNet Function

Acquires the task number that executes OpenNet.

Syntax

OpenNet (portNumber)

Parameters

portNumber Integer expression for TCP/IP port number. Range is 201 - 216.

Description

Acquires the task number that executes OpenNet.

See Also
ChkNet, CloseNet, OpenNet, SetNet

OpenNet Function Example

Print OpenNet(PortNo)

F

Oport Function

376 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Oport Function

Returns the state of the specified output.

Syntax
Oport(outnum)

Parameters
outnum Integer expression representing I/O output bits.

Return Values
Returns the specified output bit status as either a 0 or 1.

0: Off status
1: On status

Description
Oport provides a status check for the outputs. It functions much in the same way as the Sw instruction
does for inputs. Oport is most commonly used to check the status of one of the outputs which could be
connected to a feeder, conveyor, gripper solenoid, or a host of other devices which works via discrete
I/O. Obviously the output checked with the Oport instruction has 2 states (1 or 0). These indicate
whether the specified output is On or Off.

Notes
Difference between Oport and Sw

It is very important for the user to understand the difference between the Oport and Sw instructions.
Both instructions are used to get the status of I/O. However, the type of I/O is different between the two.
The Sw instruction works inputs. The Oport instruction works with the standard and expansion
hardware outputs. These hardware ports are discrete outputs which interact with devices external to
the controller.

See Also

In, InBCD, MemIn, MemOn, MemOff, MemOut, MemSw, Off, On, OpBCD, Out, Sw, Wait

F

Oport Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 377

OPort Function Example
The example shown below turns on output 5, then checks to make sure it is on before continuing.

Function main
 TMOut 10
 OnErr errchk
 Integer errnum
 On 5 'Turn on output 5
 Wait Oport(5)
 Call mkpart1
 Exit Function

errchk:
 errnum = Err(0)
 If errnum = 94 Then
 Print "TIME Out Error Occurred during period"
 Print "waiting for Oport to come on. Check"
 Print "Output #5 for proper operation. Then"
 Print "restart this program."
 Else
 Print "ERROR number ", errnum, "Occurred"
 Print "Program stopped due to errors!"
 EndIf
 Exit Function
Fend

Other simple examples are as follows from the command window:

> On 1
> Print Oport(1)
1
> Off 1
> Print Oport(1)
0
>

Or Operator

378 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Or Operator

Performs a bitwise or logical OR operation on two operands.

Syntax
expr1 Or expr2

Parameters
expr1, exrp2 Integer or Boolean expressions.

Return Values
Bitwise OR value of the operands if the expressions are integers. Logical OR if the expressions are
Boolean.

Description
For integer expressions, the Or operator performs the bitwise OR operation on the values of the
operands. Each bit of the result is 1 if one or both of the corresponding bits of the two operands is 1.
For Boolean expressions, the result is True if either of the expressions evaluates to True.

See Also
And, LShift, Mod, Not, RShift, Xor

Or Operator Example
Here is an example of a bitwise OR.

>print 1 or 2
 3

Here is an example of a logical OR.

If a = 1 Or b = 2 Then

c = 3
EndIf

Out Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 379

Out Statement

Simultaneously sets 8 output bits.

Syntax
Out portNumber, outData [,Forced]

Parameters
portNumber Integer expression representing I/O output bytes. The portnum selection corresponds to

the following outputs:
Portnum Outputs

0 0-7
1 8-15
... ...

outData Integer number between 0-255 representing the output pattern for the output group

selected by portNumber. If represented in hexadecimal form the range is from &H0 to
&HFF. The lower digit represents the least significant digits (or the 1st 4 outputs) and the
upper digit represents the most significant digits (or the 2nd 4 outputs).

Forced Optional. Usually omitted.

Description
Out simultaneously sets 8 output lines using the combination of the portNumber and outdata values
specified by the user to determine which outputs will be set. The portNumber parameter defines which
group of 8 outputs to use where portNumber = 0 means outputs 0-7, portNumber = 1 means outputs 8-
15, etc..

Once a portnum is selected (i.e. a group of 8 outputs has be selected), a specific output pattern must
be defined. This is done using the outData parameter. The outData parameter may have a value
between 0-255 and may be represented in Hexadecimal or Integer format. (i.e. &H0-&HFF or 0-
255)

The table below shows some of the possible I/O combinations and their associated outData values
assuming that portNumber is 0, and 1 accordingly.

Output Settings When portNumber=0 (Output number)
OutData Value 7 6 5 4 3 2 1 0

01 Off Off Off Off Off Off Off On
02 Off Off Off Off Off Off On Off
03 Off Off Off Off Off Off On On
08 Off Off Off Off On Off Off Off
09 Off Off Off Off On Off Off On
10 Off Off Off On Off Off Off Off
11 Off Off Off On Off Off Off On
99 Off On On Off Off Off On On
255 On On On On On On On On

> S

Out Statement

380 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Output Settings When portNumber=1 (Output number)
OutData Value 15 14 13 12 11 10 9 8

01 Off Off Off Off Off Off Off On
02 Off Off Off Off Off Off On Off
03 Off Off Off Off Off Off On On
08 Off Off Off Off On Off Off Off
09 Off Off Off Off On Off Off On
10 Off Off Off On Off Off Off Off
11 Off Off Off On Off Off Off On
99 Off On On Off Off Off On On
255 On On On On On On On On

Notes
Difference between OpBCD and Out

The Out and OpBCD instructions are very similar in the SPEL+ language. However, there is one major
difference between the two. This difference is shown below:
- The OpBCD instruction uses the Binary Coded Decimal format for specifying 8 bit value to use for
turning the outputs on or off. Since Binary Coded Decimal format precludes the values of &HA, &HB,
&HC, &HD, &HE or &HF from being used, all combinations for setting the 8 output group cannot be
satisfied.

- The Out instruction works very similarly to the OpBCD instruction except that Out allows the range
for the 8 bit value to use for turning outputs on or off to be between 0-255 (vs. 0-99 for OpBCD). This
allows all possible combinations for the 8 bit output groups to be initiated according to the users
specifications.

Forced Flag
This flag is used to turn On the I/O output at Emergency Stop and Safety Door Open from NoPause
task, NoEmgAbort task (special task using NoPause or NoEmgAbort at Xqt), or background tasks.
Be sure that the I/O outputs change by Emergency Stop and Safety Door Open when designing the
system.

See Also

In, InBCD, MemOff, MemOn, MemOut, MemSw, Off, On, Oport, Sw, Wait

Out Example

The example shown below shows main task start a background task called iotask. The iotask is a
simple task to flip flop between turning output bits 0-3 On and then Off. The Out instruction makes this
possible using only 1 command rather than turning each output On and Off individually.

Function main

 Xqt iotask
 Do
 Go P1
 Go P2
 Loop
Fend

Function iotask

 Do
 Out 0, &H0F
 Out 0, &H00
 Wait 10
 Loop
Fend

Out Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 381

Other simple examples from the command window are as follows:

> Out 1,6 'Turns on Outputs 9 & 10
> Out 2,1 'Turns on Output 8
> Out 3,91 'Turns on Outputs 24, 25, 27, 28, and 30

Out Function

382 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Out Function

Returns the status of one byte of outputs.

Syntax
Out(portNumber)

Parameters
portNumber Integer expression representing I/O output bytes. Where the portNumber

selection corresponds to the following outputs:
Portnum Outputs

0 0-7
1 8-15
... ...

Return Values

The output status 8 bit value for the specified port.

See Also
Out Statement

Out Function Example

Print Out(0)

F

OutReal Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 383

OutReal Statement

The output data of real value is the floating-point data (IEEE754 compliant) of 32 bits.
Set the status of output port 2 word (32 bits).

Syntax
OutReal WordPortNumber, OutputData [,Forced]

Parameters
WordPortNumber Integer expression representing I/O output words.
OutputData Specifies the integer expression representing the output data (Real type value).
Forced Optional. Normally omitted.

Description
Outputs the specified IEEE754 Real value to the output word port specified by word port number and
the following output word port.
Output word lable can be used for the word port number parameter.

Note
Forced Flag

This flag is used to turn On the I/O output at Emergency Stop and Safety Door Open from NoPause
task or NoEmgAbort task (special task initiated by specidying NoPause or NoEmgAbort at Xqt).

Carefully design the system because the I/O output changes by Emergency Stop and Safety Door
Open.

See Also
In, InW, InBCD, InReal, Out, OutW, OpBCD, OutReal Function

OutReal Example

OutReal 0, 2.543

OutReal Function

384 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

OutReal Function

Retieve the output port status as the 32 bits floating-point data (IEEE754 compliant).

Syntax
OutReal (WordPortNumber)

Parameter
WordPortNumber Integer expression representing I/O output words.

Return Values
Returns the specified output port status in 32 bits floating-point data (IEEE754 compliant).

See Also
In, InW, InBCD, InReal, Out, OutW, OpBCD, OutReal

OutReal Function Example

Real rdata01

rdata01 = OutReal(0)

F

OutW Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 385

OutW Statement

Simultaneously sets 16 output bits.

Syntax
OutW wordPortNum, outputData [,Forced]

Parameters
wordPortNum Integer expression representing I/O output words.
outputData Specifies output data (integers from 0 to 65535) using an expression or numeric

value.
Forced Optional. Usually omitted.

Description
Changes the current status of user I/O output port group specified by the word port number to the
specified output data.

Notes
Forced Flag

This flag is used to turn On the I/O output at Emergency Stop and Safety Door Open from NoPause
task, NoEmgAbort task (special task using NoPause or NoEmgAbort at Xqt), or background tasks.
Be sure that the I/O outputs change by Emergency Stop and Safety Door Open when designing the
system.

See Also
In, InW, Out

OutW Example

OutW 0, 25

OutW Function

386 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

OutW Function

Returns the status of one word (2 bytes) of outputs.

Syntax
OutW(wordPortNum)

Parameters
wordPortNum Integer expression representing I/O output words.

Return Values
The output status 16 bit value for the specified port.

See Also
OutW Statement

OutW Function Example

OutW 0, &H1010

F

PAgl Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 387

PAgl Function

Return a joint value from a specified point.

Syntax
PAgl (point, jointNumber)

Parameters
point Point expression.
jointNumber Specifies the joint number (integer from 1 to 9) using an expression or numeric

value. The additional S axis is 8 and T axis is 9.

Return Values
Returns the calculated joint position (real value, deg for rotary joint, mm for prismatic joint).

See Also
Agl, CX, CY, CZ, CU, CV, CW, CR, CS, CT, PPls

PAgl Function Example

Real joint1

joint1 = PAgl(P10, 1)

F

Pallet Statement

388 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Pallet Statement

Defines and displays pallets.

Syntax
Pallet [Outside,] [palletNumber, Pi, Pj, Pk [,Pm], columns, rows]

Parameters
Outside Optional. Allow row and column indexes outside of the range of the specified

rows and columns.
palletNumber Pallet number represented by an integer number from 0 to 15.
Pi, Pj, Pk Point variables which define standard 3 point pallet position.
Pm Optional. Point variable which is used with Pi, Pj and Pk to define 4 point pallet.
columns Integer expression representing the number of points on the Pi-to-Pj side of the

pallet. Range is from 1-32767.
rows Integer expression representing the number of points on the Pi-to-Pk side of the

pallet. Range is from 1-32767.

Return Values
Displays all defined pallets when parameters are omitted.

Description
Defines a pallet by teaching the robot, as a minimum, points Pi, Pj and Pk and by specifying the
number of points from Pi to Pj and from Pi to Pk.

If the pallet is a well ordered rectangular shape, only 3 of the 4 corner points need to be specified.
However, in most situations it is better to use 4 corner points for defining a pallet.

To define a pallet, first teach the robot either 3 or 4 corner points, then define the pallet as follows:
A pallet defined with 4 points: P1, P2, P3 and P4 is shown below. There are 3 positions from P1-P2
and 4 positions from P1-P3. This makes a pallet which has 12 positions total. To define this pallet the
syntax is as follows:

Points that represent divisions of a pallet are automatically assigned division numbers, which, in this
example, begin at P1. These division numbers are also required by the Pallet Function.

When Outside is specified, row and column indexes outside of the range of rows and columns can be
specified.

Pallet 1, P1, P2, P3, P4, 3, 4

P1

P3

P2

1 2 3

7 8 9

4 5 6

10 11 12

P4

> S

Pallet Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 389

For example:

Pallet Outside 1, P1, P2, P3, 4, 5
Jump Pallet(1, -2, 10)

-2,10

 1,5 2,5 3,5 4,5

 1,4 2,4 3,4 4,4

 1,3 2,3 3,3 4,3

 1,2 2,2 3,2 4,2

Sample

 1,6 4,6

-1,4 1,4 2,4 3,4 4,4 6,4

 1,3 2,3 3,3 4,3

 1,2 2,2 3,2 4,2

-1,1 1,1 2,1 3,1 4,1 6,1

 1,-1 4,-1

Notes
The Maximum Pallet Size

The total number of points defined by a specific pallet must be less than 32,767.

Incorrect Pallet Shape Definitions
Be aware that incorrect order of points or incorrect number of divisions between points will result in an
incorrect pallet shape definition.

Pallet Plane Definition
The pallet plane is defined by the Z axis coordinate values of the 3 corner points of the pallet.
Therefore, a vertical pallet could also be defined.

Pallet Statement

390 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Pallet Definition for a Single Row Pallet
A single row pallet can be defined with a 3 point Pallet statement or command. Simply teach a point at
each end and define as follows: Specify 1 as the number of divisions between the same point.

> Pallet 2, P20, P21, P20, 5, 1 'Defines a 5×1 pallet
Additional Axes Coordinate Values

When the coordinate values of the 3 (or 4) points specified with the Pallet statement include the
additional ST axis coordinate values, Pallet includes these additional coordinates in the position
calcuations. In the case where the additional axis is used as the running axis, the motion of the
running axis is considered and calculated with the Pallet definition. You need to define a pallet larger
than the robot motion range considering the position of the running axis. Even if you define additional
axes that are not affected by the pallet definition, be careful of the positions of additional axes when
defining the pallet.

See Also

Pallet Function

Pallet Statement Example
The following instruction from the command window sets the pallet defined by P1, P2 and P3 points,
and divides the pallet plane into 15 equally distributed pallet point positions, with the pallet point
number 1, the pallet point number 2 and the pallet point number 3 sitting along the P1-to-P2 side.

> pallet 1, P1, P2, P3, 3, 5
> jump pallet(1, 2) 'Jump to position on pallet

The resulting Pallet is shown below:

 P3

13 14 15

10 11 12

7 8 9

4 5 6

1 2 3
 P1 P2

Pallet Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 391

Pallet Function

Specifies a position in a previously defined pallet.

Syntax
(1) Pallet (palletNumber, palletPosition)
(2) Pallet (palletNumber, column, row)

Parameters
palletNumber Pallet number represented by integer expression from 0 to 15.
PalletPosition The pallet position represented by an integer from 1 to 32767.
column The pallet column represented by an integer expression from −32768 to 32767.
row The pallet row represented by an integer expression from −32768 to 32767.

Description
Pallet returns a position in a pallet which was previously defined by the Pallet statement. Use this
function with motion commands such as Go and Jump to cause the arm to move to the specified pallet
position.

The pallet position number can be defined arithmetically or simply by using an integer.

Notes
Pallet Motion of 6-axis Robot

When the 6-axis robot moves to a point calculated by such as pallet or relative offsets, the wrist part
may rotate to an unintended direction. The point calculation above does not depend on robot models
and results in motion without converting the required point flag.
LJM function prevents the unintended wrist rotation.

Pallet Motion of RS series
In the same way as the 6-axis, when the RS series robot moves to a point calculated by such as pallet
or relative offsets, Arm #1 may rotate to an unintended direction. LJM function can be used to convert
the point flag to prevent the unintended rotation of Arm #1.
In addition, the U axis of RS series may go out of the motion range when the orientation flag is
converted, and it causes an error.
To prevent this error, LJM function adjusts the U axis target angle to inside the motion range. It is
available when the orientation flag “2” is selected.

Additional Axes Coordinate Values
When the coordinate values of the 3 (or 4) points specified with the Pallet statement include the
additional ST axis coordinate values, Pallet includes these additional coordinates in the position
calcuations. In the case where the additional axis is used as the running axis, the motion of the
running axis is considered and calculated with the Pallet definition. You need to define a pallet larger
than the robot motion range considering the position of the running axis. Even if you define additional
axes that are not affected by the pallet definition, be careful of the positions of additional axes when
defining the pallet.

See Also

LJM, Pallet

F

Pallet Function

392 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Pallet Function Example

The following program transfers parts from pallet 1 to pallet 2.

Function main
 Integer index
 Pallet 1, P1, P2, P3, 3, 5 'Define pallet 1
 Pallet 2, P12, P13, P11, 5, 3 'Define pallet 2
 For index = 1 To 15
 Jump Pallet(1, index) 'Move to point index on pallet 1
 On 1 'Hold the work piece
 Wait 0.5
 Jump Pallet(2, index) 'Move to point index on pallet 2
 Off 1 'Release the work piece
 Wait 0.5
 Next I
Fend

Function main
 Integer i, j

 P0 = XY(300, 300, 300, 90, 0, 180)
 P1 = XY(200, 280, 150, 90, 0, 180)
 P2 = XY(200, 330, 150, 90, 0, 180)
 P3 = XY(-200, 280, 150, 90, 0, 180)

 Pallet 1, P1, P2, P3, 10, 10

 Motor On
 Power High
 Speed 50; Accel 50, 50
 SpeedS 1000; AccelS 5000

 Go P0
 P11 = P0 -TLZ(50)

 For i = 1 To 10
 For j = 1 To 10
 'Specify points
 P10 = P11 'Depart point
 P12 = Pallet(1, i, j) 'Target point
 P11 = P12 -TLZ(50) 'Start approach point
 'Converting each point to LJM
 P10 = LJM(P10)
 P11 = LJM(P11, P10)
 P12 = LJM(P12, P11)
 'Execute motion
 Jump3 P10, P11, P12 C0
 Next
 Next
Fend

Pallet Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 393

Function main2
 P0 = XY(300, 300, 300, 90, 0, 180)
 P1 = XY(400, 0, 150, 90, 0, 180)
 P2 = XY(400, 500, 150, 90, 0, 180)
 P3 = XY(-400, 0, 150, 90, 0, 180)
 Pallet 1, P1, P2, P3, 10, 10

 Motor On
 Power High
 Speed 50; Accel 50, 50
 SpeedS 1000; AccelS 5000

 Go P0

 Do
 ' Specify points
 P10 = Here -TLZ(50) 'Depart point
 P12 = Pallet(1, Int(Rnd(9)) + 1, Int(Rnd(9)) + 1) 'Target point
 P11 = P12 -TLZ(50) 'Start approach point

 If TargetOK(P11) And TargetOK(P12) Then 'Point chaeck
 'Converting each point to LJM
 P10 = LJM(P10)
 P11 = LJM(P11, P10)
 P12 = LJM(P12, P11)
 'Execute motion
 Jump3 P10, P11, P12 C0
 EndIf
 Loop
Fend

ParseStr Statement / Function

394 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

ParseStr Statement / Function

Parse a string and return array of tokens.

Syntax
ParseStr inputString$, tokens$(), delimiters$
numTokens = ParseStr(inputString$, tokens$(), delimiters$)

Parameters
inputString$ String expression to be parsed.
tokens$() Output array of strings containing the tokens.

The array declared by ByRef cannot be specified.
delimiters$ String expression containing one or more token delimiters.

Return Values
When used as a function, the number of tokens parsed is returned.

See Also
Redim, String

ParseStr Statement Example

String toks$(0)
Integer i

ParseStr "1 2 3 4", toks$(), " "

For i = 0 To UBound(toks)
 Print "token ", i, " = ", toks$(i)
Next i

S F

Pass Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 395

Pass Statement

Executes simultaneous four joint Point to Point motion, passing near but not through
the specified points.

Syntax
Pass point [, {On | Off | MemOn | MemOff} bitNumber [, point ...]] [LJM [orientationFlag]]

Parameters
point Pnumber or P(expr) or point label.

When the point data is continued and in the ascending order or the descending
order, specify two point numbers binding with colon as P(1:5).

bitNumber The I/O output bit or memory I/O bit to turn on or off. Integer number between 0 -
511 or output label.

LJM Optional. Convert the depart point, approach point, and target destination using
LJM function.

orientationFlag Optional. Specifies a parameter that selects an orientation flag for LJM function.

Description
Pass moves the robot arm near but not through the specified point series.

To specify a point series, use points (P0,P1, ...) with commas between points.

To turn output bits on or off while executing motion, insert an On or Off command delimited with
commas between points. The On or Off is executed before the robot reaches the point immediately
preceding the On or Off.

If Pass is immediately followed by another Pass, control passes to the following Pass without the
robot stopping at the preceding Pass final specified point.

If Pass is immediately followed by a motion command other than another Pass, the robot stops at the
preceding Pass final specified point, but Fine positioning will not be executed.

If Pass is immediately followed by a command, statement, or function other than a motion command,
the immediately following command, statement or function will be executed prior to the robot reaching
the final point of the preceding Pass.

If Fine positioning at the target position is desired, follow the Pass with a Go, specifying the target
position as shown in the following example:

Pass P5; Go P5; On 1; Move P10

The larger the acceleration / deceleration values, the nearer the arm moves toward the specified point.
The Pass instruction can be used such that the robot arm avoids obstacles.

> S

Pass Statement

396 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

With LJM parameter, the program using LJM function can be more simple.
For example, the following four-line program

P11 = LJM(P1, Here, 1)
P12 = LJM(P2, P11, 1)
P13 = LJM(P3, P12, 1)
Pass P11, P12, P13

can be… one-line program.
 Pass P1, P2, P3 LJM 1
LJM parameter is available for 6-axis and RS series robots.
When using orientationFlag with the default value, it can be omitted.
 Pass P1, P2, P3 LJM

See Also
Accel, Go, Jump, Speed

Pass Example
The example shows the robot arm manipulation by Pass instruction:

Function main
 Jump P1
 Pass P2 'Move the arm toward P2, and perform the next instruction before reaching P2.
 On 2
 Pass P3
 Pass P4
 Off 0
 Pass P5
Fend

Pause Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 397

Pause Statement

Temporarily stops program execution all tasks for which pause is enabled.

Syntax
Pause

Description
When the Pause is executed, program execution for all tasks with pause enabled (tasks that do not
use NoPause or NoEmgAbort in Xqt command) is suspended. Also, if any task is executing a motion
statement, it will be paused even if pause is not enabled for that task.
However, Pause cannot stop the backfround tasks.

Notes
QP and its Affect on Pause

The QP instruction is used to cause the arm to stop immediately upon Pause or to complete the
current move and then Pause the program. See the QP instruction help for more information.

Pause Statement Example

The example below shows the use of the Pause instruction to temporarily stop execution. The task
executes program statements until the line containing the Pause command. At that point the task is
paused. The user can then click the Run Window Continue Button to resume execution.

Function main

 Xqt monitor
 Go P1
 On 1
 Jump P2
 Off 1
 Pause 'Suspend program execution
 Go P40
 Jump P50
Fend

S

PauseOn Function

398 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

PauseOn Function

Returns the pause status.

Syntax
PauseOn

Return Values
True if the status is pause, otherwise False.

Description
PuseOn function is used only for NoPause, NoEmgAbort task (special task using NoPause or
NoEmgAbort at Xqt), and background tasks.

See Also
ErrorOn, EstopOn, SafetyOn, Xqt

PauseOn Function Example
The following example shows a program that monitors the controller pause and switches the I/O
On/Off when pause occurs. However, when the status changes to pause by Safety Door open, the I/O
does not turn On/Off.

Function main

 Xqt PauseMonitor, NoPause
 :
 :
Fend

Function PauseMonitor
 Boolean IsPause
 IsPause = False
 Do
 Wait 0.1
 If SafetyOn = On Then
 If IsPause = False Then
 Print "Saftey On"
 IsPause = True
 EndIf
 ElseIf PauseOn = On Then
 If IsPause = False Then
 Print "InPause"
 If SafetyOn = Off Then
 Off 10
 On 12
 EndIf
 IsPause = True
 EndIf
 Else
 If IsPause = True Then
 Print "OutPause"
 On 10
 Off 12
 IsPause = False
 EndIf
 EndIf
 Loop

Fend

F

PDef Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 399

PDef Function

Returns the definition status of a specified point.

Syntax
PDef (point)

Parameters
point An integer value or Pnumber or P(expr) or point label.

Cautions for compatibility
No variables can be specified for point parameter
To use variables, write PDef(P(varName)).

Return Values

True if the point is defined, otherwise False.

See Also
Here Statement, Pdel

PDef Function Example

If Not PDef(1) Then
 Here P1
Endif
Integer i
For i = 0 to 10
 If PDef (P(i)) Then
 Print “P(“;i;”) is defined”
 End If
Next

F

PDel Statement

400 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

PDel Statement

Deletes specified position data.

Syntax
PDel firstPointNum , [lastPointNum]

Parameters
firstPointNum The first point number in a sequence of points to delete. firstPointNum must be

an integer.
lastPointNum The last point number in a sequence of points to delete. lastPointNum must be

an integer.

Description
Deletes specified position data from the controller's point memory for the current robot. Deletes all
position data from firstPointNum up to and including lastPointNum. To prevent Error 2 from occurring,
firstPointNum must be less than lastPointNum.

PDel Example

> p1=10,300,-10,0/L
> p2=0,300,-40,0
> p10=-50,350,0,0
> pdel 1,2 'Delete points 1 and 2
> plist
P10 = -50.000, 350.000, 0.000, 0.000 /R /0
> pdel 50 'Delete point 50
> pdel 100,200 'Delete from point 100 to point 200
>

>

PG_FastStop Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 401

PG_FastStop Statement

Stop the PG axes immediately.

Syntax
PG_FastStop

Description
The PG_FastStop stops the current PG robot immediately with no deceleration.
To stop normally, use the PG_SlowStop statement.

See Also
PG_Scan, PG_SlowStop

PG_FastStop Example

The following program moves the PG axis for 10 seconds and stops it.

Function main
 Motor On
 PG_Scan 0
 Wait 10
 PG_FastStop ' Immediately stops the continuous motion
Fend

S >

PG_LSpeed Statement

402 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

PG_LSpeed Statement

Sets the pulse speed of the time when the PG axis starts accelerating and
fishishes decelating.

Syntax
PG_LSpeed accelSpeed As Integer, [decelSpeed As Integer],

Parameters
speed Integer expression that contains the pulse speed (1 ~ 32767 pulse/second)
decalSpeed Integer expression that contains the pulse speed (1 ~ 32767 pulse/second)

Description
PG_LSpeed specifies the pulse speed when the PG axis starts accelerating and finishes decelerating.
It is useful when setting the initial/ending speed of a stepping motor to higher within the range of max
starting frequency to offer the best performance of motor, or setting the speed to lower to prevent the
stepping motor from stepping out. The default is 300 pulse/second and do not change to use.

Time

Speed

Start of acceleration
Finish of deceleration

If omitted the finishing speed of deceleration, the speed set value is used.

The PG_LSpeed value initializes to the default values when any one of the following conditions
occurs:

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

See Also
PG_LSpeed function

PG_LSpeed Example
You can use the PG_LSpeed in the command window or in the program. The followinf exambles show
the both cases.

Function pglspeedtst
 Motor On
 Power High

Speed 30;Accel 30,30
PG_LSpeed 1000
Go P0

Fend

To set the PG_LSpeed value from the command window.

> PG_LSpeed 1000,1100
>

S

PG_LSpeed Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 403

PG_LSpeed Function

Returns the pulse speed at the time when the current PG axis starts accelerating
and finishes decelerating.

Syntax
PG_LSpeed [(paramNumber)]

Parameters
paramNumber One of the numbers below that specifies the number of set value.
 If omitted, 1 is used.
 1: Pulse speed at acceleration starts
 2: Pulse speed at deceleration finishes

Return Values
Integer value from 1 ~ 32767 in units of pulse/second.

See Also
PG_LSpeed

PG_LSpeed function Example

Integer savPGLSpeed

savPGLSpeed = PG_LSpeed(1)

F

PG_Scan Statement

404 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

PG_Scan Statement

Starts the continuous spinning motion of the PG robot axes.

Syntax
PG_Scan direction As Integer

Parameters
direction Spinning direction
 0: + (CW) direction
 1: − (CCW) direcion

Description
The PG_Scan starts the continuous spinning motion of the current PG robot.
To execute the continuous spinning motion, you need to enable the PG parameter continuous spinning
by the robot configuration.
When the program execution task is completed, the continuous spinning stops.

See Also
PG_Scan, PG_FastStop

PG_Scan Example

The following example spins the PG axis for 10 seconds and stops it suddenly.

Function main
 Motor On
 Power High
 Speed 10; Accel 10,10
 PG_Scan 0
 Wait 10
 PG_SlowStop
Fend

S >

PG_SlowStop Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 405

PG_SlowStop Statement

Stops slowly the PG axis spinning continuously.

Syntax
PG_SlowStop

Description
PG_SlowStop decelates the continuous spinning motion of the current PG robot and bring it to a stop.

See Also
PG_Scan, PG_FastStop

PG_SlowStop Example

The following example spins the PG axis for 10 seconds and stop it suddenly.

Function main
 Motor On
 PG_Scan 0
 Wait 10
 PG_SlowStop ' Stops suddenly the continuous spinning motion
Fend

S >

PLabel Statement

406 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

PLabel Statement

Defines a label for a specified point.

Syntax
PLabel pointNumber, newLabel

Parameters
pointNumber An integer expression representing a point number.
newLabel A string expression representing the label to use for the specified point.

See Also
PDef Function, PLabel Function, PNumber Function

PLabel Statement Example

PLabel 1, "pick"

> S

PLabel$ Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 407

PLabel$ Function

Returns the point label associated with a point number.

Syntax
PLabel$(point)

Parameter
point An integer value or Pnumber or P(expr) or point label.

Cautions for compatibility
No variables can be specified for point parameter
To use variables, write PLabel$(P(varName)).

See Also

PDef Function, PLabel Statement, PNumber Function

PLabel$ Function Example

Print PLabel$(1)
Print PLabel$(P(i))

F

Plane Statement

408 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Plane Statement

Specifies and displays the approach check plane.

Syntax
(1) Plane PlaneNum, [robotNumber], pCoordinateData
(2) Plane PlaneNum, [robotNumber], pOrigin, pXaxis, pYaxis
(3) Plane PlaneNum, [robotNumber]
(4) Plane

Parameters
PlaneNum Integer value representing the plane number from 1 to 15.
robotNumber Integer values representing the robot number

If omitted, the current robot is used.
pCoordinateData Point data representing the coordinate data of the approach check plane.
pOrigin Integer expression representing the origin point using the robot coordinate

system.
pXaxis Integer expression representing a point along the X axis using the robot

coordinate system if X alignment is specified.
pYaxis Integer expression representing a point along the Y axis using the robot

coordinate system if Y alignment is specified.
Return Values

When using syntax (3), the setting of the specified plane is displayed.
When using syntax (4), the settings of all plane numbers for the current robot are displayed.

Description

Plane is used to set the approach check plane. The approach check plane is for checking whether the
robot end effector is in one of the two areas devided by the specified approach check plane. The
position of the end effector is calculated by the current tool. The approach check plane is set using the
XY plane of the base coordinate system. The approach check plane detects the end effector when it
approaches the area on the + Z side of the the approach check plane.

When the approach check plane is used, the system detects approaches in any motor power status
during the controller is ON.

The details of each syntax are as follows.

(1) Specifies a coordinate system to create the approach check plane using the point data
representing the translation and rotation based on the base coordinate system, and sets the
approach check plane.

Example:
Plane 1, XY(x, y, z, u, v, w)
Plane 1, P1

(2) Defines the approach check plane (XP coordinate) by specifying the orgin point, point along the X
axis, and point along the Y axis. Uses the X, Y, Z coordinates and ignores U, V, W coordinates.
Calculates the Z axis in righty and sets the approach checking direction.

Example:
Plane 1, P1, P2, P3

(3) Displays the setting of the specified approach check plane.

(4) Displays all the approach check plane.

> S

Plane Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 409

You can use the GetRobotInsidePlane function and the InsidePlane function to get the result of the
approach check plane. The GetRobotInsidePlane function can be used as the condition for a Wait
command. You can provide the detection result to the I/O by setting the remote output setting.

To use one plane with more than one robot, you need to define planes from each robot coordinate
system.

Robot 1 Robot 2

Coordinate system of
approach check plane

Approach check plane

Notes
Tool Selection

The approach check is executed for the current tool. When you change the tool, the approach check
may display the tool approach from inside to outside of the plane or the other way although the robot is
not operating.

Additional axis
For the robot which has the additional ST axes (including the running axis), the approach check plane
to set doesn’t depend on the position of an additional axis, but is based on the robot base coordinate
system.

See Also

Box, GetRobotInsidePlane, InsidePlane, PlaneClr, PlaneDef

Tip
Set Plane statement from Robot Manager

EPSON RC+ 6.0 has a point and click dialog box for defining the approach check plane. The simplest
method to set the Plane values is by using the Plane page on the Robot Manager.

Plane Statement Example

These are examples to set the approach check plane using Plane statement.

Check direction is the lower side of the horizontal plane that is −20 mm in Z axis direction in the robot
coordinate system:

> plane 1, xy(100, 200, -20, 90, 0, 180)

Approach check plane is the XY coordinate created by moving 50 mm in X axis and 200 mm in Y axis,
rotating 45 degrees around Y axis：

> plane 2, xy(50, 200, 0, 0, 45, 0)

Set the approach check plane using the tool coordinate system of the robot. (6-axis robot)

> plane 3, here

Plane Function

410 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Plane Function

Returns the specified approach check plane.

Syntax
Plane(PlaneNum, [robotNumber])

Parameters
PlaneNum Integer expression representing the plane number from 1 to 15.
robotNumber Integer values representing the robot number

If omitted, the current robot is used.

Return Values
Returns coordinate data for specified approach check plane.

See Also
GetRobotInsidePlane, InsidePlane, Plane, PlaneClr, PlaneDef

Plane Function Example

P1 = Plane(1)

F

PlaneClr Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 411

PlaneClr Statement

Clears (undefines) a Plane definition.

Syntax
PlaneClr PlaneNum, [robotNumber]

Parameters
PlaneNum Integer expression representing the plane number from 1 to 15.
robotNumber Integer value representing the robot number

If omitted, the current robot is used.

See Also
GetRobotInsidePlane, InsidePlane, Plane, PlaneDef

PlaneClr Statement Example

PlaneClr 1

> S

PlaneDef Function

412 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

PlaneDef Function

Returns the setting of the approach check plane.

Syntax
PlaneDef (PlaneNum, [robotNumber])

Parameters
PlaneNum Integer expression representing the plane number from 1 to 15.
robotNumber Integer value representing the robot number

If omitted, the current robot is used.

Return Values
True if approach detection plane is defined for the specified plane number, otherwise False.

See Also
GetRobotInsidePlane, Box, InsidePlane, Plane, PlaneClr

PlaneDef Function Example

Function DisplayPlaneDef(planeNum As Integer)

 If PlaneDef(planeNum) = False Then
 Print "Plane ", planeNum, "is not defined"
 Else
 Print "Plane 1: ",
 Print Plane(PlaneNum)
 EndIf
Fend

F

PList Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 413

PList Statement

Displays point data in memory for the current robot.

Syntax
(1) PList
(2) PList pointNumber
(3) PList startPoint,
(4) PList startPoint, endpoint

Parameters
pointNumber The number range is 0 to 999.
startPoint The start point number. The number range is 0 to 999.
endPoint The end point index. The number range is 0 to 999.

Return Values
Point data.

Description
Plist displays point data in memory for the current robot.

When there is no point data within the specified range of points, no data will be displayed.
When a start point number is specified larger than the end point number, then an error occurs.

(1) PList
Displays the coordinate data for all points.

(2) PList pointIndex
Displays the coordinate data for the specified point.

(3) PList startPoint,
Displays the coordinate data for all points starting with startPoint.

(4) PList startPoint, endPoint
Displays the coordinate data for all points starting with startPoint and ending with endPoint.

PList Example

Display type depends on the robot type and existence of additional axes.
The following examples are for a Scara robot without additional axes.

Displays the specified point data:

> plist 1
P1 = XY(200.000, 0.000, -20.000, 0.000) /R /0
>

Displays the point data within the range of 10 and 20. In this example, only three points are found in
this range.

> plist 10, 20
P10 = XY(290.000, 0.000, -20.000, 0.000) /R /0
P12 = XY(300.000, 0.000, 0.000, 0.000) /R /0
P20 = XY(285.000, 10.000, -30.000, 45.000) /R /0
>

>

PList Statement

414 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Displays the point data starting with point number 10

> plist 10,
P10 = XY(290.000, 0.000, -20.000, 0.000) /R /0
P12 = XY(300.000, 0.000, 0.000, 0.000) /R /0
P20 = XY(285.000, 10.000, -30.000, 45.000) /R /0
P30 = XY(310.000, 20.000, -50.000, 90.000) /R /0

PLocal Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 415

PLocal Statement

Sets the local attribute for a point.

Syntax
PLocal(point) = localNumber

Parameters
point An integer value or Pnumber or P(expr) or point label.

Cautions for compatibility
No variables can be specified for point parameter
To use variables, write PLocal(P(varName)).

localNumber An integer expression representing the new local number. Range is 0 to 15.

See Also
PLocal Function

PLocal Statement Example

PLocal(pick) = 1

> S

PLocal Function

416 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

PLocal Function

Returns the local number for a specified point.

Syntax
PLocal(point)

Parameters
point An integer value or Pnumber or P(expr) or point label.

Cautions for compatibility
No variables can be specified for point parameter
To use variables, write PLocal(P(varName)).

Return Values

Local number for specified point.

See Also
PLocal Statement

PLocal Function Example

Integer localNum

localNum = PLocal(pick)

F

Pls Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 417

Pls Function

Returns the current encoder pulse count for each joint at the current position.

Syntax
Pls(jointNumber)

Parameters
jointNumber The specific joint for which to get the current encoder pulse count.

The additional S axis is 8 and T axis is 9.

Return Values
Returns a number value representing the current encoder pulse count for the joint specified by
jointNumber.

Description
Pls is used to read the current encoder position (or Pulse Count) of each joint. These values can be
saved and then used later with the Pulse command.

See Also
CX, CY, CZ, CU, CV, CW, Pulse

Pls Function Example
Shown below is a simple example to get the pulse values for each joint and print them.

Function plstest
 Real t1, t2, z, u
 t1 = pls(1)
 t2 = pls(2)
 z = pls(3)
 u = pls(4)
 Print "T1 joint current Pulse Value: ", t1
 Print "T2 joint current Pulse Value: ", t2
 Print "Z joint current Pulse Value: ", z
 Print "U joint current Pulse Value: ", u
Fend

F

PNumber Function

418 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

PNumber Function

Returns the point number associated with a point label.

Syntax
PNumber(pointLabel)

Parameters
pointLabel A point label used in the current point file or string expression containing a point label.

See Also
PDef Function, PLabel$ Function

PNumber Function Example

Integer pNum
String pointName$

pNum = PNumber(pick)

pNum = PNumber("pick")

pointName$ = "place"
pNum = PNumber(pointName$)

Point Assignment

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 419

Point Assignment

Defines a robot point by assigning it to a point expression.

Syntax
point = pointExpr

Parameters
point Expression including numeric number or () (parenthesis)

Pnumber
P(expr)

pointLabel Point label
pointExpr One of the following point data

P point number, Point label, Here, Pallet, Point data function
(Here function, XY function, JA function, Pulse function, etc..)

Description

Define a robot point by setting it equal to another point or point expression.

See Also
Local, Pallet, PDef, PDel, Plist

Point Assignment Example
The following examples are done from the command window:

Assign coordinates to P1:

> P1 = 300,200,-50,100

Specify left arm posture:

> P2 = -400,200,-80,100/L

Add 20 to X coordinate of P2 and define resulting point as P3:

> P3 = P2 +X(20)
> plist 3
P3=-380,200,-80,100/L

Subtract 50 from Y coordinate of P2, substitute -30 for Z coordinate, and define the resulting point P4
as right arm posture:

>P4=P2 -Y(50) :Z(-30) /R
> plist 4
P4 = XY(-450,200,-30,100)/R

Add 90 to U coord of Pallet(3, 5), and define resulting point as P6:

> P5 = Here
> P6 = pallet(3,5) +U(90)

> S

Point Expression

420 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Point Expression

Specifies a robot point for assignment and motion commands.

Syntax
point [{ + | - } point] [local] [hand] [elbow] [wrist] [j4flag] [j6flag] [j1flag] [j2flag] [relativeOffsets]

[absoluteCoords]

Parameters
point The base point specification. This can be one of the following:

Pnumber
P(expr)
Here
Pallet(palletNumber, palletIndex)
pointLabel
XY(X, Y, Z, U, [V], [W])
JA(J1, J2, J3, J4, [J5], [J6])
Pulse(J1, J2, J3, J4, [J5], [J6])

local Optional. Local number from 1 to 15 preceded by a forward slash (/0 to /15) or at
sign (@0 to @15). The forward slash means that the coordinates will be in the local.
The at sign means that the coordinates will be translated into local coordinates.

hand Optional for SCARA robot (including RS series) and 6-axis robots. Specify /L or /R
for lefty or righty hand orientation.

elbow Optional for 6-axis robots. Specify /A or /B for above or below orientation.
wrist Optional for 6-axis robots. Specify /F or /NF for flip or no flip orientation.
j4flag Optional for 6-axis robots. Specify /J4F0 or /J4F1.
j6flag Optional for 6-axis robots. Specify /J6F0 - /J6F127.
j1flag Optional for RS series. Specify /J1F0 or /J1F1.
j2flag Optional for RS series. Specify /J2F0 - /J2F127.
j1angle Optional for RS series. Specify /J1A (real value).
relativeOffsets Optional. One or more relative coordinate adjustments.

{+ | -} {X | Y | Z | U | V | W | R | S | T | ST } (expr)
The TL offsets are relative offsets in the current tool coordinate system.
{+ | -} {TLX | TLY | TLZ | TLU | TLV | TLW} (expr)

absoluteCoords Optional. One or more absolute coordinates.
: {X | Y | Z | U | V | W | R | S | T | ST } (expr)

Description
Point expressions are used in point assignment statements and motion commands.

Go P1 + P2
P1 = P2 + XY(100, 100, 0, 0)

Using relative offsets
You can offset one or more coordinates relative to the base point. For example, the following
statement moves the robot 20 mm in the positive X axis from the current position:

Go Here +X(20)

If you execute the same statement again, the robot will move an additional 20 mm along the X axis,
because this is a relative move.

You can also use relative tool offsets:

> S

Point Expression

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 421

Go Here +TLX(20) -TLY(5.5)

When the 6-axis robot moves to a point calculated by such as pallet or relative offsets, the wrist part
may rotate to an unintended direction. The point calculation above does not depend on robot models
and results in motion without converting the required point flag.
LJM function prevents the unintended wrist rotation.

Go LJM(Here +X(20))

Using absolute coordinates
You can change one or more coordinates of the base point by using absolute coordinates. For
example, the following statement moves the robot to the 20 mm position on the X axis:

Go Here :X(20)

If you execute the same statement again, the robot will not move because it is already in the absolute
position for X from the previous move.

Relative offsets and absolute coordinates make is easy to temporarily modify a point. For example,
this code moves quickly above the pick point by 10 mm using a relative offset for Z or 10 mm, then
moves slowly to the pick point.

Speed fast
Jump pick +Z(10)
Speed slow
Go pick

This code moves straight up from the current position by specifying an absolute value of 0 for the Z
joint:

LimZ 0
Jump Here :Z(0)

Using Locals

You can specify a local number using a forward slash or at sign. Each has a separate function.

Use the forward slash to mark the coordinates in a local. For example, adding a /1 in the following
statement says that P1 will be at location 0,0,0,0 in local 1.

P1 = XY(0, 0, 0, 0) /1

Use the at sign to translate the coordinates into local coordinates.
For example, here is how to set the current position to P1:

P1 = Here @1

See Also
Go, LJM, Local, Pallet, Pdel, Plist, Hand, Elbow, Wrist, J4Flag, J6Flag, J1Flag, J2Flag

Point Expression

422 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Point Expression Example
Here are some examples of using point expressions in assignments statements and motion
commands:

P1 = XY(300,200,-50,100)
P2 = P1 /R
P3 = pick /1
P4 = P5 + P6
P(i) = XY(100, 200, CZ(P100), 0)
Go P1 -X(20) :Z(-20) /R
Go Pallet(1, 1) -Y(25.5)
Move pick /R
Jump Here :Z(0)
Go Here :Z(-25.5)
Go JA(25, 0, -20, 180)
pick = XY(100, 100, -50, 0)

P1 = XY(300,200,-50,100, -90, 0)
P2 = P1 /F /B
P2 = P1 +TLV(25)

PosFound Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 423

PosFound Function

Returns status of Find operation.

Syntax
PosFound

Return Values
True if position was found during move, False if not.

See Also
Find

PosFound Function Example

Find Sw(5) = ON
Go P10 Find
If PosFound Then
 Go FindPos
Else
 Print "Error: Cannot find the sensor signal."
EndIf

F

Power Statement

424 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Power Statement

Switches Power Mode to high or low and displays the current status.

Power Syntax
(1) Power { High | Low }
(2) Power

Parameters
High | Low The setting can be High or Low. The default is Low.

Return Values
Displays the current Power status when parameter is omitted.

Description
Switches Power Mode to High or Low. It also displays the current mode status.

Low - When Power is set to Low, Low Power Mode is On. This means that the robot will run slow

(below 250 mm/sec) and the servo stiffness is set light so as to remove servo power if the robot
bumps into an object.

High - When Power is set to High, Low Power Mode is Off. This means that the robot can run at full

speed with the full servo stiffness.

The following operations will switch to low power mode. In this case, speed and acceleration settings
will be limited to the default value. The default value is described in the each manipulator specification
table. See also the EPSON RC+ Users Guide: 2. Sefety.

Conditions to cause Power Low:
Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

Settings limited to the default value
Speed
Accel
SpeedS
AccelS

Notes
Low Power Mode (Power Low) and Its Effect on Max Speed:

In low power mode, motor power is limited, and effective motion speed setting is lower than the default
value. If, when in Low Power mode, a higher speed is specified from the Command window (directly)
or in a program, the speed is set to the default value. If a higher speed motion is required, set Power
High.

High Power Mode (Power High) and Its Effect on Max Speed:
In high power mode, higher speeds than the default value can be set.

> S

Power Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 425

See Also
Accel, AccelS, Speed, SpeedS

Power Example
The following examples are executed from the command window:

> Speed 50 'Specifies high speed in Low Power mode

> Accel 100, 100 'Specifies high accel

> Jump P1 'Moves in low speed and low accel

> Speed 'Display current speed values
Low Power Mode
 50
 50 50

> Accel 'Display current accel values
Low Power Mode
 100 100
 100 100
 100 100

> Power High 'Set high power mode

> Jump P2 'Move robot at high speed

Power Function

426 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Power Function

Returns status of power.

Syntax
Power

Return Values

0 = Power Low, 1 = Power High.

See Also
Power Statement

Power Function Example

If Power = 0 Then
 Print "Low Power Mode"
EndIf

F

PPls Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 427

PPls Function

Return the pulse position of a specified joint value from a specified point.

Syntax
PPls (point, jointNumber)

Parameters
point Point expression.
jointNumber Expression or numeric value specifying the joint number (integer from 1 to 9)

The additional S axis is 8 and T axis is 9.

Return Values
Returns the calculated joint position (long value, in pulses).

See Also
Agl, CX, CY, CZ, CU, CV, CW, Pagl

PPls Example

Long pulses1

pulses1 = PPls(P10, 1)

F

Print Statement

428 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Print Statement

Outputs data to the current display window, including the Run window,
Operator window, Command window, and Macro window.

Syntax
Print expression [, expression...] [,]
Print

Parameters
expression Optional. A number or string expression.
, (comma) Optional. If a comma is provided at the end of the statement, then a CRLF will

not be added.

Return Values
Variable data or the specified character string.

Description
Print displays variable data or the character string on the display device.

An end of line CRLF (carriage return and line feed) is automatically appended to each output unless a
comma is used at the end of the statement.

Notes
Make Sure Print is used with Wait or a motion within a loop

Tight loops (loops with no Wait or no motion) are generally not good, especially with Print.
The controller may freeze up in the worst case.
Be sure to use Print with Wait command or a motion command within a loop.
Bad example

Do
 Print "1234"
Loop

Good example
Do
 Print "1234"
 Wait 0.1
Loop

See Also

Print #

Print Statement Example
The following example extracts the U Axis coordinate value from a Point P100 and puts the coordinate
value in the variable uvar. The value is then printed to the current display window.

Function test
 Real uvar
 uvar = CU(P100)
 Print "The U Axis Coordinate of P100 is ", uvar
Fend

> S

Print # Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 429

Print # Statement

Outputs data to the specified file, communications port, database, or device.

Syntax
Print #portNumber, expression [, expression...] [,]

Parameters
portNumber ID number representing a file, communications port, database, or device.

File number can be specified in ROpen, WOpen, and AOpen statements.
Communications port number can be specified in OpenCom (RS232) and
OpenNet (TCP/IP) statements.
Database number can be specified in OpenDB statement.

 Device ID integers are as follows.
21 RC+
24 TP
28 LCD

expression A numeric or string expression.
, (comma) Optional. If a comma is provided at the end of the statement, then a CRLF will

not be added.
Description

Print # outputs variable data, numerical values, or character strings to the communication port or the
device specified by portNumber .

Note
Maximum data length

This command can handle up to 256 bytes.
However, if the target is a database, it can handle up to 4096 bytes.

Exchanhe variable data with other controller
- When more than one string variable or both of numeric variable and string varialble is specified, a

comma (“,”) character has to be added expressly to the string data.

Sending end (Either pattern is OK.)
Print #PortNum, "$Status,", InData, OutData
Print #PortNum, "$Status", ",",InData, OutData

Receiving end
Input #PortNum, Response$, InData, OutData

File write buffering
File writing is buffered. The buffered data can be written with Flush statement. Also, when closing a
file with Close statement, the buffered data can be written.

See Also

Input#, Print

Print # Example
The following are some simple Print # examples:

Function printex
 String temp$
 Print #1, "5" 'send the character "5" to serial port 1 temp$ = "hello"
 Print #1, temp$
 Print #2, temp$
 Print #1 " Next message for port 1"
 Print #2 " Next message for port 2"
Fend

> S

PTCLR Statement

430 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

PTCLR Statement

Clears and intializes the peak torque for one or more joints.

Syntax
PTCLR [j1], [j2], [j3], [j4], [j5], [j6], [j7], [j8], [j9]

Parameters
j1 – j9 Optional. Integer expression representing the joint number. If no parameters are

supplied, then the peak torque values are cleared for all joints.
The additional S axis is 8 and T axis is 9.

Description

PTCLR clears the peak torque values for the specified joints.

You must execute PTCLR before executing PTRQ.

See Also
ATRQ, PTRQ

PTCLR Statement Example

> ptclr
> go p1
> ptrq 1
 0.227
> ptrq
 0.227 0.118
 0.249 0.083
 0.000 0.000
>

> S

PTPBoost Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 431

PTPBoost Statement

Specifies or displays the acceleration, deceleration and speed algorithmic boost
parameter for small distance PTP (point to point) motion.

Syntax
(1) PTPBoost boost, [departBoost], [approBoost]
(2) PTPBoost

Parameters
boost Integer expression from 0 - 100.
departBoost Optional. Jump depart boost value. Integer expression from 0 - 100.
approBoost Optional. Jump approach boost value. Integer expression from 0 - 100.

Return Values
When parameters are omitted, the current PTPBoost settings are displayed.

Description
PTPBoost sets the acceleration, deceleration and speed for small distance PTP motion. It is effective
only when the motion distance is small. The PTPBoostOK function can be used to confirm whether or
not a specific motion distance to the destination is small enough to be affected by PTPBoost or not.

PTPBoost does not need modification under normal circumstances. Use PTPBoost only when you
need to shorten the cycle time even if vibration becomes larger, or conversely when you need to
reduce vibration even if cycle time becomes longer.

When the PTPBoost value is large, cycle time becomes shorter, but the positioning vibration
increases. When PTPBoost is small, the positioning vibration becoms smaller, but cycle time
becomes longer. Specifying inappropriate PTPBoost causes errors or can damage the manipulator.
This may degrade the robot, or sometimes cause the manipulator life to shorten.

The PTPBoost value initializes to its default value when any one of the following is performed:

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

See Also

PTPBoost Function, PTPBoostOK

PTPBoost Statement Example

PTPBoost 50, 30, 30

> S

PTPBoost Function

432 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

PTPBoost Function

Returns the specified PTPBoost value.

Syntax
PTPBoost(paramNumber)

Parameters
paramNumber Integer expression which can have the following values:
 1: boost value
 2: jump depart boost value
 3: jump approach boost value

Return Values
Integer value from 0 - 100.

See Also
PTPBoost Statement, PTPBoostOK

PTPBoost Function Example

Print PTPBoost(1)

F

PTPBoostOK Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 433

PTPBoostOK Function

Returns whether or not the PTP (Point to Point) motion from a current position to a target
position is a small travel distance.

Syntax
PTPBoostOK(targetPos)

Parameters
targetPos Point expression for the target position.

Return Values
True if is it possible to move to the target position from the current position using PTP motion,
otherwise False.

Description
Use PTPBoostOK to the distance from the current position to the target position is small enough for
PTPBoost to be effective.

See Also
PTPBoost

PTPBoostOK Function Example

If PTPBoostOK(P1) Then
 PTPBoost 50
EndIf
Go P1

F

PTPTime Function

434 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

PTPTime Function

Returns the estimated time for a point to point motion command without executing it.

Syntax
(1) PTPTime(destination, destArm, destTool)
(2) PTPTime(start, startArm, startTool, destination, destArm, destTool)

Parameters
start Point expression for the starting position.
destination Point expression for the destination position.
destArm Integer expression for the destination arm number.
destTool Integer expression for the destination tool number.
startArm Integer expression for the starting point arm number.
startTool Integer expression for the starting point tool number.

Return Values
Real value in seconds.

Description
Use PTPTime to calculate the time it would take for a point to point motion command (Go). Use syntax
1 to calculate time from the current position to the destination. Use syntax 2 to calculate time from a
start point to a destination point.

The actual motion operation is not performed when this function is executed. The current position, arm,
and tool settings do not change.

If the position is one that cannot be arrived at or if the arm or tool settings are incorrect, 0 is returned.

If a robot includes an additional axis and it is the servo axis, the function will consider the motion time
of the additional axis.
If the additional axis is a PG axis, the motion time of the robot will be returned.

See Also
ATRQ, Go, PTRQ

PTPTime Function Example

Real secs

secs = PTPTime(P1, 0, 0, P2, 0, 1)
Print "Time to go from P1 to P2 is:", secs

Go P1
secs = PTPTime(P2, 0, 1)
Print "Time to go from P1 to P2 is:", secs

F

PTran Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 435

PTran Statement

Perform a relative move of one joint in pulses.

Syntax
PTran joint, pulses

Parameters
joint Integer expression representing which joint to move.

The additional S axis si 8 and T axis is 9.
pulses Integer expression representing the number of pulses to move.

Description
Use PTran to move one joint a specified number of pulses from the current position.

See Also
Go, JTran, Jump, Move

PTran Statement Example

PTran 1, 2000

S

PTRQ Statement

436 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

PTRQ Statement

Displays the peak torque for the specified joint.

Syntax
PTRQ [jointNumber]

Parameters
jointNumber Optional. Integer expression representing the joint number.

The additional S axis si 8 and T axis is 9.

Return Values
Displays current peak torque values for all joints.

Description
Use PTRQ to display the peak torque value for one or all joints since the PTCLR statement was
executed.

Peak torque is a real number from 0 to 1.

See Also
ATRQ, PTCLR, PTRQ Function

PTRQ Statement Example

> ptclr
> go p1
> ptrq 1
 0.227
> ptrq
 0.227 0.118
 0.249 0.083
 0.000 0.000
>

> S

PTRQ Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 437

PTRQ Function

Returns the peak torque for the specified joint.

Syntax
PTRQ(jointNumber)

Parameters
jointNumber Integer expression representing the joint number.

The additional S axis si 8 and T axis is 9.

Return Values
Real value from 0 to 1.

See Also
ATRQ, PTCLR, PTRQ Statement

PTRQ Function Example
This example uses the PTRQ function in a program:

Function DisplayPeakTorque
 Integer i

 Print "Peak torques:"
 For i = 1 To 4
 Print "Joint ", i, " = ", PTRQ(i)
 Next i
Fend

F

Pulse Statement

438 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Pulse Statement

Moves the robot arm using point to point motion to the point specified by the pulse
values for each joint.

Syntax
(1) Pulse J1, J2, J3, J4 , [J5, J6] , [J7] , [J8, J9]
(2) Pulse

Parameters
J1 ~ J4 The pulse value for each of the first four joints. The pulse value has to be within

the range defined by the Range instruction and should be an integer or long
expression.

J5, J6 Optional. For 6-axis robots and Joint type 6-axis robots.
J7 Optional. For Joint type 7-axis robots.
J8, J9 Optional. For the additional axis.

Return Values
When parameters are omitted, the pulse values for the current robot position are displayed.

Description
Pulse uses the joint pulse value from the zero pulse position to represent the robot arm position, rather
than the orthogonal coordinate system. The Pulse instruction moves the robot arm using Point to Point
motion.

The Range instruction sets the upper and lower limits used in the Pulse instruction.

Note
Make Sure Path is Obstacle Free Before Using Pulse

Unlike Jump, Pulse moves all axes simultaneously, including Z joint raising and lowering in traveling to
the target position. Therefore, when using Pulse, take extreme care so that the hand can move
through an obstacle free path.

Potential Errors
Pulse value exceeds limit:

If the pulse value specified in Pulse instruction exceeds the limit set by the Range instruction, an error
will occur.

See Also

Go, Accel, Range, Speed, Pls, Pulse Function

Pulse Statement Example
Following are examples on the Command window:

This example moves the robot arm to the position which is defined by each joint pulse.

> pulse 16000, 10000, -100, 10

This example displays the pulse numbers of 1st to 4th axes of the current robot arm position.

> pulse
PULSE: 1: 27306 pls 2: 11378 pls 3: -3072 pls 4: 1297 pls
>

> S

Pulse Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 439

Pulse Function

Returns a robot point whose coordinates are specified in pulses for each joint.

Syntax
Pulse (J1, J2, J3, J4 , [J5 , J6] , [J7] , [J8 , J9])

Parameters
J1 ~ J4 The pulse value for joints 1 to 4. The pulse value must be within the range defined

by the Range instruction and should be an integer or long expression.
J5, J6 Optional. For 6-axis robots and Joint type 6-axis robots.
J7 Optional. For Joint type 7-axis robots.
J8, J9 Optional. For the additional axis.

Return Values
A robot point using the specified pulse values.

See Also
Go, JA, Jump, Move, Pulse Statement, XY

Pulse Function Example

Jump Pulse(1000, 2000, 0, 0)

F

QP Statement

440 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

QP Statement

Switches Quick Pause Mode On or Off and displays the current mode status.

Syntax
(1) QP { On | Off }
(2) QP

Parameters
On | Off Quick Pause can be either On or Off.

Return Values
Displays the current QP mode setting when parameter is omitted.

Description
If during motion command execution either the Pause switch is pressed, or a pause signal is input to
the controller, quick pause mode determines whether the robot will stop immediately, or will Pause
after having executed the motion command.

Immediately decelerating and stopping is referred to as a "Quick Pause".

With the On parameter specified, QP turns the Quick Pause mode On.
With the Off parameter specified, QP turns the Quick Pause mode Off.

QP displays the current setting of whether the robot arm is to respond to the Pause input by stopping
immediately or after the current arm operation is completed. QP is simply a status instruction used to
display whether Quick Pause mode is on or off.

Notes
Quick pause mode defaults to on after power is turned on:

The Quick Pause mode set by the QP instruction remains in effect after the Reset instruction. However,
when the PC power or Drive Unit power is turned off and then back on, Quick Pause mode defaults to
On.

QP and the Safe Guard Input:
Even if QP mode is set to Off, if the Safe Guard Input becomes open the robot will pause immediately.

See Also

Pause

QP Statement Example

This Command window example displays the current setting of whether the robot arm is to stop
immediately on the Pause input. (i.e. is QP mode set On or Off)

> qp
QP ON

> qp on 'Sets QP to Quick Pause Mode
>

> S

QPDecelR Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 441

QPDecelR Statement

Sets the deceleration speed of quick pause for the change of tool orientation
during the CP motion.

Syntax
(1) QPDecelR QPDecelR
(2) QPDecelR

Parameters
QPDecelR Real value representing the deceleration speed of quick pause during the CP

motion (deg/sec2).
Result

If omitted the parameter, the current QPDecelR set value will be displayed.

Description
QPDecelR statement is enabled when the ROT parameter is used in the Move, Arc, Arc3, BMove,
TMove, and Jump3CP statements.
While quick pause is executed in these statements, a joint acceleration error may occur. This is
because the deceleration speed of quick pause that is automatically set in a normal quick pause is
over the joint allowable deceleration speed. Specifically, the error is likely to occur when the AccelR
value in the CP motion is too high or jogging the robot near a singularity. In these cases, use the
QPDecelR and set a lower quick pause deceleration speed. But if the setting is too low, the distance
for quick pause will increase. Therefore, set the possible value. Normally, you don’t need to set
QPDecelR.

You cannot use values lower than the deceleration speed of orientation change in the CP motion set
with QPDecelR and AccelR. If you do, a parameter out of range error occurs.
Also, after you set QPDecelR, if a higher value than the set QP deceleration speed is set with the
AccelR, the QPDecelR will automatically set the QP deceleration speed same as the decleration speed
set with the AccelR.

The QPDecelR Statement value initializes to the default max deceleration speed when any one of
the following conditions occurs:

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

See Also
QPDecelR function, QPDecelS, AccelR

QPDecelR Example

The following program sets the QPDecelR of the Move statement.

Function QPDecelTest
 AccelR 3000

QPDecelR 4000
 SpeedR 100
 Move P1 ROT
 .
 .
 .
Fend

> S

QPDecelR Function

442 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

QPDecelR Function

Returns the set deceleration speed of quick pause for the change of tool orientation
during the CP motion.

Syntax
QPDecelR

Return Values
Real value that contains the set deceleration speed of quick pause for the tool orientation change in
the CP motion (deg/s2)

See Also
QPDecelR, QPDecelS function

QPDecelR function Example

Real savQPDecelR

savQPDecelR = QPDecelR

F >

QPDecelS Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 443

QPDecelS Statement

Sets the deceleration speed of quick pause in the CP motion.

Syntax
(1) QPDecelS QPDecelS [, departDecel, approDecel]
(2) QPDecelS

Parameters
QPDecelS Real value that specifies the deceleration speed of quick pause in the CP

motion. (mm/sec2)
departDecel Real value that specifies the deceleration speed of quick pause in the Jump3

depart motion (mm/sec2)
approDecel Real value that specifies the deceleration speed of quick pause in the Jump3

approach motion (mm/sec2)
Return Values

If omitted the parameter, the current QPDecelS set value is displayed.

Description
While quick pause is executed in the CP motion, a joint acceleration error may occur. This is because
the deceleration speed of quick pause that is automatically set in a normal quick pause is over the joint
allowable deceleration speed. Specifically, the error is likely to occur when the AccelS value in the CP
motion is too high or jogging the robot near a singularity. In these cases, use the QPDecelS and set a
lower quick pause deceleration speed. But if the setting is too low, the distance for quick pause will
increase. Therefore, set the possible value. Normally, you don’t need to set QPDecelS.

You cannot use values lower than the deceleration speed of the CP motion set with AccelS. If you do,
a parameter out of range error occurs.
Also, after you set QPDecelS, if a higher value than the set QP deceleration speed is set with the
AccelS, the QPDecelS will automatically set the QP deceleration speed same as the decleration speed
set with the AccelS.

The QPDecelS Statement value initializes to the default max deceleration speed when any one of
the following conditions occurs:

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

See Also
QPDecelS Function, QPDecelR, AccelS

QPDecelS Example
The following program sets the QPDecelS of the Move statement.

Function QPDecelTest
 AccelS 3000

QPDecelS 4000
 SpeedS 100
 Move P1
 .
 .
 .
Fend

> S

QPDecelS Function

444 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

QPDecelS Function

Returns the set deceleration speed of quick pause during the CP motion.

Syntax
QPDecelS (paramNumber)

Parameters
paramNumber Integer expression specifying the one of the following values.
 1: Quick pause deceleration speed during the CP motion
 2: Quick pause deceleration speed in depart motion during the Jump3 and

Jump3CP
 3: Quick pause deceleration speed in approach motion during the Jump3 and

Jump3CP

Return Values
Real value representing the quick pause deceleration speed (mm/s2)

See Also
QPDecelS, QPDecelR function

QPDecelS function Example

Real savQPDecelS

savQPDecelS = QPDecelS(1)

F >

Quit Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 445

Quit Statement

Terminates execution of a specified task or all tasks.

Syntax
Quit { taskIdentifier | All }

Parameters
taskIdentifier Task name or integer expression representing the task number.

Task name is a function name used in an Xqt statement or a function started from
the Run window or Operator window.

Task number range is:
Normal tasks : 1 ~ 32
Background task : 65 ~ 80
Trap tasks : 257 ~ 267

All Specifies this parameter if all tasks except the background task should be
terminated.

Description

Quit stops the tasks that are currently being executed, or that have been temporarily suspended with
Halt.

Quit also stops the task when the specified task is NoPause task, NoEmgAbort task (special task
using NoPause or NoEmgAbort at Xqt), or the background tasks.
Quit All stops all tasks including the tasks above other than the background tasks.

Quit All sets the robot control parameter as below:

Robot Control parameter

Current robot Speed, SpeedR, SpeedS (Initialized to default values)
Current robot QPDecelR , QPDecelS (Initialized to default values)
Crrent robot LimZ parameter (Initialized to 0)
Current robot CP parameter (Initialized to Off)
Current robot SoftCP parameter (Initialized to Off)
Current robot Fine (Initialized to default values)
Currrent robot Power Low (Low Power Mode set to On)
Current robot PTPBoost (Initialized to default values)
Current robot TCLim, TCSpeed (Initialized to default values)
Current robot PgLSpeed (Initialized to default values)

See Also

Exit, Halt, Resume, Xqt

Quit Example
This example shows two tasks that are terminated after 10 seconds.

Function main
 Xqt winc1 'Start winc1 function
 Xqt winc2 'Start winc2 function
 Wait 10
 Quit winc1 'Terminate task winc1
 Quit winc2 'Terminate task winc2
Fend

S

Quit Statement

446 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Function winc1
 Do
 On 1; Wait 0.2
 Off 1; Wait 0.2
 Loop
Fend

Function winc2
 Do
 On 2; Wait 0.5
 Off 2; Wait 0.5
 Loop
Fend

RadToDeg Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 447

RadToDeg Function

Converts radians to degrees.

Syntax
RadToDeg(radians)

Parameters
radians Real expression representing the radians to convert to degrees.

Return Values
A double value containing the number of degrees.

See Also
ATan, ATan2, DegToRad Function

RadToDeg Function Example

s = Cos(RadToDeg(x))

>

F

Randomize Statement

448 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Randomize Statement

Initializes the random-number generator.

Syntax
(1) Randomize seedValue
(2) Randomize

Parameter
seedValue Specify a real value (0 or more) to be basis to retrieve a random number.

See Also
Rnd Function

Randomize Example

Function main
 Real r
 Randomize
 Integer randNum

 randNum = Int(Rnd(10)) + 1
 Print "Random number is:", randNum
Fend

S

Range Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 449

Range Statement

Specifies and displays the motion limits for each of the servo joints.

Syntax
(1) Range j1Min, j1Max, j2Min, j2Max, j3Min, j3Max, j4Min, j4Max,

j5Min, j5Max, j6Min, j6Max,
j7Min, j7Max,
j8Min, j8Max, j9Min, j9Max

(2) Range

Parameters
j1Min The lower limit for joint 1 specified in pulses.
j1Max The upper limit for joint 1 specified in pulses.
j2Min The lower limit for joint 2 specified in pulses.
j2Max The upper limit for joint 2 specified in pulses.
j3Min The lower limit for joint 3 specified in pulses.
j3Max The upper limit for joint 3 specified in pulses.
j4Min The lower limit for joint 4 specified in pulses.
j4Max The upper limit for joint 4 specified in pulses.
j5Min Optional for 6-Axis robots and Joint type 6-axis robots. The lower limit for joint 5

specified in pulses.
j5Max Optional for 6-Axis robots and Joint type 6-axis robots. The upper limit for joint 5

specified in pulses.
j6Min Optional for 6-Axis robots and Joint type 6-axis robots. The lower limit for joint 6

specified in pulses.
j6Max Optional for 6-Axis robots and Joint type 6-axis robots. The upper limit for joint 6

specified in pulses.
j7Min Optional for Joint type 7-axis robots. The lower limit for joint 7 specified in pulses.
j7Max Optional for Joint type 7-axis robots. The upper limit for joint 7 specified in pulses.
j8Min Optional for the additional S axis. The lower limit for joint 8 specified in pulses.
j8Max Optional for the additional S axis. The upper limit for joint 8 specified in pulses.
j9Min Optional for the additional T axis. The lower limit for joint 9 specified in pulses.
j9Max Optional for the additional T axis. The upper limit for joint 9 specified in pulses.

Return Values
Displays the current Range values when Range is entered without parameters

Description
Range specifies the lower and upper limits of each motor joint in pulse counts. These joint limits are
specified in pulse units. This allows the user to define a maximum and minimum joint motion range for
each of the individual joints. XY coordinate limits can also be set using the XYLim instruction.

The initial Range values are different for each robot. The values specified by this instruction remain in
effect even after the power is switched off.

When parameters are omitted, the current Range values are displayed.

> S

Range Statement

450 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Potential Errors
Attempt to Move Out of Acceptable Range

If the robot arm attempts to move through one of the joint limits error an will occur
Axis Does Not Move

If the lower limit pulse is equal to or greater than the upper limit pulse, the joint does not move.

See Also

JRange, SysConfig, XYLim

Range Example

This simple example from the command window displays the current range settings and then changes
them.

> range
-18205, 182045, -82489, 82489, -36864, 0, -46695, 46695
>
> range 0, 32000, 0, 32224, -10000, 0, -40000, 40000
>

Read Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 451

Read Statement

Reads characters from a file or communications port.

Syntax
Read #portNumber, stringVar$, count

Parameters
portNumber ID number representing a file or communications port to read from.

File number can be specified in ROpen, WOpen, and AOpen statements.
Communication port number can be specified in OpenCom (RS-232C) or
OpenNet (TCP/IP) statements.

stringVar$ Name of a string variable that will receive the character string.
count Maximum number of bytes to read.

See Also
ChkCom, ChkNet, OpenCom, OpenNet, Write

Read Statement Example

Integer numOfChars
String data$

numOfChars = ChkCom(1)

If numOfChars > 0 Then
 Read #1, data$, numOfChars
EndIf

S

ReadBin Statement

452 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

ReadBin Statement

Reads binary data from a file or communications port.

Syntax
ReadBin #portNumber, var
ReadBin #portNumber, array(), count

Parameters
portNumber ID number representing a file or communications port to read from.

File number can be specified in BOpen statement.
Communication port number can be specified in OpenCom (RS-232C) or
OpenNet (TCP/IP) statements.

var Name of a byte, integer, or long variable that will receive the data.
array() Name of a byte, integer, or long array variable that will receive the data. Specify

a one dimension array variable.
count Specify the number of bytes to read. The specified count has to be less than or

equal to the number of array elements.

See Also
Write, WriteBin

ReadBin Statement Example

Integer data
Integer dataArray(10)

numOfChars = ChkCom(1)

If numOfChars > 0 Then
 ReadBin #1, data
EndIf

NumOfChars = ChkCom(1)
 If numOfChars > 10 Then
 ReadBin #1, dataArray(), 10
EndIf

S

Real Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 453

Real Statement

Declares variables of type Real (4 byte real number).

Syntax
Real varName [(subscripts)] [, varName [(subscripts)]...]

Parameters
varName Variable name which the user wants to declare as type Real.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared.

The subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 and the

available number of array elements is the upper bound value + 1.
 When specifying the upper bound value, make sure the number of total elements

is within the range shown below:
Local variable 2000
Global Preserve variable 4000
Global variable and module variable 100000

Description

Real is used to declare variables as type Real. Local variables should be declared at the top of a
function. Global and module variables must be declared outside functions.
Number of valid digits are six digits for Real type.

See Also
Boolean, Byte, Double, Global, Integer, Long, String

Real Example
The following example shows a simple program which declares some variables using Real.

Function realtest
 Real var1
 Real A(10) 'Single dimension array of real
 Real B(10, 10) 'Two dimension array of real
 Real C(5, 5, 5) 'Three dimension array of real
 Real arrayVar(10)
 Integer i
 Print "Please enter a Real Number:"
 Input var1
 Print "The Real variable var1 = ", var1
 For i = 1 To 5
 Print "Please enter a Real Number:"
 Input arrayVar(i)
 Print "Value Entered was ", arrayVar(i)
 Next i
Fend

S

RealPls Function

454 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

RealPls Function

Returns the pulse value of the specified joint.

Syntax
RealPls(jointNumber)

Parameters
jointNumber The specific joint for which to get the current pulse count.

The additional S axis is 8 and T axis is 9.

Return Values
Returns an integer value representing the current encoder pulse count for the joint specified by
jointNumber.

Description
RealPls is used to read the current encoder position (or Pulse Count) of each joint. These values can
be saved and then used later with the Pulse command.

See Also
CX, CY, CZ, CU, CV, CW, Pulse

RealPls Function Example

Function DisplayPulses

 Long joint1Pulses

 joint1Pulses = RealPls(1)
 Print "Joint 1 Current Pulse Value: ", joint1Pulses
Fend

F

RealPos Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 455

RealPos Function

Returns the current position of the specified robot.

Syntax
RealPos

Return Values
A robot point representing the current position of the specified robot.

Description
RealPos is used to read the current position of the robot.

See Also
CurPos, CX, CY, CZ, CU, CV, CW, RealPls

RealPos Function Example

Function ShowRealPos

 Print RealPos
Fend

P1 = RealPos

F

RealTorque Function

456 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

RealTorque Function

Returns the current torque instruction value of the specified joint.

Syntax
RealTorque(jointNumber)

Parameters
jointNumber Specifies the joint number to acquire the torque instruction value using an expression or

numeric value.
The additional S axis is 8 and T axis is 9.

Return values

Returns the real value (0-1) representing the proportion in the maximum torque on current power mode.

See also
TC, TCSpeed, TCLim

RealTorque Function Example

Print "Current Z axis torqueinstruction value:", RealTorque(3)

F

Recover Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 457

Recover Statement

Executes safeguard position recovery and returns status.
This is for the experienced user and you need to understand the command specification before use.

Syntax

(1) Recover robotNumber | All
(2) Recover robotNumber | All , WithMove | WithoutMove

Parameters

robotNumber Robot number that you want to execute recovery for.
If omitted, all robots are executed recovery

All All robots execute recovery
If omitted, same as All.

WithMove A constant whose value is 0.
Turns motor on and executes safeguard position recovery.
If omitted, same as WithMove.

WithoutMove A constant whose value is 1.
Turns the robot motor on. Not usually used.
Realizes the special recovery with AbortMotion.

Return Values

Boolean value. True if recover was completed, False if not.

Description

To execute Recover statement from a program, you need to set the [Enable advanced task
commands] checkbox in the Setup menu | System Configruation | Controller | Preferences] page.

Recover can be used after the safeguard is closed to turn on the robot motors and move the robot
back to the position it was in when the safeguard was open with low power PTP motion. After Recover
has completed successfully, you can execute the Cont method to continue the cycle.

When more than one robot is used in the controller and All is specified, all robots are recovered.

See Also
AbortMotion, Cont, Recover function, RecoverPos

Recover Statement Example

CAUTION

 When executing the Recover command from a program, you must understand
the command specification and confirm that the system has the proper conditions
for this command. Improper use such as continuous execution of a command
within a loop may deteriorate the system safety.

S

Recover Statement

458 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Function main
 Xqt 2, monitor, NoPause
 Do
 Jump P1
 Jump P2
 Loop
Fend

Function monitor
 Do
 If Sw(SGOpenSwitch) = On then
 Wait Sw(SGOpenSwitch) = Off and Sw(RecoverSwitch) = On
 Recover All
 EndIf
 Loop
Fend

Recover Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 459

Recover Function

Executes safeguard position recovery and returns status.
This is for the experienced user and you need to understand the command specification before use.

Syntax

(1) Recover
(2) Recover (robotNumber | All)
(3) Recover (robotNumber | All , WithMove | WithoutMove)

Parameters

robotNumber Robot number that you want to execute recovery for.
If omitted, all robots are executed recovery

All All robots execute recovery
If omitted, same as All.

WithMove A constant whose value is 0.
Turns motor on and executes safeguard position recovery.
If omitted, same as WithMove.

WithoutMove A constant whose value is 1.
Turns the robot motor on. Not usually used.
Realizes the special recovery with AbortMotion.

Return Values

Boolean value. True if recover was completed, False if not.

Description

To execute Recover statement from a program, you need to set the [Enable advanced task
commands] checkbox in the Setup menu | System Configruation | Controller | Preferences] page.

Recover can be used after the safeguard is closed to turn on the robot motors and move the robot
back to the position it was in when the safeguard was open with low power PTP motion. After Recover
has completed successfully, you can execute the Cont method to continue the cycle.

When more than one robot is used in the controller and All is specified, all robots are recovered.

See Also

AbortMotion, Cont, Recover function, RecoverPos

Recover Function Example

CAUTION

 When executing the Recover command from a program, you must understand
the command specification and confirm that the system has the proper conditions
for this command. Improper use such as continuous execution of a command
within a loop may deteriorate the system safety.

See Also

AbortMotion, Cont, Recover, RecoverPos

F

Recover Function

460 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Recover function Example

Boolean sts
Integer answer

sts = Recover
If sts = True Then

MsgBox "Ready to continue", MB_ICONQUESTION + MB_YESNO, "MyProject",
answer

If answer = IDYES Then
 Cont
EndIf

EndIf

RecoverPos Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 461

RecoverPos Function

Returns the position where a robot was in when safeguard was open.
This is for the experienced and you need to understand the command specification before use.

Syntax

RecoverPos ([robotNumber])

Parameters

robotNumber Integer value that specifies a robot number
If omitted, the current robot number is used.

Return Values
Returns the position the specified robot was in when the safeguard was open.
In the case where the safeguard was not open or the robot has completed the recovery, the
coordinates of the returned point data are 0.

Description

This function returns the robot recovery position when using the Cont or Recover commands.

See Also

AbortMotion, Cont, Recover, Recover function, RealPos

RecoverPos function Example

If the straight distance of recovery is less than 10 mm, it executes recovery. If more than 10 mm, it
finishes the program.

If Dist(RecoverPos, RealPos) < 10 Then

Recover All
Else

Quit All
EndIf

F

Redim Statement

462 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Redim Statement

Redimension an array at run-time.

Syntax

Redim [Preserve] arrayName (subscripts)

Parameters
Preserve Optional. Specifies to preserve the previous contents of the array. If omitted, the

array will be cleared.
arrayName Name of the array variable; follows standard variable naming conventions. The

array must have already been declared.
subscripts New dimensions of an array variable may be declared. You must supply the

same number of dimensions as when the variable was declared. The subscripts
syntax is as follows

 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 and the

available number of array elements is the upper bound value + 1.
 When specifying the upper bound value, make sure the number of total elements

is within the range shown below:
 Others than

String
String

Local variable 2000 200
Global Preserve variable 4000 400
Global variable and module variable 100000 10000

Description

Use Redim to change an array's dimensions at run time. Use Preserve to retain previous values.
The array variable declared by Byref cannot use Redim.

Frequent Redim will decrease the speed of program execution. Especially, we recommend using the
minimum of Redim for the global preserve variables.

See Also
UBound

S

Redim Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 463

Redim Statement Example

Integer i, numParts, a(0)

Print "Enter number of parts "
Input numParts

Redim a(numParts)

For i=0 to UBound(a)
 a(i) = i
Next

' Redimension the array with 20 more elements
Redim Preserve a(numParts + 20)

' The first element values are retained
For i = 0 to UBound(a)
 Print a(i)
Next

Rename Statement

464 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Rename Statement

Renames a file.

Syntax

Rename oldFileName, newFileName

Parameters

oldFileName String expression containing the path and name of the file to rename.
See ChDisk for the details.

newFileName The new name to be given to the file specified by oldFileName.
See ChDisk for the details.

Description

Changes name of specified file oldFileName to newFileName.

If path is omitted, Rename searches for oldFileName in the current directory.

Rename is only enabled when oldFileName and newFileName are specified in the same drive.

A file may not be renamed to a filename that already exists in the same path.

Wildcard characters are not allowed in either oldFileName or newFileName.

See Also

Copy

Rename Example

Example from the command window:

> Rename A.PRG B.PRG

> S

RenDir Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 465

RenDir Statement

Rename a directory.

Syntax

Rendir oldDirName As String, newDirName As String

Parameters

oldDirName A string expression specifying the path and name of the directory to rename.
newDirName A string expression specifying the path and new name to be given to the directory

specified by oldDir.
See ChDisk for the details of path.

Description

The same path used for oldDirName must be included for newDirName.

If both paths of the parameters above are omitted and directory name is only specified, the current
directory is specified.

Wildcard characters are not allowed in either oldDirName or newDirName.

Notes
This statement is executable only with the PC disk.

See Also

Dir, MkDir

RenDir Command Example

RenDir "c:\mydata", "c:\mydata1"

>

Reset Statement

466 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Reset Statement
Resets the controller into an initialized state.

Syntax
(1) Reset
(2) Reset Error

Description
Reset resets the items shown below.
Reset Error finishes all non-background tasks and resets the error status and robot control parameters.
To execute the Reset Error statement from programs you need to set the [Enable advanced task
commands] preference in the Setup | System Configuration | Controller | Preference page.

Emergency Stop Status (reset by Reset only)
Error status
Output Bits (reset by Reset only)

All Output Bits output set to Off except the I/O for Remote.
User can set Option Switch to turn this feature off.

Robot Control parameter
Current robot Speed, SpeedR, SpeedS (Initialized to default values)
Current robot QPDecelR , QPDecelS (Initialized to default values)
Crrent robot LimZ parameter (Initialized to 0)
Current robot CP parameter (Initialized to Off)
Current robot SoftCP parameter (Initialized to Off)
Current robot Fine (Initialized to default values)
Currrent robot Power Low (Low Power Mode set to On)
Current robot PTPBoost (Initialized to default values)
Current robot TCLim, TCSpeed (Initialized to default values)
Current robot PgLSpeed (Initialized to default values)

For servo related errors, Emergency Stop status, and any other conditions requiring a Reset, no
command other than Reset will be accepted. In this case first execute Reset, then execute other
processing as necessary.

For example, after an emergency stop, first verify safe operating conditions, execute Reset, and then
execute Motor On.

Critical error state will not be canceled by Reset.
When critical error occurs, turn Off the controller and solve the cause of the error.

The Reset Statement cannot be executed from a background task or tasks started with the Trap
Emergency or Trap Error. Emergency Stop status cannot be reset from programs.

Notes
Reset Outputs Preference

(Setup | System Configuration | Preferences page) If the "Reset turns off outputs" controller
preference is on, then when the Reset instruction is issued, all outputs will be turned off. This is
important to remember when wiring the system such that turning the outputs off should not cause
tooling to drop or similar situations.

See Also

Accel, AccelS, Fine, LimZ, Motor, Off, On, PTPBoost, SFree, SLock, Speed, SpeedS
Reset Statement Example

Example from the command window.

>reset
>

> S

Restart Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 467

Restart Statement

Restarts the current main program group.
This command is for the experienced user and you should understand the command
specification before use.

Syntax

Restart

Description

Restart stops all tasks and re-executes the last main program group that was running. Background
tasks continue to run.
All Trap settings are reset and even if Restart stops tasks, it doesn’t execute Trap Abort.
Restart resets the Pause status.
If you execute Restart during error status, reset the error first using a method such as the Reset Error
statement.
Restart cannot be used during Emergency Stop status as it causes an error. Emergency Stop status
cannot be reset from programs.

CAUTION

 When executing the Restart command from a program, you must
understand the command specification and confirm that the system has
the proper conditions for this command. Improper use such as
continuous execution of a command within a loop may deteriorate the
system safety.

See Also

Quit, Reset, Trap, Xqt

Restart Statement Example

Function main
 Trap Error Xqt eTrap
 Motor On
 Call PickPlac
Fend

Function eTrap

Wait Sw(ERresetSwitch)
Reset Error
Wait Sw(RestartSwitch)
Restart

Fend

S

Resume Statement

468 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Resume Statement

Continues a task which was suspended by the Halt instruction.

Syntax
Resume { taskIdentifier | All }

Parameters
taskIdentifier Task name or integer expression representing the task number.

Task name is a function name used in an Xqt statement or a function started from
the Run window or Operator window.

Task number range is:
Normal tasks : 1 ~ 32
Background task : 65 ~ 80
Trap tasks : 257 ~ 267

All Specifies that all tasks should be resumed.

Description
Resume continues the execution of the tasks suspended by the Halt instruction.

See Also
Halt, Quit, Xqt

Resume Statement Example
This shows the use of Resume instruction after the Halt instruction.

Function main
 Xqt 2, flicker 'Execute flicker as task 2

 Do
 Wait 3 'Allow flicker to execute for 3 seconds
 Halt flicker 'Halt the flicker task
 Wait 3
 Resume flicker 'Resume the flicker task
 Loop
Fend

Function flicker
 Do
 On 1
 Wait 0.2
 Off 1
 Wait 0.2
 Loop
Fend

S

Return Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 469

Return Statement

The Return statement is used with the GoSub statement. GoSub transfers program control to
a subroutine. Once the subroutine is complete, Return causes program execution to continue
at the line following the GoSub instruction which initiated the subroutine.

Syntax
Return

Description
The Return statement is used with the GoSub statement. The primary purpose of the Return
statement is to return program control back to the instruction following the GoSub instruction which
initiated the subroutine in the first place.

The GoSub instruction causes program control to branch to the user specified statement line number
or label. The program then executes the statement on that line and continues execution through
subsequent line numbers until a Return instruction is encountered. The Return instruction then
causes program control to transfer back to the line which immediately follows the line which initiated
the GoSub in the first place. (i.e. the GoSub instruction causes the execution of a subroutine and then
execution Returns to the statement following the GoSub instruction.)

Potential Errors
Return Found Without GoSub

A Return instruction is used to "return" from a subroutine back to the original program which issued
the GoSub instruction. If a Return instruction is encountered without a GoSub having first been issued
then an error will occur. A stand alone Return instruction has no meaning because the system doesn't
know where to Return to.

See Also

OnErr, GoSub, GoTo

Return Statement Example

The following example shows a simple function which uses a GoSub instruction to branch to a label
called checkio and check the first 16 user inputs. Then the subroutine returns back to the main
program.

Function main
 Integer var1, var2
 GoSub checkio
 On 1
 On 2
 Exit Function

checkio: 'Subroutine starts here
 var1 = In(0)
 var2 = In(1)
 If var1 <> 0 Or var2 <> 0 Then
 Print "Message to Operator here"
 EndIf
finished:
 Return 'Subroutine ends here and returns to line 40
Fend

S

Right$ Function

470 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Right$ Function

Returns a substring of the rightmost characters of a string.

Syntax
Right$(string, count)

Parameters
string String variable or character string of up to 255 characters from which the

rightmost characters are copied.
count The number of characters to copy from string starting with the rightmost character.

Return Values
Returns a string of the rightmost count characters from the character string specified by the user.

Description
Right$ returns the rightmost count characters of a string specified by the user. Right$ can return up to
as many characters as are in the character string.

See Also
Asc, Chr$, InStr, Left$, Len, Mid$, Space$, Str$, Val

Right$ Example
The example shown below shows a program which takes a part data string as its input and splits out
the part number, part name, and part count.

Function SplitPartData(DataIn$ As String, ByRef PartNum$ As String,
ByRef PartName$ As String, ByRef PartCount As Integer)

 PartNum$ = Left$(DataIn$, 10)

 DataIn$ = Right$(datain$, Len(DataIn$) - pos)
 pos = Instr(DataIn$, ",")

 PartName$ = Mid$(DataIn$, 11, 10)

 PartCount = Val(Right$(dataIn$, 5))

Fend

Some other example results from the Right$ instruction from the Command
window.
> Print Right$("ABCDEFG", 2)
 FG

> Print Right$("ABC", 3)
 ABC

F

RmDir Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 471

RmDir Statement

Removes an empty subdirectory from a controller disk drive.

Syntax

Rmdir dirName

Parameters

dirName String expression for the path and name of the directory to remove.
If the directory name is specified without a path, then the subdirectory in the current
directory is specified.
See ChDisk for the details of path.

Description

Removes the specified subdirectory. Prior to executing Rmdir all of the subdirectory's files must be
deleted.

The current directory or parent directory cannot be removed.

When executed from the Command window, quotes may be omitted.

Notes

- This statement is executable only with the PC disk.

Rmdir Example

Example from the command window:

> RmDir \mydata

> S

Rnd Function

472 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Rnd Function

Return a random number.

Syntax
Rnd(maxValue)

Parameters
maxValue Real expression that represents the maximum return value.

Return Values
Random real number from 0 to range.

Description
Use Rnd to generate random number values.

See Also
Int, Randomize

Rnd Function Example
Here's a Rnd example that generates a random number between 1 and 10.

Function main
 Real r
 Integer randNum

 Randomize
 randNum = Int(Rnd(9)) + 1
 Print "Random number is:", randNum
Fend

F

Robot Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 473

Robot Statement

Selects the current robot.

Syntax

Robot number

Parameters

number Number of the desired robot. The value ranges from 1 to the number of installed robots.

Description

Robot allows the user to select the default robot for subsequent motion instructions.

On a system with one robot, the Robot statement does not need to be used.

See Also

Accel, AccelS, Arm, ArmSet, Go, Hofs, Home, HOrdr, Local, Move, Pulse, Robot function, Speed,
SpeedS

Robot Example

Function main
 Integer I
 For I = 1 to 100
 Robot 1
 Go P(i)
 Robot 2
 Go P(i)
 Next I
Fend

S

Robot Function

474 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Robot Function

Returns the current robot number.

Syntax

Robot

Return Values

Integer containing the current robot number.

See Also

Robot Statement

Robot Function Example

Print "The current robot is: ", Robot

F

RobotInfo Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 475

RobotInfo Function

Returns status information for the robot.

Syntax

RobotInfo(index)

Parameters

index Integer expression that represents the index of the information to retrieve.

Return Values

The specified information is returned as an integer.

Description

The information for each bit of the returned value is shown in the table below:

Index Bit Value Description

0

0 &H1 Undefined
1 &H2 Resetable error has occurred
2 &H4 Non-resetable error has occured
3 &H8 Motors are on
4 &H10 Current power is high
5 &H20 Undefined
6 &H40 Undefined
7 &H80 Undefined
8 &H100 Robot is halted
9 &H200 Robot not halted (executing motion or in quick pause)
10 &H400 Robot stopped by pause or safeguard
11 Undefined
12 Undefined
13 Undefined
14 &H4000 TILL condition was satisfied by preceding motion command
15 &H8000 SENSE condition was satisfied by preceding motion command

16-31 Undefined

1

0 &H1 Robot is tracking (Conveyor tracking)
1 &H2 Robot is waiting for recovery motion (WaitRecover status)
2 &H4 Robot is being recovered

3-31 Undefined

2 0 &H1 Robot is at home position
1-31 Undefined

3

0 &H1 Joint 1 servo is engaged
1 &H2 Joint 2 servo is engaged
2 &H4 Joint 3 servo is engaged
3 &H8 Joint 4 servo is engaged
4 &H10 Joint 5 servo is engaged
5 &H20 Joint 6 servo is engaged
6 &H40 Joint 7 servo is engaged
7 &H80 S axis servo is engaged
8 &H100 T axis servo is engaged

9-31 Undefined

F

RobotInfo Function

476 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Index Bit Value Description

4

N/A 0 - 32
−1

Number of tasks executing robot commands
0 = command executing from command window or macro
−1 = no task is using the manipulator

5

0 &H1 Joint 1 brake is on
1 &H2 Joint 2 brake is on
2 &H4 Joint 3 brake is on
3 &H8 Joint 4 brake is on
4 &H10 Joint 5 brake is on
5 &H20 Joint 6 brake is on
6 &H40 Joint 7 brake is on
7 &H80 S axis brake is on
8 &H100 T axis brake is on

9-31 Undefined

See Also
CtrlInfo, RobotInfo$, TaskInfo

RobotInfo Function Example

If (RobotInfo(3) And &H1) = &H1 Then
 Print "Joint 1 is locked"
Else
 Print "Joint 1 is free"
EndIf

RobotInfo$ Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 477

RobotInfo$ Function

Returns text information for the robot.

Syntax

RobotInfo$(index)

Parameters

index Integer expression that represents the index of the information to retrieve.

Return Values

A string containing the specified information.
Description

Index Description

0 Robot name
1 Model name
2 Defaul point file name
3 Undefined
4 Serial number of robot

See Also

CtrlInfo, RobotInfo, TaskInfo

RobotInfo$ Function Example

Print "Robot Name: ", RobotInfo$(0)

F

RobotModel$ Function

478 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

RobotModel$ Function

Returns the robot model name.

Syntax
RobotModel$

Return Values
A string containing the model name. This is the name that is shown on the rear panel of the robot.

See Also
RobotType

RobotModel$ Example

Print "The robot model is ", RobotModel$

F

RobotName$ Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 479

RobotName$ Function

Returns the robot name.

Syntax
RobotName$

Return Values
A string containing the robot name.

See Also
RobotInfo, RobotModel$

RobotName$ Example

Print "The robot name is ", RobotName$

F

RobotSerial$ Function

480 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

RobotSerial$ Function

Returns the robot serial number.

Syntax
RobotSerial$

Return Values
A string containing the robot serial number.

See Also
RobotInfo, RobotName$, RobotModel$

RobotSerial$ Example

Print "The robot serial number is ", RobotSerial$

F

RobotType Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 481

RobotType Function

Returns the robot type.

Syntax
RobotType

Return Values
1: Joint

2: Cartesian

3: SCARA

5: 6-AXIS

6: RS series

See Also
RobotModel$

RobotType Example

If RobotType = 3 Then
 Print "Robot type is SCARA"
EndIf

F

ROpen Statement

482 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

ROpen Statement

Opens a file for reading.

Syntax
ROpen fileName As #fileNumber
 .
 .
Close #fileNumber

Parameters

fileName A string expression containing the file name to read from including the path.
If only file name is specified, a file in the current directory is specified.
See ChDisk for the details.

fileNumber Integer expression from 30 - 63

Description

Opens the specified fileName for reading and identifies it by the specified fileNumber. This statement
is used to open and read data from the specified file.

Notes

 PC disk only -

 Do not specify a network path, otherwise an error occurs. -

The fileNumber identifies the file as long as the file is open and until it is closed the same file number
cannot be used to the other files.
The fileNumber is used for the file operation commands (Input#, Read, Seek, Eof, Close)

Close statement closes the file and releases the file number.

It is recommended that you use the FreeFile function to obtain the file number so that more than one
task are not using the same number.

See Also

Close, Input #, AOpen, BOpen, UOpen, WOpen, FreeFile

ROpen Statement Example

Integer fileNum, i, j

fileNum = FreeFile
WOpen "TEST.DAT" As #fileNum
For i = 0 To 100
 Print #fileNum, i
Next i
Close #fileNum

fileNum = FreeFile
ROpen "TEST.DAT" As #fileNum
For i = 0 to 100
 Input #fileNum, j
 Print "data = ", j
Next i
Close #fileNum

S

RSet$ Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 483

RSet$ Function

Returns the specified string with leading spaces added up to the specified length..

Syntax
RSet$ (string, length)

Parameters
string String expression.
length Integer expression for the total length of the string returned.

Return Values
Specified string with leading spaces appended.

See Also
LSet$, Space$

RSet$ Function Example

temp$ = "123"
temp$ = RSet$(temp$, 10) ' temp$ = " 123"

F

RShift Function

484 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

RShift Function

Shifts numeric data to the right by a user specified number of bits.

Syntax
RShift(number, shiftBits)

Parameters
number Numeric expression to be shifted.
shiftBits The number of bits (integer from 0 to 31) to shift number to the right.

Return Values
Returns a numeric result which is equal to the value of number after shifting right shiftbits number of
bits.

Description
RShift shifts the specified numeric data (number) to the right (toward a lower order digit) by the
specified number of bits (shiftBits). The high order bits shifted are replaced by 0.

The simplest explanation for RShift is that it simply returns the result of number / 2shiftBits. (Number is
divided by 2 shiftBit times.)

Notes
Numeric Data Type:

The numeric data (number) may be any valid numeric data type. RShift works with data types: Byte,
Integer, and Real.

See Also

And, LShift, Not, Or, Xor

RShift Example
The example shown below shows a program which shows all the possible RShift values for an Integer
data type starting with the integer set to 0.

Function rshiftst
 Integer num, snum, i
 num = 32767
 For i = 1 to 16
 Print "i =", i
 snum = RShift(num, 1)
 Print "RShift(32767, ", i, ") = ", snum
 Next i
Fend

Some other example results from the RShift instruction from the command window.

> Print RShift(10,1)
5
> Print RShift(8,3)
1
> Print RShift(16,2)
4

F

RTrim$ Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 485

RTrim$ Function

Returns a string equal to specified string without trailing spaces.

Syntax
RTrim$(string)

Parameters
string String expression.

Return Values
Specified string with trailing spaces removed.

See Also
LTrim$, Trim$

RTrim$ Function Example

str$ = " data "
str$ = RTrim$(str$) ' str$ = "..data"

EndIf

F

RunDialog Statement

486 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

RunDialog Statement

Runs an EPSON RC+ 6.0 dialog from a SPEL+ program.

Syntax
(1) RunDialog dialogID
(2) RunDialog DLG_ROBOTMNG, [robotAllowed]

Parameters
dialogID Integer expression containing a valid dialog ID. These values are predefined

constants as shown below.
DLG_ROBOTMNG 100 Run the Robot Manager dialog
DLG_IOMON 102 Run I/O Monitor
DLG_VGUIDE 110 Run Vision Guide dialog

robotAllowed This parameter is only available when DLG_ROBOTMNG is specified as dialog ID.

Specifies a robot that is available in the Robot Manager in bit value.

Example Set vaule bit15 bit14 ... bit2 bit1 bit0
Robot 1 &H0001 Off Off Off Off On
Robot 2 &H0002 Off Off Off On Off
Robot 1 and 2 &H0003 Off Off Off On On

:
Robot 16 &H1000 On Off Off Off Off

Description

Use RunDialog to run EPSON RC+ 6.0 dialogs from a SPEL+ task. The task will be suspended until
the operator closes the dialog.

When running dialogs that execute robot commands, you should ensure that no other tasks will be
controlling the robot while the dialog is displayed, otherwise errors could occur.

See Also
InputBox, MsgBox

RunDialog Example

If Motor = Off Then
 RunDialog DLG_ROBOTMNG
 If Motor = Off Then
 Print "Motors are off, aborting program"
 Quit All
 EndIf
EndIf

S

SafetyOn Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 487

SafetyOn Function

Return the Safety Door open status.

Syntax
SafetyOn

Return Values
True if the Safety Door is Open, otherwise False.

Description
SafetyOn function is used only for NoPause task, NoEmgAbort task (special task using NoPause or
NoEmgAbort at Xqt), and background tasks.

See Also
ErrorOn, EstopOn, PauseOn, Wait, Xqt

SafetyOn Function Example
The following example shows a program that monitors the Safety Door open and switches the I/O
On/Off when Safety Door open occurs.

Notes

Forced Flag
This program example uses Forced flag for On/Off command.
Be sure that the I/O outputs change during error, or at Emergency Stop or Safety Door Open when
designing the system.

Function main

 Xqt SafetyOnOffMonitor, NoPause
 :
 :
Fend

Function SafetyOnOffMonitor
 Do
 Wait SafetyOn = On
 Print "Saftey Open"
 Off 10, Forced
 On 12, Forced

 Wait SafetyOn = Off
 Print "Saftey Close"
 On 10, Forced
 Off 12, Forced
 Loop
Fend

F

SavePoints Statement

488 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

SavePoints Statement

Saves point data in main memory to a disk file for the current robot.

Syntax
SavePoints filename

Parameters
fileName String expression containing the file into which points will be stored. The

extension must be .PTS.
You cannot specify a file path and fileName doesn’t have any effect from ChDisk.
See ChDisk for the details.

Description

SavePoints saves points for the current robot to the specified file in the current project directory.
A .PTS extension must always be specified.
The SavePoints command will also add the point file to the project for the current robot if it did not
already exist.

The point data is stored in the compact flush inside of the controller. Therefore, SavePoints starts
writing into the compact flush. Frequent writing into the compact flush will shorten the compact flush
lifetime. We recommend using SavePoints only for saving the point data.

Potential Errors
Out of Disk Space

If there is no space remaining an error will occur.
Point file for another robot.

If fileName is a point file for another robot, an error will occur
A Path Cannot be Specified

If fileName contains a path, an error will occur. Only a file name in the current project can be specified.
Bad File name

If a file name is entered which has spaces in the name, or other bad file name characteristics an error
will occur.

See Also

ImportPoints, LoadPoints

SavePoints Statement Example
ClearPoints
For i = 1 To 10
 P(i) = XY(i, 100, 0, 0)
Next i
SavePoints "TEST.PTS"

> S

Seek Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 489

Seek Statement

Changes position of file pointer for a specified file.

Syntax

Seek #fileNumber, pointer

Parameters

fileNumber Integer expression from 30 ~ 63
pointer Integer expression for the desired position to seek, starting from 0 to the length of

the file.

See Also

BOpen, Read, ROpen, UOpen, Write, WOpen

Seek Statement Example

Integer fileNum
String data$

fileNumber = FreeFile
UOpen "TEST.DAT" As #fileNum
Seek #fileNum, 20
Read #fileNum, data$, 2
Close #fileNum

S

Select...Send Statement

490 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Select...Send Statement

Executes one of several groups of statements, depending on the value of an expression.

Syntax
Select selectExpr
 Case caseExpr
 statements
 [Case caseExpr
 statements]
 [Default
 statements]

Send

Parameters
selectExpr Any numeric or string expression.
caseExpr Any numeric or string expression that evaluates to the same type as selectExpr.
statements One or more valid SPEL+ statements or multi-statements.

Description
If any one caseExpr is equivalent to selectExpr, then the statements after the Case statement are
executed. After execution, program control transfers to the statement following the Send statement.

If no caseExpr is equivalent to selectExpr, the Default statements are executed and program control
transfers to the statement following the Send statement.

If no caseExpr is equivalent to selectExpr and Default is omitted, nothing is executed and program
control transfers to the statement immediately following the Send statement.

selectExpr and caseExpr may include constants, variables, and logical operators that use And, Or and
Xor.

See Also
If...Then...Else

Select Example
Shown below is a simple example for Select...Send:

Function Main
 Integer I
 For i = 0 To 10
 Select I
 Case 0
 Off 1;On 2;Jump P1
 Case 3
 On 1;Off 2
 Jump P2;Move P3;On 3
 Case 7
 On 4
 Default
 On 7
 Send
 Next
Fend

S

SelectDB Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 491

SelectDB Statement

Searches the data in the table in an opened database.

Syntax
SelectDB (#fileNumber, TableName, SekectCondition, SortMethod)

Parameters
#fileNumber Integer value from 501 ~ 508 representing the database number specified with

the OpenDB statement
TableName Table name you want to search in

If the database type specified with #fileNumber is an Excel workbook, specify an
Excel worksheet or named table
When specifying an Excel sheet, add $ to end of the worksheet name and
enclose the name with [].
When specifying an area with a name in an Excel worksheet, enclose the name
with [].

SelectCondition Conditons of the search.
AND, OR are available to specify the multiple conditions.
If omitted, the all data in the table is serched.

SortMethod Order to show searched data
Specify Sort key and Sort order (ascending order [ASC] / descending order
[DESC]）.
If the Sort order is omitted, the ascending Sort key order is specified.
If the SortMethod is omitted, the order is decided by the opened database.

Return Values

Returns total numbers of rows.

Description
Sorts the data which meets the SelectCondition in the specified table of the opened database based
on the Sort conditions.
You should execute SelectDB before reading / writing data with the Input# and Print# statements.
If the opened database is an Excel workbook, write a row name to use for the search in the first line of
the worksheet and area defined with the name.
For Excel 2007 workbook, the worksheet name must be specified. You cannot access to area defined
with the name.

See Also
OpenDB,CloseDB, Input #, Print #

SelectDB Statement

492 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

SelectDB function Example

The following example uses the SQL server 2000 sample database, Northwind.
The Employees table is searched with the condition TitleOfCourtesy = Ms. with EmployeeID in
descending order.

 Integer count, i, eid
 String Lastname$, Firstname$, Title$

 OpenDB #501, SQL, "(LOCAL)", "Northwind"
 count = SelectDB(#501, "Employees", "TitleOfCourtesy = 'Ms.'",
 "EmployeeID DESC")
 For i = 0 To count - 1
 Input #501, eid, Lastname$, Firstname$, Title$
 Print eid, ",", Lastname$, ",", Firstname$, ",", Title$
 Next
 CloseDB #501

Using Access database
The following example uses Microsoft Access 2007 sample database “Students” and loads the data
whose ID is more than 10 from the table “Students” in the ID descending order.

 Integer count, i, eid
 String Lastname$, Firstname$, dummy$

 OpenDB #502, Access, "c:\MyDataBase\Students.accdb"
 count = SelectDB(#502, "Students", "ID > 10'", "ID")
 For i = 0 To count - 1
 Input #502, eid, dummy$, Lastname$, Firstname$
 Print eid, ",", Lastname$, ",", Firstname$
 Next
 CloseDB #502

Using Excel workbook
The following example uses Microsoft Excel workbook “Students“ and loads the data in worksheet
“Student” whose Age is under 25 with the ID in ascending order.

 Integer count, i, eid
 String Lastname$, Firstname$

 OpenDB #503, Excel, "c:\MyDataBase\Students.xls"
 count = SelectDB(#503, "[Students$]", "Age < 25", "ID ASC")
 For i = 0 To count - 1
 Input #503, eid, Lastname$, Firstname$
 Print eid, ",", Lastname$, ",", Firstname$
 Next
 CloseDB #503

Sense Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 493

Sense Statement

Specifies and displays input condition that, if satisfied, completes the Jump in progress
by stopping the robot above the target position.

Syntax
Sense [condition]

Parameters
condition Input status specified as a trigger

[Event] comparative operator (=, <>, >=, >, <, <=) [Integer expression]

The following functions and variables can be used in the Event:
Functions : Sw, In, InW, Oport, Out, OutW, MemSw, MemIn, MemInW, Ctr,
 GetRobotInsideBox, GetRobotInsidePlane
Variables : Byte, Integer, Long global preserve variable, Global variable,
 module variable

In addition, using the following operators you can specify multiple event
conditions.
Operator : And, Or, Xor
Example : Sense Sw(5) = On
 Sense Sw(5) = On And Sw(6) = Off

The following functions and operators may be used in the condition:
Functions : Sw, In, InW, Oport, Out, OutW, MemSw, MemIn, MemW, Ctr
Operators : And, Or, Xor
Example Sense Sw(5) = On
 Sense Sw(5) = On And Sw(6) = Off

Description
Sense is used to stop approach motion during a Jump, Jump3, and Jump3CP instructions. The Sense
condition must include at least one of the functions above.

When variables are included in the Sense condition, their values are computed when setting the
Sense condition. No use of variable is recommended. Otherwise, the condition may be an unintended
condition. Multiple Sense statements are permitted. The most recent Sense condition remains
current until superseded with another Sense statement.

Jump, Jump3, Jump3CP with Sense Modifier
Checks if the current Sense condition is satisfied. If satisfied, the Jump instruction completes with the
robot stopped above the target position. (i.e. When the Sense Condition is True, the robot arm
remains just above the target position without executing approach motion. When the Sense condition
is False, the robot arm completes the full Jump instruction motion through to the target position.

When parameters are omitted, the current Sense definition is displayed.

> S

Sense Statement

494 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Notes
Sense Setting at Main Power On

At power on, the initial Sense condition is:
Sense Sw(0) = On 'Robot does not execute downward motion when Input bit 0 is on

Use of JS and Stat to Verify Sense
Use JS or Stat to verify if the Sense condition has been satisfied after execting a motion command
using Sense modificators.

To use a variables in the event condition expression
- Available variables are Integer type (Byte, Integer, Long)
- Array variables are not available
- Local variables are not available
- If a variable value cannot satisfy the event condition for more than 0.01 second, the system cannot

retrieve the change in variables.
- Up to 64 can wait for variables in one system (including the ones used in the event condition

expressions such as Wait). If it is over 64, an error occurs during the project build.
- If you try to transfer a variable waiting for variables as a reference with Byref, an error occurs.
- When a variable is included in the right side member of the event condition expression, the value is

calculated when the motion command start. We recommend not using variables in an integer
expression to avoid making unintended conditions.

See Also

In, JS, Jump, Jump3, Jump3CP, MemIn, MemSw, Stat, Sw

Sense Statement Example

This is a simple example on the usage of the Sense instruction.

Function test
 .
 .
TrySense:
 Sense Sw(1) = Off 'Specifies the arm stops above the target when the input bit 1 is Off.
 Jump P1 C2 Sense
 If JS = True Then
 GoSub ERRPRC 'If the arm remains stationary above the point specified,
 GoTo TrySense 'then execute ERRPRC and go to TrySense.
 EndIf
 On 1; Wait 0.2; Off 1
 .
 .
Fend

<Other Syntax Examples>

> Sense Sw(1)=1 And MemSw(1)=1

> Sense Sw(0) Or (Sw(1) And MemSw(1))

SetCom Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 495

SetCom Statement

Sets or displays parameters for RS-232C port.

Syntax
SetCom #portNumber, [baud], [dataBits], [stopBits] , [parity] , [terminator] , [HWFlow],

[SWFlow] , [timeOut]
Parameters

portNumber Integer value representing a RS-232C port number
Real Part 1 ~ 8
Windows Part 1001 ~ 1002

Specifies which to set parameters for. Valid values are 1-8.
baud Optional. Specifies the baud rate. Valid values are:
110 2400 19200
300 4800 38400
600 9600 56000
1200 14400 115200
 (Default: 9600)
 When using the Windows Part port , some data may drop in the baud rate of 19200

or more.
dataBits Optional. Specifies the number of data bits per character. Valid values are 7 and 8.
stopBits Optional. Specifies the number of stop bits per character. Valid values are 1 and 2.
parity Optional. Specifies the parity. Valid values are O (Odd), E (Even), and N (None).
terminator Optional. Specifies the line termination characters. Valid values are CR, LF, CRLF.
HWFlow Optional. Specifies hardware control. Valid values are RTS and NONE.
SWFlow Optional. Specifies software control. Valid values are XON and NONE.
timeOut Optional. Specifies the maximum time for transmit or receive in seconds. If this

value is 0, then there is no time out. Valid range is 0-2147483 seconds in 0.01
second intervals.

Description
When all the parameter is omitted, displays a communication port setting.
If the several ports are used in the communication at one time with more than 19200 baud rate, error
2929 or 2922 may occur. In this case, select the lower baud rate or avoid using several ports at one
time.
When using the Windows Part port, some dta may drop in the baud rate of 19200 or more.
If any data drops, select the lower baud rate or use the Real Part port.
Parameter is stored to the Conpact Flash inside the Controller. When you execute SetCom, the data
is written to the Conpact Flash. If a data is written to the Conpact Flase fequentlly, it may shorten the
Conpact Flash life. Using SetCom only when changing the parameter is recommended.

See Also
OpenCom, CloseCom, SetNet

SetCom Example

SetCom #1, 9600, 8, 1, N, CRLF, NONE, NONE, 0

SetCom #2, 4800

S

SetLatch Statement

496 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

SetLatch Statement

This function does not work with EPSON RC+ 6.0 Ver.6.2.0.

Sets the latch function of the robot position using the R-I/O input.

Syntax
SetLatch { #portNumber, triggerMode}

Parameters

#portNumber Port number of the R-I/O input port to connect the trigger input signal.
The table below shows the port numbers you can specify.
Specify the port number of the unit that the object robot is connected.

 Point Port Number

Control Unit INPUT 2 points 24, 25
OUTPUT - -

Drive Unit 1 INPUT 2 points 56, 57
OUTPUT - -

Drive Unit 2 INPUT 2 points 280, 281
OUTPUT - -

The following constants are defines as the port number.
Constant Port Number
SETLATCH_PORT_CU_0 24
SETLATCH_PORT_CU_1 25
SETLATCH_PORT_DU1_0 56
SETLATCH_PORT_DU1_1 57
SETLATCH_PORT_DU2_0 280
SETLATCH_PORT_DU2_1 281

triggerMode The trigger input signal logic to connect with the R-I/O. The logic can be

specified with the following constants.

Constant Value Explanation
SETLATCH_TRIGGERMODE_TRAILINGEDGE 0 Negative logic
SETLATCH_TRIGGERMODE_LEADINGEDGE 1 Positive logic

With the negative logic, it latches the robot position at the switch edge from the
input signal High to Low.
With the positive logic, it latches the robot position at the switch edge from the
input signal from Low to High.

Description
Sets the condition of the robot position latch using the R-I/O input signals. One robot cannot wait the
trigger signals of several ports simultaneously.
Executing SetLatch needs approx. 40 msec for processing.

> S

SetLatch Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 497

Note

If you specify a port number of the unit unrelated to the selected robot, the error “I/O input/output bit
number is out of available range” occurs.

See Also

LatchEnable, LatchState Function, LatchPos Function

SetLatch Statement Example
Function main
 SetLatch 24, SETLATCH_TRIGGERMODE_LEADINGEDGE 'Positive logic
 LatchEnable On 'Enable the latch function
 Go P1
 Wait LatchState = True 'Wait a trigger
 Print LatchPos 'Display the latched position
 LatchEnable Off 'Disable the latch function
Fend

SetLCD Statement

498 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

SetLCD Statement

Sets or displays how the controller's LCD panel displays data.

Syntax
SetLCD
SetLCD displayMode
SetLCD displayMode, Interval

Parameters
displayMode Error message display method

0: Scroll the error message one letter at a time (Default)
1: Scroll the error message one line at a time

Interval Integer value that specifies the display interval in units of millisecond.
Default: 500 millisecond

Description
When all parameters are omitted, displays the LCD setting.

The settings are stored in the Compact Flash inside the Controller. When you execute SetLCD, the
data is written to the Compact Flash. If data is written to the Compact Flase frequently, it may shorten
the Compact Flash life. Use SetLCD only when you need to change the setting is recommended.

SetCom Statement Example

> setlcd
500

> S

SetIn Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 499

SetIn Statement

For Virtual IO, sets specified input port (8 bits) to the specified value.

Syntax
SetIn portNumber, value

Parameters
portNumber Integer expression representing the input port number.
value Integer expression between 0 – 255 to set the specified port to.

Description
SetIn provides the ability to set up to 8 bits of virtual inputs at once.

See Also
SetSW, SetInW

SetIn Statement Example

> setin 0, 1 ' Sets the first bit of port 0 to On.

S >

SetInW Statement

500 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

SetInW Statement

For Virtual IO, sets specified input word (16 bits) to the specified value.

Syntax
SetInW portNumber, value

Parameters
portNumber Integer expression representing the input port number.
value Number between 0 – 65535 to set the specified word to.

Description
SetInW provides the ability to set up to 16 bits of virtual inputs at once.

See Also
SetSw, SetIn

SetInW Statement Example

> setinw 0, 1 ' Sets the first bit of word 0 to On.

S >

SetNet Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 501

SetNet Statement

Sets parameters for a TCP/IP port.

Syntax
SetNet #portNumber, hostAddress, TCP_IP_PortNum, terminator, SWFlow, timeout

Parameters
portNumber Specifies which TCP/IP port to set parameters for. Valid values are 201 - 216.

hostAddress Specifies the host IP address.
TCP_IP_PortNum Specifies the TCP/IP port number for this node.
terminator Specifies the line termination characters. Valid values are CR, LF, CRLF.
SWFlow Specifies software control. Valid value is NONE.
timeOut Specifies the maximum time for transmit or receive in seconds. If this value is 0,

then there is no time out. Valid range is 0-2147483 seconds in 0.01 second
intervals.

Description

Parameter is stored to the Conpact Flash inside the Controller. When you execute SetNet, the data is
written to the Conpact Flash. If a data is written to the Conpact Flase fequentlly, it may shorten the
Conpact Flash life. Using SetNet only when changing the parameter is recommended.

See Also
OpenNet, CloseNet, SetCom

SetNet Statement Example

SetNet #201, "192.168.0.1", 2001, CRLF, NONE, 0

S

SetSw Statement

502 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

SetSw Statement

For Virtual IO, sets specified input bit to the specified value.

Syntax
SetSw bitNumber, value

Parameters
bitNumber Integer expression representing the input bit number.
value Integer expression with a value of 0 (Off) or 1 (On).

Description
SetSw provides the ability to turn on or off one input bit.

See Also
SetIn, SetInW

SetSw Statement Example

> setsw 2, on ' Sets the 2nd input bit to On.

S >

SFree Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 503

SFree Statement
Removes servo power from the specified servo axis.

Syntax
SFree jointNumber [, jointNumber,...]

Parameters
jointNumber An integer expression representing a servo joint number (1 ~ 9).

The additional S axis is 8 and T axis is 9.
Description

SFree removes servo power from the specified servo joints. This instruction is used for the direct
teaching or the part installation by partially de-energizing a specific joint. To re-engage a joint execute
the SLock instruction or Motor On.

SFree initializes the robot control parameter.
See Motor On for the details.

Notes
SFree Sets Some System Items back to Their Initial State:

SFree, for safety purposes, initializes parameters concerning the robot arm speed (Speed and
SpeedS), acceleration (Accel and AccelS) and the LimZ parameter.

Notes
SFree and its Use with the Z Joint and U Joint for SCARA robots (including RS series)

The Z joint has electromagnetic brakes so setting SFree for the Z joint does not immediately allow the
Z joint to be moved. To move the Z joint by hand requires the brake to be released continuously by
pressing the brake release switch on the top of the robot arm.
Some model has electronic brake on the U joint. When the robot has the U joint electronic brake,
setting SFree for the U joint does not immediately allow the U joint to be moved. To move the U joint
by hand requires the brake to be released continuously by pressing the brake release switch on the
top of the robot arm.

SFree is Not Valid with 6-Axis robots
All joints of the 6-axis robots have an electromagnetic brake. The brake can be released using the
Brake command with the motor off. In the motor off state, SFree is not valid. If you execute SFree
with the motor on, an electromagnetic brake will be on. You cannot move any joint by hand using
SFree.

Executing motion commands while joints are in SFree state
Attempting to execute a motion command while in the SFree condition will cause an error in the
controller's default state. However, to allow motion while 1 or more of the axes are in the SFree state,
turn on the "Allow Motion with one or more axes free" controller preference. (This preference can be
set from the Setup | Controller | Preferences EPSON RC+ 5.0.)

See Also

Brake, LimZ, Motor, SFree Function, SLock

SFree Statement Example
This is a simple example on the usage of the SFree instruction. The Motion with SFree controller
preference must be enabled for this example to work.

Function GoPick
 Speed pickSpeed
 SFree 1, 2 'Release the excitation of J1 and J2,
 'and control the Z and U joints for part installation.
 Go pick
 SLock 1, 2 'Restore the excitation of J1 and J2.
Fend

> S

SFree Function

504 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

SFree Function

Returns SFree status for a specified joint.

Syntax
SFree(jointNumber)

Parameters
jointNumber Integer expression representing the joint number to check.

The additional S axis is 8 and T axis is 9.

Return Values
True if the joint is free, False if not.

See Also
SFree Statement

SetFree Statement Example

If SFree(1) Then
 Print "Joint 1 is free"
EndIf

F

Sgn Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 505

Sgn Function

Determines the sign of the operand.

Syntax
Sgn(Operand)

Parameters
Operand A numeric expression.

Return Values
1: If the operand is a positive value.
0: If the operand is a 0
-1: If the operand is a negative value.

Description
The Sgn function determines the sign of the numeric value of the operand.

See Also
Abs, And, Atan, Atan2, Cos, Int, Mod, Or, Not, Sin, Sqr, Str$, Tan, Val, Xor

Sgn Function Example
This is a simple command window example on the usage of the Sgn function.

>print sgn(123)
 1
>print sgn(-123)
 -1
>

F

ShutDown Statement

506 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

ShutDown Statement

Shuts down EPSON RC+ and optionally shuts down or restarts Windows.

Syntax

ShutDown [mode] [, Forced]

Parameters

mode Optional. An integer expression that represents the mode setting described below.
Symbolic constant Value Meaning

Mode ommitted −1 Displays a dialog allowing the user to choose the shutdown option.
SHUTDOWN_ALL 0 Shuts down EPSON RC+ and Windows.
SHUTDOWN_RESTART 1 Shuts down EPSON RC+ and restarts Windows.
SHUTDOWN_EPSONRC 2 Shuts down EPSON RC+.

Forced Optional. Use to force a shutdown.

Description

Use ShutDown to shutdown RC+ and optionally shutdown or reboot Windows from your program.
You can force a shutdown by using the Forced parameter.

Note

If you shutdown with the Forced parameter while tasks are running, you could lose data.
Be sure to save data before shutdown.

See Also

Restart

ShutDown Statement Example

ShutDown 0 ' Shutdown EPSON RC+ and Windows

S

ShutDown Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 507

ShutDown Function

Shuts down EPSON RC+ and optionally shuts down or restarts Windows.

Syntax

ShutDown ([mode], [Forced])

Parameters

mode Optional. An integer expression that represents the mode setting described below.
Symbolic constant Value Meaning

Mode ommitted −1 Displays a dialog allowing the user to choose the shutdown option.
SHUTDOWN_ALL 0 Shuts down EPSON RC+ and Windows.
SHUTDOWN_RESTART 1 Shuts down EPSON RC+ and restarts Windows.
SHUTDOWN_EPSONRC 2 Shuts down EPSON RC+.

Forced Optional. Use to force a shutdown.

Return Values

Returns the following integer values.
-1 When a dialog is displayed and the user selects Cancel.

 0 If shutdown fails
 1 If shutdown is successfull

Description

Use ShutDown to shutdown RC+ and optionally shutdown or reboot Windows from your program.
You can force a shutdown by using the Forced parameter.

Note

If you shutdown with the Forced parameter while tasks are running, you could lose data.
Be sure to save data before shutdown.

ShutDown Function Example

If Shutdown(SHUTDOWN_EPSONRC) = 1 Then
 Print "Shutdown: OK"
Else
 Print "Shutdown: NG"
EndIf

F

Signal Statement

508 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Signal Statement

Send a signal to tasks executing WaitSig.

Syntax
Signal signalNumber

Parameters
signalNumber Signal number to transmit. Range is 0 ~ 63.

Description
Signal can be used to synchronize multi-task execution.

Previous signals issued before WaitSig is executed are ignored.

See Also
WaitSig

Signal Statement Example

Function Main
 Xqt 2, SubTask
 Call InitSys
 Signal 1

Fend

Function SubTask
 WaitSig 1

Fend

S

Sin Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 509

Sin Function

Returns the sine of a numeric expression.

Syntax
Sin(radians)

Parameters
radians Real expression in Radians.

Return Values
Numeric value representing the sine of the numeric expression radians.

Description
Sin returns the sine of the numeric expression. The numeric expression (radians) must be in radian
units. The value returned by the Sin function will range from -1 to 1

To convert from radians to degrees, use the RadToDeg function.

See Also
Abs, Atan, Atan2, Cos, Int, Mod, Not, Sgn, Sqr, Str$, Tan, Val

Sin Function Example
The following example shows a simple program which uses Sin.

Function sintest
 Real x
 Print "Please enter a value in radians:"
 Input x
 Print "Sin of ", x, " is ", Sin(x)
Fend

F

SingularityAngle Statement

510 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

SingularityAngle Statement

Sets the singularity neighborhood angle necessary for the singularity avoiding function.

Syntax
SingularityAngle {Angle}

Parameter
Angle Specify the Joint #5 angle (real number equals to or greater than 0.1. Unit: deg)

by a formula or a value for determining the wrist singularity neighborhood of the
vertical 6-axis robot.

Result
Current SingularityAngle value will be displayed if the parameter is omitted.

Description
This command is enabled only when the singularity avoiding function is being used.
Default is 10 deg. This command can be used to adjust the start position of the singularity avoidance.
If the value smaller than the default is specified, avoidance motion starts at the point closer to the
singularity. Usually, it is not necessary to change the parameter. This may be useful to reduce errors
which occur when passing the singularity.

If SingularityAngle parameter is changed, the current setting is effective until the next controller startup.

See Also

AvoidSingularit, SingualrityAngle Function, SingularitySpeed

SingularityAngle Statement Example
SingularityAngle 7.0 ‘Sets the singularity neighborhood angle at 7 degrees

S

SingularityAngle Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 511

SingularityAngle Function

Returns the SingularityAngle setting value.

Syntax
SingularityAngle

Return value
Returns the singularity neighborhood angle (Unit: deg).

See Also
AvoidSingularity, SingularityAngle, SingularitySpeed, SingularitySpeed Function

SingularityAngle Function Example

Real currSingularityAngle
currSingularityAngle = SingularityAngle

F

SingularityDist Statement

512 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

SingularityDist Statement

Sets the singularity neighborhood distance necessary for the singularity avoiding function.

Syntax
SingularityDist {distance}

Parameter
distance Specify the distance between the point P and Joint #1 rotation axis (real number

equals to or larger than 0. Unit: mm) by a formula or a valule for determining the
shoulder singularity neighborhood or f the vertical 6-axis robot.

Result

Current SingularityDist value will be displayed if the parameter is omitted.

Description

This command is enabled only when the singularity avoiding function is being used.
Default is 30 mm. This command can be used to adjust the start position of the singularity avoidance.
If the value smaller than the default is specified, avoidance motion starts at the point closer to the
singularity. Usually, it is not necessary to change the parameter. This may be useful to reduce errors
which occur when passing the singularity.

If SingularityDIst parameter is changed, the current setting is effective until the next controller startup.

See Also

AvoidSingularity, SingularityAngle, SingualrityAngle FUnction, SingularityDist Function,
SingularitySpeed, SingularitySpeed Function

SingularityDist Statement Example

SingularityDist 10.0 ‘Sets the singularity neighborhood distance at 10 mm

S

SingularityDist Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 513

SingularityDist Function

Returns the SingularityDist setting value.

Syntax
SingularityDist

Return value
Returns the singularity neighborhood distance (Unit: mm).

See Also
SingularityDist, AvoidSingularity, SingularityAngle, SingularityAngle Function, SingularitySpeed,
SingularitySpeed Function

SingularityDist Function Example

Real currSingularityDist
currSingularityDist = SingularityDist

SingularitySpeed Statement

514 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

SingularitySpeed Statement

Sets the singularity neighborhood angular velocity necessary for the singularity avoiding function.

Syntax
SingularitySpeed {Angular velocity}

Parameter
Angular velocity Specify the percentage of the Joint #4 angular velocity with respect to the

maximum angular velocity (real number equals to or greater than 0.1. Unit: %) by
a formula or a value for determining the wrist singularity neighborhood of the
vertical 6-axis robot.

Result

Current SingularitySpeed value will be displayed if the parameter is omitted.

Description
This command is enabled only when the singularity avoiding function is being used.
Default is 10 %. This command can be used to adjust the start position of the singularity avoidance. If
the value smaller than the default is specified, avoidance motion starts at the point closer to the
singularity. Usually, it is not necessary to change the parameter. This may be useful to reduce errors
which occur when passing the singularity.

If SingularitySpeed parameter is changed, the current setting is effective until the next controller
startup.

See Also
AvoidSingularity Function, SingualrityAngle, SingularitySpeed

SingularitySpeed Example

SingularitySpeed 30.0 ‘Sets the singularity neighborhood angular velocity at 30 %

S

SingularitySpeed Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 515

SingularitySpeed Function

Returns the SingularitySpeed setting value.

Syntax
SingularitySpeed

Return Value
Returns the singularity neighborhood angular velocity (Unit: %).

See Also
SingularitySpeed, SingularityAngle, AvoidSingularity

SingularitySpeed Function Example

Real currSingularitySpeed
currSingularitySpeed = SingularitySpeed

F

SLock Statement

516 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

SLock Statement

Restores servo power from servo free condition for the specified servo axis.

Syntax
SLock jointNumber [, jointNumber,...]

Parameters
jointNumber The servo joint number (1 ~ 9).

The additional S axis is 8 and T axis is 9.

Description
SLock restores servo power to the specified servo joint, which was de-energized by the SFree
instruction for the direct teaching or part installation.

If the joint number is omitted, all joints are engaged.

Engaging the 3rd joint (Z) causes the brake to release.

To engage all axes, Motor On may be used instead of SLock.

Executing SLock while in Motor Off state will cause an error.

SLock initializes the robot control parameter.
See Motor On for the details.

See Also
Brake, LimZ, Reset, SFree

SLock Example
This is a simple example on the usage of the SLock instruction. The Motion with SFree controller
preference must be enabled for this example to work.

Function test
 .
 .
 .
 SFree 1, 2 'Release the excitation of J1 and J2,
 'and control the Z and U joints for part installation.
 Go P1
 SLock 1, 2 'Restore the excitation of J1 and J2.
 .
 .
 .
Fend

> S

SoftCP Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 517

SoftCP Statement

Specifies the SoftCP motion mode.

Syntax
SoftCP { On | Off }

Parameters
On | Off On is used to enable SoftCP motion mode.

Off is used to disable SoftCP motion mode.
Description

SoftCP motion mode controls the vibration caused by CP motion with high acceleration/deceleration.
Normal CP motion focuses on path-tracking and uniform-motion which increases the vibration when
acceleration/deceleration is high. To reduce the vibration, acceleration/deceleration needs to be
reduced with the SpeedS and AccelS commands.
However, some applications don’t necessarily require the high performance of path-tracking and
uniform-motion but need CP motion with less vibration when acceleration/deceleration is high.
SoftCP motion mode dampens the path-tracking and uniform-motion performance more than in the
normal CP motion mode and reduces the vibration in CP motion with high acceleration/deceleration.

SoftCP motion mode applies to the following CP motion commands:

Move, BMove, TMove, Arc, Arc3, CVMove, Jump3CP

If the vibration doesn’t matter in the normal CP motion or the performances of path-tracking and
uniform-motion are required, don’t apply SoftCP motion mode.

SoftCP will be set to Off in the following cases:

Controller startup
Reset
All task stop
Switching the Auto / Programming operation mode
Motor On
SFree, SLock

See Also

SoftCP Function

SoftCP Statement Example

SoftCP On
Move P1
Move P2
SoftCP Off

S

SoftCP Function

518 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

SoftCP Function

Returns the status of SoftCP moton mode.

Syntax
SoftCP

Return Values
0 = SoftCP motion mode off, 1 = SoftCP motion mode on.

See Also
SoftCP Statement

SoftCP Function Example

If SoftCP = Off Then
 Print "SoftCP is off"
EndIf

F

Space$ Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 519

Space$ Function

Returns a string of space characters.

Syntax
Space$(count)

Parameters
count The number of spaces to put in the return string.

Return Values
Returns a string of count space characters.

Description
Space$ returns a string of count space characters as specified by the user. Space$ can return up to
255 characters (the maximum number of characters allowed in a string variable).

The Space$ instruction is normally used to insert spaces before, after, or between other strings of
characters.

See Also
Asc, Chr$, InStr, Left$, Len, LSet$, Mid$, Right$, RSet$, Str$, Val

Space$ Function Example

> Print "XYZ" + Space$(1) + "ABC"
XYZ ABC

> Print Space$(3) + "ABC"
 ABC
>

F

Speed Statement

520 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Speed Statement

Specifies or displays the arm speed for the point to point motion instructions Go,
Jump and Pulse.

Syntax
(1) Speed percent, [departSpeed], [approSpeed]
(2) Speed

Parameters
percent Integer expression between 1-100 representing the arm speed as a percentage

of the maximum speed.
departSpeed Integer expression between 1-100 representing the depart motion speed for the

Jump instruction. Available only with Jump command.
approSpeed Integer expression between 1-100 representing the approach motion speed for

the Jump instruction. Available only with Jump command.

Return Values
Displays current Speed value when used without parameters.

Description
Speed specifies the arm speed for all point to point motion instructions. This includes motion caused
by the Go, Jump and Pulse robot motion instructions. The speed is specified as a percentage of
maximum speed with the range of acceptable values between 1-100. (1 represents 1% of the
maximum speed and 100 represents 100% of maximum speed). Speed 100 represents the maximum
speed possible.

Depart and approach speed values apply only to the Jump instruction. If omitted, each defaults to the
percent value.

The speed value initializes to its default value when any one of the following is performed:

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

In Low Power Mode, the effective speed setting is lower than the default value. If a higher speed is
specified directly (from the command window) or in a program, the speed is set to the default value. In
High Power Mode, the motion speed setting is the value specified with Speed.

If higher speed motion is required, set high power mode using Power High and close the safety door.
If the safety door is open, the Speed settings will be changed to their default value.

If Speed is executed when the robot is in low power mode, the following message is displayed. The
following example shows that the robot will move at the default speed (5) because it is in Low Power
Mode even though the speed setting value by Speed is 80.

> speed 80
> speed
Low Power Mode
 80
 80 80
>

> S

Speed Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 521

See Also
Accel, Go, Jump, Power, Pass, Pulse, SpeedS

Speed Statement Example
Speed can be used from the command window or in a program. Shown below are simple examples of
both methods.

Function speedtst
 Integer slow, fast, i
 slow = 10
 fast = 100
 For i = 1 To 10
 Speed slow
 Go P0
 Go P1
 Speed fast
 Go P0
 Go P1
 Next i
Fend

From the command window the user can also set Speed values.

> Speed 100,100,50 'Z joint downward speed set to 50
> Speed 50
> Speed
 Low Power State: Speed is limited to 5
 50
 50 50
>

Speed Function

522 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Speed Function

Returns one of the three speed settings.

Syntax
Speed[(paramNumber)]

Parameters
paramNumber Integer expression which evaluates to one of the values shown below.

When omitted, 1 will be taken as the specified number.
 1: PTP motion speed
 2: Jump depart speed
 3: Jump approach speed

Return Values
Integer value from 1 to 100.

See Also
Speed Statement

Speed Function Example

 Integer savSpeed

 savSpeed = Speed(1)
 Speed 50
 Go pick
 Speed savSpeed
Fend

F

SpeedR Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 523

SpeedR Statement

Sets or displays the tool rotation speed for CP motion when ROT is used.

Syntax
(1) SpeedR rotSpeed
(2) SpeedR

Parameters
rotSpeed Real expression in degrees / second.
Valid entries range of the parameters: 0.1 to 1000

Return Values
When parameters are omitted, the current SpeedR setting is displayed.

Description
SpeedR is effective when the ROT modifier is used in the Move, Arc, Arc3, BMove, TMove, and
Jump3CP motion commands.

The SpeedR value initializes to the default value (low speed) when any one of the following conditions
occurs:

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

See Also

AccelR, Arc, Arc3, BMove, Jump3CP, Power, SpeedR Function, TMove

SpeedR Statement Example

SpeedR 200

>

S

SpeedR Function

524 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

SpeedR Function

Returns tool rotation speed value.

Syntax
SpeedR

Return Values
Real value in degrees / second

See Also
AccelR Statement, SpeedR Statement

SpeedR Function Example

Real currSpeedR

currSpeedR = SpeedR

> F

SpeedS Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 525

SpeedS Statement

Specifies or displays the arm speed for use with the continuous path motion
instructions such as Move, Arc, Arc3, Jump3, and Jump3CP.

Syntax
(1) SpeedS speed, [departSpeed], [approSpeed]
(2) SpeedS

Parameters
speed Real expression representing the CP motion speed in units of mm/sec.
departSpeed Optional. Real expression representing the Jump3 depart speed in units of

mm/sec.
approSpeed Optional. Real expression representing the Jump3 approach speed in units of

mm/sec.
Valid entries range of the parameters: 1 to 2000

Return Values
Displays current SpeedS value when used without parameters.

Description
SpeedS specifies the tool center point speed for use with all the continuous path motion instructions.
This includes motion caused by the Move and Arc instructions.

SpeedS is specified in mm/Sec which represents a Tool Center Point velocity for the robot arm. The
default value varies from robot to robot. See the robot manual for the default SpeedS values for your
robot model. This is the initial SpeedS value set up automatically by the controller each time main
power is turned on.

The SpeedS value initializes to its default value when any one of the following is performed:

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

In Low Power Mode, the effective SpeedS setting is lower than the default value. If a higher speed is
specified directly (from the command window) or in a program, the speed is set to the default value. In
High Power Mode, the motion SpeedS setting is the value of SpeedS.

If higher speed motion is required, set high power mode using Power High and close the safety door. If
the safety door is open, the SpeedS settings will be changed to their default value.

See Also
AccelS, Arc, Jump3, Move, Speed

> S

SpeedS Statement

526 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

SpeedS Example
SpeedS can be used from the command window or in a program. Shown below are simple examples
of both methods.

Function speedtst
 Integer slow, fast, i
 slow = 50
 fast = 500
 For i = 1 To 10
 SpeedS slow
 Go P0
 Move P1
 SpeedS fast
 Go P0
 Move P1
 Next i
Fend

From the command window the user can also set SpeedS values.

> speeds 1000
> speeds 500
> speed 30 'set point to point speed
> go p0 'point to point move
> speeds 100 'set straight line speed in mm/Sec
> move P1 'move in straight line

SpeedS Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 527

SpeedS Function

Returns the current SpeedS setting.

Syntax
SpeedS [(paramNumber)]

Parameters
paramNumber Optional. Integer expression specifying which SpeedS value to return.
 1: CP speed
 2: Jump3 depart speed
 3: Jump3 approach speed

Return Values
Real number, in mm/sec

See Also
SpeedS Statement

SpeedS Example

Real savSpeeds

savSpeeds = SpeedS

Print "Jump3 depart speed = ", SpeedS(2)

F

Sqr Function

528 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Sqr Function

Computes the non-negative square root value of the operand.

Syntax
Sqr(Operand)

Parameters
Operand A real expression.

Return Values
Square root value.

Description
The Sqr function returns the non-negative square root value of the operand.

Potential Errors
Negative operand

If the operand is or has a negative numeric value, an error will occur.

See Also

Abs, And, Atan, Atan2, Cos, Int, Mod, Not, Or, Sgn, Sin, Str$, Tan, Val, Xor

Sqr Function Example
This is a simple Command window example on the usage of the Sqr function.

>print sqr(2)
 1.414214
>

The following example shows a simple program which uses Sqr.

Function sqrtest
 Real x
 Print "Please enter a numeric value:"
 Input x
 Print "The Square Root of ", x, " is ", Sqr(x)
Fend

F

ST Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 529

ST Function

Returns the coordinate value of the specified additional axis in the point data.

Syntax
ST (sValue As Real, tValue As Real)

Parameter
sValue Real value that specifies the S axis coordinate value
tValue Real value that specifies the T axis coordinate value

Return Values
Coordinate values of the specified additional axis in the point data.

Description
This function is used when you are using the additional ST axes.
When using this function like Go ST(10,20), the additional axis will move to the specified coordinate
but the manipulator will not move. If you want to move the manipulator as well, use like Go
XY(60,30,-50,45) : ST(10,20).
For the details of the additional axis, refer to EPSON RC+ Users Guide: 19. Additional Axis.

See Also
XY Function

ST Function Example

P10 = ST(10, 20)

F

StartMain Statement

530 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

StartMain Statement

Executes the main function from a background task.
This command is for the experienced user and you need to understand the command
specification before use.

Syntax

StartMain mainFuncname

Parameters
mainFuncname Main function name you want to execute (main ~ main63)

Description

To exeucute StartMain, you need to set the [Enable advanced task commands] preference in the
Setup | System Configuration | Controller | Preferences page.

If a task is executed using the Xqt statement from a background task, the executed task becomes a
background task. With StartMain, you can execute the main function as a non-background task from
a background task.

If you have already executed the main function or execute StartMain from a non-background task, an
error occurs.

CAUTION

 When executing StartMain command from a program, you must understand the
command specification and confirm that the system has the proper conditions for
this command. Improper use such as continuous execution of a command within
a loop may deteriorate the system safety.

See Also

Xqt

StartMain Example

Function bgmain

 :
 If Sw(StartMainSwitch) = On And Sw(ErrSwitch) = Off Then
 StartMain main
 EndIf
 :

Fend

S

Stat Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 531

Stat Function

Returns the execution status information of the controller.

Syntax
Stat(address)

Parameters
address Defines which status bits to check.

Return Values
Returns a 4 byte value that presents the status of the controller. Refer to table below.

Description
The Stat instruction returns information as shown in the table below:

Address Bit Controller Status Indicated When Bit is On

0 0-15 &H1 to
&H8000 Task (1~16) is being executed (Xqt) or in Halt State

 16 &H10000 Task(s) is being executed
 17 &H20000 Pause condition
 18 &H40000 Error Condition
 19 &H80000 Teach mode
 20 &H100000 Emergency Stop Condition
 21 &H200000 Low Power Mode (Power Low)
 22 &H400000 Safe Guard Input is Closed
 23 &H800000 Enable Switch is Open
 24 &H1000000 Undefined
 25 &H2000000 Undefined
 26-31 Undefined

1 0 &H1
Log of Stop above target position upon satisfaction of condition
in Jump...Sense statement. (This log is erased when another
Jump statement is executed).

 1 &H2
Log of stop at intermediate travel position upon satisfaction of
condition in Go/Jump/Move...Till statement. (This log is erased
when another Go/Jump/Move...Till statement is executed

 2 &H4 Undefined

 3 &H8 Log of stop at intermediate travel position upon satisfaction of
condition in Trap statement

 4 &H10 Motor On mode
 5 &H20 Current position is home position
 6 &H40 Low power state
 7 &H80 Undefined
 8 &H100 4th Joint motor is on
 9 &H200 3rd Joint motor is on
 10 &H400 2nd Joint motor is on
 11 &H800 1st Joint motor is on
 12 &H1000 6th Joint motor is on
 13 &H2000 5th Joint motor is on
 14 &H4000 Axis T motor is on
 15 &H8000 Axis S motor is on
 16 &H10000 7th Joint motor is on
 17-31 Undfined

2 0-15 &H1 to
&H8000 Task (17~32) is being executed (Xqt) or in Halt State

F

Stat Function

532 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

See Also
EStopOn Function, TillOn Function, PauseOn Function, SafetyOn Function

Stat Example

Function StatDemo

 rbt1_sts = RShift((Stat(0) And &H070000), 16)
 Select TRUE
 Case (rbt1_sts And &H01) = 1
 Print "Tasks are running"
 Case (rbt1_sts And &H02) = 2
 Print "Pause Output is ON"
 Case (rbt1_sts And &H04) = 4
 Print "Error Output is ON"
 Send
Fend

Str$ Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 533

Str$ Function

Converts a numeric value to a string and returns it.

Syntax
Str$(number)

Parameters
number Integer or real expression.

Return Values
Returns a string representation of the numeric value.

Description
Str$ converts a number to a string. Any positive or negative number is valid.

See Also
Abs, Asc, Chr$, InStr, Int, Left$, Len, Mid$, Mod, Right$, Sgn, Space$, Val

Str$ Function Example
The example shown below shows a program which coverts several different numbers to strings and
then prints them to the screen.

Function strtest
 Integer intvar
 Real realvar
 '
 intvar = -32767
 Print "intvar = ", Str$(intvar)
 '
 realvar = 567.9987
 Print "realvar = ", Str$(realvar)
 '
Fend

Some other example results from the Str$ instruction from the command window.

> Print Str$(99999999999999)
 1.000000E+014

> Print Str$(25.999)
 25.999

F

String Statement

534 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

String Statement

Declares variables of type String. (Character-string variables)

Syntax
String varName$ [(subscripts)] [, varName$ [(subscripts)]...]

Parameters
varName$ Variable name which the user wants to declare as type String.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared.

The subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 and the

available number of array elements is the upper bound value + 1.
 When specifying the upper bound value, make sure the number of total elements

is within the range shown below:
Local variable 2000
Global Preserve variable 4000
Global variable and module variable 100000

Description
The String statement is used to declare variables of type String. String variables can contain up to 255
characters. Local variables should be declared at the top of a function. Global and module variables
must be declared outside of functions.
String Operators
The following operators can be used to manipulate string variables:
 + Merges character strings together. Can be used in the assignment statements for string

variables or in the Print instruction.
 Example: name$ = fname$ + " " + lname$

 = Compares character strings. True is returned only when the two strings are exactly equal,

including case.
 Example: If temp1$ = "A" Then GoSub test

 < > Compares character strings. True is returned when one or more characters in the two

strings are different.
 Example: If temp1$ <> "A" Then GoSub test

Notes
Variable Names Must Include "$" Character:

Variables of type String must have the character "$" as the last character in the variable name.

See Also

Boolean, Byte, Double, Global, Integer, Long, Real

S

String Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 535

String Example

String password$
String A$(10) 'Single dimension array of string
String B$(10, 10) 'Two dimension array of string
String C$(5, 5, 5) 'Three dimension array of string

Print "Enter password:"
Input password$
If UCase$(password$) = "EPSON" Then
 Call RunMaintenance
Else
 Print "Password invalid!"
EndIf

Sw Function

536 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Sw Function

Returns or displays the selected input port status. (i.e. Discrete User I/O)

Syntax
Sw(bitNumber)

Parameters
bitNumber Integer expression representing I/O input bits.

Return Values
Returns a 1 when the specified input is On and a 0 when the specified input is Off.

Description
Sw provides a status check for hardware inputs. Sw is most commonly used to check the status of
one of the inputs which could be connected to a feeder, conveyor, gripper solenoid, or a host of other
devices which works via discrete I/O. Obviously the input checked with the Sw instruction has 2 states
(1 or 0). These indicate whether the device is On or Off.

See Also
In, InBCD, MemOn, MemOff, MemSw, Off, On, OpBCD, Oport, Out, Wait

Sw Function Example
The example shown below simply checks the discrete input #5 and branches accordingly. On is used
instead of 1 for more clarity.

Function main
 Integer i, feed5Ready
 feed5Ready = Sw(5)
 'Check if feeder is ready
 If feed5Ready = On Then
 Call mkpart1
 Else
 Print "Feeder #5 is not ready. Please reset and"
 Print "then restart program"
 EndIf
Fend

Other simple examples are as follows from the command window:

> print sw(5)
1
>

F

SyncLock Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 537

SyncLock Statement

Synchronizes tasks using a mutual exclusion lock.

Syntax

SyncLock syncID [, timeOut]

Parameters
syncID Integer expression representing signal number to receive. Range is from 0 to 63.
timeOut Optional. Real expression representing the maximum time to wait for lock. Valid

range is 0-2147483 seconds in 0.01 second intervals.

Description
Use SyncLock to lock use of a common resource so that only one task at a time can use it. When the
task is finished with the resource, it must call SyncUnlock to release the lock so other tasks can use it.

A task can only unlock a syncID that it previously locked.

A task must execute SyncUnlock to release the lock.
If the task is finished, then the lock it previously locked will releases.

When SynLock is second consecutive used to a same signal number, an error occurs.

If the timeOut parameter is used, then the Tw function must be used to check if the lock was
successful.

Notes
In EPSON RC+6.0, the lock is automatically released when the task is finished while it is not in
EPSON RC+5.0.

See Also
Signal, SyncLock, Tw, Wait, WaitPos

S

SyncLock Statement

538 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

SyncLock Example
The following example uses SyncLock and SyncUnlock to allow only one task at a time to write a
message to a communcation port.

Function Main

 Xqt Func1
 Xqt Func2
Fend

Function Func1
 Long count
 Do
 Wait .5
 count = count + 1
 LogMsg "Msg from Func1, " + Str$(count)
 Loop
Fend

Function Func2
 Long count
 Do
 Wait .5
 count = count + 1
 LogMsg "Msg from Func2, " + Str$(count)
 Loop
Fend

Function LogMsg(msg$ As String)
 SyncLock 1
 OpenCom #1
 Print #1, msg$
 CloseCom #1
 SyncUnlock 1
Fend

The following example uses SyncLock with optional time out. Tw is used to check if the lock was
successful. By using a timeout, you can execute other code periodically while waiting to lock a
resource.

Function MySyncLock(syncID As Integer)
 Do
 SyncLock syncID, .5
 If Tw = 0 Then
 Exit Function
 EndIf
 If Sw(1) = On Then
 Off 1
 EndIf
 Loop
Fend

SyncUnlock Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 539

SyncUnlock Statement

Unlocks a sync ID that was previously locked with SyncLock.

Syntax
SyncUnlock syncID

Parameters
syncID Integer expression representing signal number to receive. Range is from 0 ~ 63.

Description
Use SyncUnlock to unlock a sync ID previously locked with SyncLock.

A task can only unlock a syncID that it previously locked.

See Also
Signal, SyncLock, Wait, WaitPos

SyncUnlock Example

Function Main

 Xqt task
 Xqt task
 Xqt task
 Xqt task
Fend

Function task
 Do
 SyncLock 1
 Print "resource 1 is locked by task", MyTask
 Wait .5
 SyncUnlock 1
 Loop
Fend

S

SyncRobots Statement

540 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

SyncRobots Statement

Start the reserved robot motion.

Syntax
SyncRobots robotNumber [, robotNumber] [, ...]
SyncRobots All

Parameters
robotNumber Integer expression that specifies a robot number you want to start the motion.
All All robots whose motion is reserved

Description
SyncRobots is used to start the robot motion reserved with the SYNC parameter of each motion
command. The robots specified by the SyncRobots start to move in the same timing. This is more
useful than synchronizing the normal multi-task programs by waiting for the I/O signal event because
there is no effect of switching tasks. It can synchronize the robot motion start more precicely.

If a robot number is specified whose motion is not reserved, an error occurs.

See Also
SyncRobots function

SyncRobots Example

The example below uses the SYNC parameter of a motion command and SyncRobots to start the
motions of two robots simultaneously.

Function Main
 Xqt Func1
 Xqt Func2
 Do
 Wait 0.1
 If (SyncRobots And &H03) = &H03 Then
 Exit Do
 EndIf
 Loop

SyncRobots 1,2
Fend

Function Func1
 Robot 1
 Motor On
 Go P1 SYNC
Fend

Function Func2
 Robot 2
 Motor On
 Go P1 SYNC
Fend

S

SyncRobots Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 541

SyncRobots Function

Returns the status of a robot whose motion is reserved.

Syntax
SyncRobots

Return Values
Returns the robot motion in a bit, and if not reserved, 0 is returned.

bit 0: robotNumber 1
bit 1: robotNumber 2

:
bit 15: robotNumber 16

Description

SyncRobots function checks the motion reservation status of the SYNC parameter of the robot motion
commands. The status the SyncRobots checks are displayed in the bit status corrensponding to the
robot number. Each bit shows either the robot motion is reserved (1) or not (2). You can start the
robot moton reserved using the SyncRobots statement.

See Also
SyncRobots

SyncRobots function Example
The example below uses the SYNC parameter of a motion command and SyncRobots to start the
motions of two robots simultaneously.

Function Main
 Xqt Func1
 Xqt Func2
 Do
 Wait 0.1
 If (SyncRobots And &H03) = &H03 Then
 Exit Do
 EndIf
 Loop

SyncRobots 1,2
Fend

Function Func1
 Robot 1
 Motor On
 Go P1 SYNC
Fend

Function Func2
 Robot 2
 Motor On
 Go P1 SYNC

Fend

F

SysConfig Command

542 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

SysConfig Command

Displays system configuration parameter.

Syntax
SysConfig

Return Values
Returns system configuration parameter.

Description
Display current configurated value for system control data. When the robot and controller is received
from the factory or after changing the configuration, it is a good idea to save this data. This can be
done with Backup Controller from the Tools | Controller dialog.

The following data will be displayed. (The following data is for reference only since data will vary from
controller to controller.)

' Version:
' Firmware 1, 0, 0, 0

' Options:
' External Control Point
' VB Guide

' HOUR: 414.634

' Controller:
' Serial #: 0001

' ROBOT 1:
' Name: Mnp01
' Model: PS3-AS10
' Serial #: 0001
' Motor On Time: 32.738
' Motor 1: Enabled, Power = 400
' Motor 2: Enabled, Power = 400
' Motor 3: Enabled, Power = 200
' Motor 4: Enabled, Power = 50
' Motor 5: Enabled, Power = 50
' Motor 6: Enabled, Power = 50

 ARCH 0, 30, 30
 ARCH 1, 40, 40
 ARCH 2, 50, 50
 ARCH 3, 60, 60
 ARCH 4, 70, 70
 ARCH 5, 80, 80
 ARCH 6, 90, 90
 ARMSET 0, 0, 0, 0, 0, 0
 HOFS 0, 0, 0, 0, 0, 0
 HORDR 63, 0, 0, 0, 0, 0
 RANGE -7427414, 7427414, -8738134, 2621440, -3145728, 8301227, -
 5534152, 5534152, -3640889, 3640889, -6553600, 6553600
 BASE 0, 0, 0, 0, 0, 0
 WEIGHT 2, 0
 INERTIA 0.1, 0
 XYLIM 0, 0, 0, 0, 0, 0

S

SysConfig Command

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 543

' Extended I/O Boards:
' 1: Installed
' 2: Installed
' 3: None installed
' 4: None installed

' Fieldbus I/O Slave Board:
' Installed
' Type: PROFIBUS

' Fieldbus I/O Master Board:
' None installed

' RS232C Boards:
' 1: Installed
' 2: None installed

' PG Boards:
' 1: None installed
' 2: None installed
' 3: None installed
' 4: None installed

SysConfig Example

> SysConfig

SysErr Function

544 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

SysErr Function

Returns the latest error status or warning status.

Syntax
SysErr [(infoNo)]

Parameters
infoNo Optional. Integer number representing the error code or warning code to get.

0 : Error code (When the parameter is omitted, 0 is automatically selected.)
1 : Warning code

Return Values
An integer representing the error code or warning code of the controller.

Description
SysErr is used only for NoEmgAbort task (special task using NoEmgAbort at Xqt) and background
tasks.
Error codes or warning codes of controller are the error codes or warning codes dispayed on the LCD.
When there are no errors or warnings, the return value will be 0.

See Also
ErrMsg$, ErrorOn, Xqt

SysErr Function Example
The following example shows a program that monitors the controller error and switches the I/O On/Off
according to the error number when error occurs.

Notes

Forced Flag
This program example uses Forced flag for On/Off command.
Be sure that the I/O outputs change during error, or at Emergency Stop or Safety Door Open when
designing the system.

After Error Occurence
As this program, finish the task promply after completing the error handling.

Function main

Xqt ErrorMonitor, NoEmgAbort
:
:

Fend

Function ErrorMonitor
 Wait ErrorOn
 If 4000 < SysErr Then
 Print "Motion Error = ", SysErr
 Off 10, Forced
 On 12, Forced
 Else
 Print "Other Error = ", SysErr
 Off 11, Forced
 On 13, Forced
 EndIf

Fend

F

Tab$ Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 545

Tab$ Function

Returns a string containing the specified number of tabs characters.

Syntax
Tab$(number)

Parameters
number Integer expression representing the number of tabs.

Return Values
String containing tab characters.

Description
Tab$ returns a string containing the specified number of tabs.

See Also
Left$, Mid$, Right$, Space$

Tab$ Function Example

Print "X", Tab$(1), "Y"
Print
For i = 1 To 10
 Print x(i), Tab$(1), y(i)
Next i

F

Tan Function

546 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Tan Function

Returns the tangent of a numeric expression.

Syntax
Tan(radians)

Parameters
radians Real expression given in radians.

Return Values
Real number containing the tangent of the parameter radians.

Description
Tan returns the Tangent of the numeric expression. The numeric expression (radians) may be any
numeric value as long as it is expressed in radian units.

To convert from radians to degrees, use the RadToDeg function.

See Also
Abs, Atan, Atan2, Cos, Int, Mod, Not, Sgn, Sin, Sqr, Str$, Val

Tan Function Example

Function tantest
 Real num
 Print "Enter number in radians to calculate tangent for:"
 Input num
 Print "The tangent of ", num, "is ", Tan(num)
Fend

The examples shown below show some typical results using the Tan instruction from the Command
window.

> print tan(0)
0.00
> print tan(45)
1.6197751905439
>

F

TargetOK Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 547

TargetOK Function

Returns a status indicating whether or not the PTP (Point to Point) motion from the current
position to a target position is possible.

Syntax
TargetOK(targetPos)

Parameters
targetPos Point expression for the target position.

Return Values
True if is it possible to move to the target position from the current position, otherwise False.

Description
Use TargetOK to verify that a target position and orientation can be reached before actually moving to
it. The motion trajectory to the target point is not considered.

See Also
CurPos, FindPos, InPos, WaitPos

TargetOK Function Example

If TargetOK(P1) Then
 Go P1
EndIf

If TargetOK(P10 /L /F) Then
 Go P10 /L /F
EndIf

F

TaskDone Function

548 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

TaskDone Function

Returns the completion status of a task.

Syntax
TaskDone (taskIdentifier)

Parameters
taskIdentifier Task name or integer expression representing the task number.

Task name is a function name used in an Xqt statement or a function started from
the Run window or Operator window.
Task number range is:

Normal tasks: 1 ~ 32
Background task: 65 ~ 80
Trap tasks: 257 ~ 267

Return Values

True if the task has been completed, False if not.

Description
Use TaskDone to determine if a task has completed.

See Also
TaskState, TaskWait

TaskDone Function Example

Xqt 2, conveyor
Do
 .
 .
Loop Until TaskDone(conveyor)

F

TaskInfo Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 549

TaskInfo Function

Returns status information for a task.

Syntax
TaskInfo(taskIdentifier, index)

Parameters
taskIdentifier Task name or integer expression representing the task number.

A task name is the function name used in an Xqt statement or a function started from
the Run window or Operator window.
 Specifying a task number:
 Normal tasks : 1 ~ 32
 Background tasks : 65 ~ 80
 Trap tasks : 257 ~ 267

index Integer expression that represents the index of the information to retrieve.

Return Values
An integer containing the specified information.

Description
Index Description

0 Task number

1 0 – Normal task, NoPause task, or NoEmgAbort task
1 – Background task

2

Task type
0 - Normal task

Nothing specified in Xqt or start the task by Normal
1 - NoPause task

Specified NoPause in Xqt and start the task
2 - NoEmgAbort task

Specified NoEmgAbort in Xqt and start the task
3 - Trap task
4 - Background task

3

−1 - Specified task is not executing.
1 - Specified task is executing.
2 - Specified task is waiting for an event.
3 - Specified task is paused or halted
4 - Specified task is in quick pause state
5 - Specified task is in error state

4 Timeout has occured during wait for event (same as TW)
5 Event wait time (milliseconds).
6 Current robot number selected by the task
7 Current robot number being used by the task

See Also

CtrlInfo, RobotInfo, TaskInfo
TaskInfo Function Example

If (TaskInfo(1, 3) <> 0 Then
 Print "Task 1 is runnning"
Else
 Print "Task 1 is not running"
EndIf

F

TaskInfo$ Function

550 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

TaskInfo$ Function

Returns text information for a task.

Syntax
TaskInfo$(taskIdentifier, index)

Parameters
taskIdentifier Task name or integer expression representing the task number.

A task name is the function name used in an Xqt statement or a function started from
the Run window or Operator window.
 Specifying a task number:
 Normal tasks : 1 ~ 32
 Background tasks : 65 ~ 80
 Trap tasks : 257 ~ 267

index Integer expression that represents the index of the information to retrieve.

Return Values
A string containing the specified information.

Description
The following table shows the information that can be retrieved using TaskInfo$:

Index Description
0 Task name
1 Start date / time
2 Name of function currently executing
3 Line number in the program file that contains the function

See Also

CtrlInfo, RobotInfo, TaskInfo

TaskInfo$ Function Example

Print "Task 1 started: "TaskInfo$(1, 1)

F

TaskState Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 551

TaskState Function

Returns the current state of a task.

Syntax
TaskState(taskIdentifier)

Parameters
taskIdentifier Task name or integer expression representing the task number.

A task name is the function name used in an Xqt statement or a function started from
the Run window or Operator window.
 Specifying a task number:
 Normal tasks : 1 ~ 32
 Background tasks : 65 ~ 80
 Trap tasks : 257 ~ 267

Return Values

0: Task not running
1: Task is running
2: Task is waiting for an event
3: Task has been halted
4: Task has been paused in QuickPause
5: Task in error condition

Description
Use TaskState to get status for a given task. You can specify task number or task name.

See Also
TaskDone, TaskWait

TaskState Function Example

If TaskState(conveyor) = 0 Then
 Xqt 2, conveyor
EndIf

F

TaskWait Statement

552 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

TaskWait Statement

Waits to for a task to terminate.

Syntax
TaskWait (taskIdentifier)

Parameters
taskIdentifier Task name or integer expression representing the task number.

Task name is a function name used in an Xqt statement or a function started from
the Run window or Operator window.

Task number range is:

Normal tasks: 1 ~ 32
Background task: 65 ~ 80
Trap tasks: 257 ~ 267

See Also

TaskDone, TaskState

TaskWait Statement Example

Xqt 2, conveyor
TaskWait conveyor

S

TC Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 553

TC Statement

Returns the torque control mode setting and current mode.

Syntax
(1) TC { On | Off }
(2) TC

Parameters

On | Off On : Torque control mode ON
 Off : Torque control mode OFF

Return Values

When the parameter are omitted, turns the current torque control mode.

Description

TC On/Off set the torque control mode available/unavailable.
The torque control mode sets the motor output limit to generate the constant force. This is used in
pressing a hand to an object at constant force or making the close contact and coordinate moving of
hand with an object .
Before setting the torque control available, configure the limits of torque control and speed control in
TCLim and TCSpeed.
Under the torque control, the robot moves as positioning to the target while an operation command is
executed. When the robot contact an object and motor output is at the torque control limit, the robot
stops its operation and keeps the constant torque.

In any of the following cases, the torque mode turns unavailable.

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

See Also
TCLim, TCSpeed

TC Example

Speed 5
Go ApproachPoint

'Set the Z axis torque limit to 20 %
TCLim -1, -1, 20, -1
'Set the speed in torque control to 5 %
TcSpeed 5

TC On
Go ContactPoint
Wait 3
Go ApproachPoint
TC Off

S

TCLim Statement

554 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

TCLim Statement

Specifies the torque limit of each joint for the torque control mode.

Syntax

TCLim [j1Torque limit, j2Torque limit, j3Torque limit, j4Torque limit, [j5Torque limit], [j6Torque limit],
[j7Torque limit], [j8Torque limit], [j9Torque limit]]

Parameters

j1Torque limit Specifies the proportion to the maximum momentary torque
 (1 to 100 / unit: %) using an expression or numeric value.
-1: Disable the torque limit and turns the mode to normal position control.

j2Torque limit Specifies the proportion to the maximum momentary torque
(1 to 100 / unit: %) using an expression or numeric value.
-1: Disable the torque limit and turns the mode to normal position control.

j3Torque limit Specifies the proportion to the maximum momentary torque
(1 to 100 / unit: %) using an expression or numeric value.
-1: Disable the torque limit and turns the mode to normal position control.

j4Torque limit Specifies the proportion to the maximum momentary torque
(1 to 100 / unit: %) using an expression or numeric value.
-1: Disable the torque limit and turns the mode to normal position control.

j5Torque limit Option. Specifies the proportion to the maximum momentary torque
(1 to 100 / unit: %) using an expression or numeric value.
-1: Disable the torque limit and turns the mode to normal position control.

j6Torque limit Option. Specifies the proportion to the maximum momentary torque
(1 to 100 / unit: %) using an expression or numeric value.
-1: Disable the torque limit and turns the mode to normal position control.

j7Torque limit Option. Specifies the proportion to the maximum momentary torque
(1 to 100 / unit: %) using an expression or numeric value.
-1: Disable the torque limit and turns the mode to normal position control.

j8Torque limit Option. Specifies the proportion to the S axis maximum momentary torque
 (1 to 100 / unit: %) using an expression or numeric value.
-1: Disable the torque limit and turns the mode to normal position control.

j9Torque limit Option. Specifies the proportion to the T axis maximum momentary torque
(1 to 100 / unit: %) using an expression or numeric value.
-1: Disable the torque limit and turns the mode to normal position control.

Return vlaues
When the parameters are omitted, returns the current torque limit.

S

TCLim Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 555

Description
Setting to the torque limit becomes available at TC On.

When the limit value is too low, the robot doesn’t work and operation command stops before the robot
reaches the target position.

In any of the following cases, TCLim set value is initialized.

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

See Also

TC, TCLim Function, TCSpeed

TCLim Example

Speed 5
Go ApproachPoint

'Set the Z axis torque limit to 20 %
TCLim -1, -1, 20, -1
'Set the speed in torque control to 5 %
TcSpeed 5

TC On
Go ContactPoint
Wait 3
Go ApproachPoint
TC Off

TCLim Function

556 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

TCLim Function

Returns the torque limit of specified joint.

Syntax

TCLim (jointNumber)

Parameters

ｊointNumber Specifies the joint number to retrieve the torque limit from using an expression or
numeric value.
The additional S axis is 8 and T axis is 9.

Return values

Returns the integer number representing the current torque limit (1 - 100). -1 means the torque limit is
invalid.

See Also

TC, TCLim, TCSpeed

TCLim Fuction Example

Print "Current Z axis torque limit:", TCLim(3)

F

TCPSpeed Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 557

TCPSpeed Function

Returns the calculated current tool center point (TCP) speed.

Syntax
TCPSpeed

Return Values
Real value containing the calculated current tool center point speed in mm/second.

Description
Use TCPSpeed to get the calculated current speed of the tool center point in mm/second when
executing a CP (Continuous Path) motion command. CP motion commands include Move, TMove,
Arc, Arc3, CVMove, and Jump3CP. This is not the actual tool center point speed. It is the speed that
the system has calculated for the tool center point at the time the function is called.

The motor compliance lag is excluded from the calculation.
If the robot is executing a PTP (Point to Point) motion command, this function returns 0.

Even if you are using the additional axis, only the robot travel distance is returned.
For example, it doesn’t include the travel speed of additional axis while you use the additional axis as
running axis.

See Also
AccelS, CurPos, InPos, SpeedS

TCPSpeed Function Example
Function MoveTest

AccelS 4000, 4000
SpeedS 200
Xqt ShowTCPSpeed
Do
 Move P1
 Move P2
Loop

Fend

Function ShowTCPSpeed
 Do
 Print "Current TCP speed is: ", TCPSpeed
 Wait .1
 Loop
Fend

F

TCSpeed Statement

558 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

TCSpeed Statement

Specifies the speed limit in the torque contol.

Syntax

TCSpeed [speed]

Parameters

speed Specifies the proportion to the maximum speed (1 - 100 / unit: %) using an expression or
numeric value.

Description

Under the torque control, the speed is limited to the TCSpeed setting despite of the speed settings of
such as Speed command.
Error occurs if the speed goes over the limit in the torque control.

In any of the following cases, TCSpeed set value is initialized to 100%.

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

See Also

TC, TCLim, TCSpeed Function

TCSpeed Example

Speed 5
Go ApproachPoint

'Set the Z axis torque limit to 20 %
TCLim -1, -1, 20, -1
'Set the speed under the torque control to 5 %
TcSpeed 5

TC On
Go ContactPoint
Wait 3
Go ApproachPoint
TC Off

F

TCSpeed Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 559

TCSpeed Function

Returns the speed limit in the torque control.

Syntax
TCSpeed

Return values
Returns the integer number (1 - 100) representing the current speed limit.

See Also
TC, TCSpeed, TCLim

TCSpeed Example

Integer var
var = TCSpeed

F

TeachOn Function

560 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

TeachOn Function

Returns the Teach mode status.

Syntax
TeachOn

Return Values
True if it is in the Teach mode, False if not.

Description
TeachOn function is only used in the background task.

See Also
ErrorOn, EstopOn, SafetyOn, Xqt

TeachOn function Example
The following example monitors the controller as it starts in Teach mode, and turns On/Off the I/O.

Function BGMain
 Do
 Wait 0.1
 If TeachOn = True Then
 On teachBit
 Else
 Off teachBit
 EndIf
 If SafetyOn = True Then
 On safetyBit
 Else
 Off safetyBit
 EndIf
 If PauseOn = True Then
 On PauseBit
 Else
 Off PauseBit
 EndIf
 Loop

Fend

F

TGo Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 561

TGo Statement

Executes Point to Point relative motion, in the current tool coordinate system.

Syntax
TGo destination [CP] [searchExpr] [!...!] [SYNC]

Parameters
destination The target destination of the motion using a point expression.
CP Optional. Specifies continuous path motion.
searchExpr Optional. A Till or Find expression.

Till | Find
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

!...! Optional. Parallel Processing statements can be added to execute I/O and
other commands during motion.

SYNC Reserves a motion command. The robot will not move until SyncRobots is
executed.

Description

Executes point to point relative motion in the current tool coordinate system.

Arm orientation attributes specified in the destination point expression are ignored. The manipulator
keeps the current arm orientation attributes. However, for a 6-Axis manipulator, the arm orientation
attributes are automatically changed in such a way that joint travel distance is as small as possible.

The Till modifier is used to complete TGo by decelerating and stopping the robot at an intermediate
travel position if the current Till condition is satisfied.

The Find modifier is used to store a point in FindPos when the Find condition becomes true during
motion.

When Till is used and the Till condition is satisfied, the manipulator halts immediately and the motion
command is finished. If the Till condition is not satisfied, the manipulator moves to the destination point.

When Find is used and the Find condition is satisfied, the current position is stored. Please refer to
Find for details.

When parallel processing is used, other processing can be executed in parallel with the motion
command.

The CP parameter causes acceleration of the next motion command to start when the deceleration
starts for the current motion command. In this case the robot will not stop at the destination coordinate
and will continue to move to the next point.

See Also
Accel, CP, Find, !....! Parallel Processing, Point Assignment, Speed, Till, TMove, Tool

>

S

TGo Statement

562 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

TGo Example

> TGo XY(100, 0, 0, 0) 'Move 100mm in X direction (in the tool coordinate system)
Function TGoTest

 Speed 50
 Accel 50, 50
 Power High

 Tool 0
 P1 = XY(300, 300, -20, 0)
 P2 = XY(300, 300, -20, 0) /L

 Go P1
 Print Here
 TGo XY(0, 0, -30, 0)
 Print Here

 Go P2
 Print Here
 TGo XY(0, 0, -30, 0)
 Print Here

Fend

[Output]
 X: 300.000 Y: 300.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /R /0
 X: 300.000 Y: 300.000 Z: -50.000 U: 0.000 V: 0.000 W: 0.000 /R /0
 X: 300.000 Y: 300.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /L /0
 X: 300.000 Y: 300.000 Z: -50.000 U: 0.000 V: 0.000 W: 0.000 /L /0

Till Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 563

Till Statement

Specifies and displays event condition that, if satisfied, completes the motion command
(Jump, Go, Move, etc.) in progress by decelerating and stopping the robot at
an intermediate position.

Syntax
Till [eventcondition]

Parameters
eventcondition Input status specified as a trigger

[Event] comparative operator (=, <>, >=, >, <, <=) [Integer expression]

The following functions and variables can be used in the Event:
Functions : Sw, In, InW, Oport, Out, OutW, MemSw, MemIn, MemInW, Ctr,
 GetRobotInsideBox, GetRobotInsidePlane, Force
Variables : Byte, Integer, Long global preserve variable, Global variable,
 module variable

In addition, using the following operators you can specify multiple event
conditions.
Operator : And, Or, Xor
Example : Till Sw(5) = On
 Till Sw(5) = On And Sw(6) = Off

Description
The Till statement can be used by itself or as a search expression in a motion command statement.

The Till condition must include at least one of the functions above.
When variables are included, their values are computed when setting the Till condition. No use of
variable is recommended. Otherwise, the condition may be an unintended condition. Multiple Till
statements are permitted. The most recent Till condition remains current until superseded.

When parameters are omitted, the current Till definition is displayed.

Notes
Till Setting at Main Power On

At power on, the Till condition is initialized to Till Sw(0) = On.
Use of Stat or TillOn to Verify Till

After executing a motion command which uses the Till qualifier there may be cases where you want to
verify whether or not the Till condition was satisfied. This can be done through using the Stat function
or the TillOn function.

To use a variables in the event condition expression
- Available variables are Integer type (Byte, Integer, Long)
- Array variables are not available
- Local variables are not available
- If a variable value cannot satisfy the event condition for more than 0.01 second, the system cannot

retrieve the change in variables.
- Up to 64 can wait for variables in one system (including the ones used in the event condition

expressions such as Wait). If it is over 64, an error occurs during the project build.
- If you specify Byref to a waiting variable on any function call, an error occurs.
- When a variable is included in the right side member of the event condition expression, the value

iscalculated when starting the motion command. We recommend not using variables in an integer
expression to avoid making unintended conditions.

See Also

Find, Go, In, InW, Jump, MemIn, MemSw, Move, Stat, Sw, TillOn

> S

Till Statement

564 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Till Example

Shown below are some sample lines from programs using the Till instruction

Till Sw(1) = Off 'Specifies Till condition (Input bit 1 off)
Go P1 Till 'Stop if previous line condition is satisfied
Till Sw(1) = On And Sw($1) = On 'Specify new Till condition
Move P2 Till 'Stop if previous line condition satisfied
Move P5 Till Sw(10) = On 'Stop if condition on this lineis satisfied

TillOn Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 565

TillOn Function

Returns the current Till status.

Syntax
TillOn

Return Values
True if the Till condition occurred in the previous motion command using Till.

Description
TillOn returns True if Till condition occurred.

TillOn is equivalent to ((Stat(1) And 2) <> 0).

See Also

EStopOn, SafetyOn, Sense, Stat, Till

TillOn Function Example

Go P0 Till Sw(1) = On
If TillOn Then
 Print "Till condition occurred during move to P0"
EndIf

F

Time Statement

566 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Time Statement

Displays the current time.

Syntax
Time

Description
Displays the current time in 24 hour format.

See Also

Date, Time$

Time Example
Example from the command window:

> Time
10:15:32

>

Time Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 567

Time Function

Returns the controller accumulated operating time.

Syntax
Time(unitSelect)

Parameters
unitSelect An integer number ranging from 0-2. This integer specifies which unit of time the

controller returns:
0: hours
1: minutes
2: seconds

Description
Returns the controller accumulated operating time as an integer.

See Also
Hour

Time Function Example
Shown below are a few examples from the command window:

Function main
 Integer h, m, s

 h = Time(0) 'Store the time in hours
 m = Time(1) 'Store the time in minutes
 s = Time(2) 'Store the time in seconds
 Print "This controller has been used:"
 Print h, "hours, ",
 Print m, "minutes, ",
 Print s, "seconds"
Fend

F

Time$ Function

568 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Time$ Function

Returns the current system time.

Syntax
Time$

Return Values
A string containing the current time in 24 hour format hh:mm:ss.

See Also
Date, Date$, Time

Time$ Example

Print "The current time is: ", Time$

F

TLClr Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 569

TLClr Statement

Clears (undefines) a tool coordinate system.

Syntax
TLClr toolNumber

Parameters
toolNumber Integer expression representing which of the 3 tools to clear (undefine). (Tool 0

is the default tool and cannot be cleared.)

See Also
Arm, ArmClr, ArmSet, ECPSet, Local, LocalClr, Tool, TLSet

TLClr Example

TLClr 1

> S

TLDef Function

570 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

TLDef Function

Returns tool definition status.

Syntax
TLDef (toolNumber)

Parameters
toolNumber Integer expression representing which tool to return status for.

Return Values
True if the specified tool has been defined, otherwise False.

See Also
Arm, ArmClr, ArmSet, ECPSet, Local, LocalClr, Tool, TLClr, TLSet

TLDef Example

Function DisplayToolDef(toolNum As Integer)

 If TlDef(toolNum) = False Then
 Print "Tool ", toolNum, "is not defined"
 Else
 Print "Tool ", toolNum, ": ",
 Print TlSet(toolNum)
 EndIf
Fend

> F

TLSet Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 571

TLSet Statement

Defines or displays a tool coordinate system.

Syntax
(1) TLSet toolNum, toolDefPoint
(2) TLSet toolNum
(3) TLSet

Parameters
toolNum Integer number from 1-15 representing which of 15 tools to define. (Tool 0 is the

default tool and cannot be modified.)
toolDefPoint Pnumber or P(expr) or point label or point expression.

Return Values
When parameters are omitted, displays all TLSet Definition.
When only the tool number is specified, displays specified TLSet Definition.

Description
Defines the tool coordinate systems Tool 1, Tool 2 or Tool 3 by specifying tool coordinate system origin
and rotation angle in relation to the Tool 0 coordinate system (Hand coordinate system).

TLSet 1, XY(50,100,-20,30)

TLSet 2, P10 +X(20)

In this case, the coordinate values of P10 are referenced and 20 is added to the X value. Arm attribute
and local coordinate system numbers are ignored.

 TLSET 1, XY(100, 60, -20, 30)

Rotation angle (c shown in the next figure)

Position for Z axis

Position for Y axis (b shown in the next figure)

Position for X axis (a shown in the next figure)

Tool coordinate system number

> S

TLSet Statement

572 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Tool 1 coordinate system

X

Y

xt0

xt1

yt0
yt1

a

b c

Tool 0 coordinate system

Robot coordinate system

TlSet for 6-Axis robots
The origin of Tool 0 is the flange side of the sixth joint. When all joints are at the 0 degree position, the
Tool 0 coordinate system's X axis is aligned with the robot coordinate system's Z axis, the Y axis is
aligned with the robot coordinate system's X axis, and the Z axis is perpendicular to the flange face,
and is aligned with the robot coordinate system's Y axis, as shown in the figure below:

TLSet Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 573

Tool 0 coordinate systems are defined for ceiling and wall mounted robots as shown in the figures
below.

Notes
TLSet values are maintained

The TLSet values are preserved. Use TLClr to clear a tool definition.

See Also

Tool, Arm, ArmSet, TLClr

TLSet Example

The example shown below shows a good test which can be done from the command window to help
understand the difference between moving when a tool is defined and when no tool is defined.

> TLSet 1, XY(100, 0, 0, 0) 'Define tool coordinate system for
 'Tool 1 (plus 100 mm in x directionfrom hand coordinate
system)
> Tool 1 'Selects Tool 1 as defined by TLSet
> TGo P1 'Positions the Tool 1 tip position at P1
> Tool 0 'Tells robot to use no tool for future motion
> Go P1 'Positions the center of the U-Joint at P1

TLSet Function

574 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

TLSet Function

Returns a point containing the tool definition for the specified tool.

Syntax
TLSet(toolNumber)

Parameters
toolNumber Integer expression representing the number of the tool to retrieve.

Return Values
A point containing the tool definition.

See Also
TLSet Statement

TLSet Function Example

P1 = TLSet(1)

F

TMOut Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 575

TMOut Statement

Specifies the number of seconds to wait for the condition specified with the Wait
instruction to come true before issuing a timeout error.

Syntax
TMOut seconds

Parameters
seconds Real expression representing the number of seconds until a timeout occurs. Valid range

is 0-2147483 seconds in 1 second intervals.

Description
TMOut sets the amount of time to wait (when using the Wait instruction) until a timeout error is issued.
If a timeout of 0 seconds is specified, then the timeout is effectively turned off. In this case the Wait
instruction waits indefinitely for the specified condition to be satisfied.

The default initial value for TMOut is 0.

See Also
In, MemSw, OnErr, Sw, TW, Wait

TMOut Example

TMOut 5
Wait MemSw(0) = On

> S

TMove Statement

576 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

TMove Statement

Executes linear interpolation relative motion, in the current tool coordinate system

Syntax
TMove destination [ROT] [CP] [searchExpr] [!...!] [SYNC]

Parameters
destination The target destination of the motion using a point expression.
ROT Optional. :Decides the speed/acceleration/deceleration in favor of tool

rotation.
CP Optional. Specifies continuous path motion.
searchExpr Optional. A Till or Find expression.

Till | Find
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

!...! Optional. Parallel Processing statements can be added to execute I/O and
other commands during motion.

SYNC Reserves a motion command. The robot will not move until SyncRobots is
executed.

Description

Executes linear interpolated relative motion in the current tool coordinate system.

Arm orientation attributes specified in the destination point expression are ignored. The manipulator
keeps the current arm orientation attributes. However, for a 6-Axis manipulator, the arm orientation
attributes are automatically changed in such a way that joint travel distance is as small as possible.

TMove uses the SpeedS speed value and AccelS acceleration and deceleration values. Refer to
Using TMove with CP below on the relation between the speed/acceleration and the
acceleration/deceleration. If, however, the ROT modifier parameter is used, TMove uses the SpeedR
speed value and AccelR acceleration and deceleration values. In this case SpeedS speed value and
AccelS acceleration and deceleration value have no effect.

Usually, when the move distance is 0 and only the tool orientation is changed, an error will occur.
However, by using the ROT parameter and giving priority to the acceleration and the deceleration of
the tool rotation, it is possible to move without an error. When there is not an orientational change with
the ROT modifier parameter and movement distance is not 0, an error will occur.

Also, when the tool rotation is large as compared to move distance, and when the rotation speed
exceeds the specified speed of the manipulator, an error will occur. In this case, please reduce the
speed or append the ROT modifier parameter to give priority to the rotational speed/acceleration/
deceleration.

The Till modifier is used to complete TMove by decelerating and stopping the robot at an intermediate
travel position if the current Till condition is satisfied.

The Find modifier is used to store a point in FindPos when the Find condition becomes true during
motion.

When Till is used and the Till condition is satisfied, the manipulator halts immediately and the motion
command is finished. If the Till condition is not satisfied, the manipulator moves to the destination point.

When Find is used and the Find condition is satisfied, the current position is stored. Please refer to
Find for details.

> S

TMove Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 577

When parallel processing is used, other processing can be executed in parallel with the motion
command.

Notes
Using TMove with CP

The CP parameter causes the arm to move to destination without decelerating or stopping at the point
defined by destination. This is done to allow the user to string a series of motion instructions together
to cause the arm to move along a continuous path while maintaining a specified speed throughout all
the motion. The TMove instruction without CP always causes the arm to decelerate to a stop prior to
reaching the point destination.

See Also

AccelS, CP, Find, !....! Parallel Processing, Point Assignment, SpeedS, TGo, Till, Tool

TMove Example

> TMove XY(100, 0, 0, 0) 'Move 100mm in the X direction (in the tool coordinate system)
Function TMoveTest

 Speed 50
 Accel 50, 50
 SpeedS 100
 AccelS 1000, 1000
 Power High

 Tool 0
 P1 = XY(300, 300, -20, 0)
 P2 = XY(300, 300, -20, 0) /L

 Go P1
 Print Here
 TMove XY(0, 0, -30, 0)
 Print Here

 Go P2
 Print Here
 TMove XY(0, 0, -30, 0)
 Print Here

Fend

[Output]
 X: 300.000 Y: 300.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /R /0
 X: 300.000 Y: 300.000 Z: -50.000 U: 0.000 V: 0.000 W: 0.000 /R /0
 X: 300.000 Y: 300.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /L /0
 X: 300.000 Y: 300.000 Z: -50.000 U: 0.000 V: 0.000 W: 0.000 /L /0

Tmr Function

578 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Tmr Function

Timer function which returns the amount of time in seconds which has elapsed since
the timer was started.

Syntax
Tmr(timerNumber)

Parameters
timerNumber Integer expression representing which of the 64 timers to check the time of.

(0 ~ 63)

Return Values
Elapsed time for the specified timer as a real number in seconds. Timer range is from 0 - approx.
1.7E+31. Timer resolution is 0.001 seconds.

Description
Returns elapsed time in seconds since the timer specified was started.

Timers are reset with TmReset.

Real overhead

TmReset 0
overHead = Tmr(0)

See Also

TmReset

Tmr Function Example

TmReset 0 'Reset Timer 0
For i = 1 To 10 'Perform operation 10 times
 GoSub Cycle
Next
Print Tmr(0) / 10 'Calculate and display cycle time

F

TmReset Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 579

TmReset Statement

Resets the timers used by the Tmr function.

Syntax
TmReset timerNumber

Parameters
timerNumber Integer expression from 0 - 63 specifies which of the 64 timers to reset.

Description
Resets and starts the timer specified by timerNumber.

Use the Tmr function to retrieve the elapsed time for a specific timer.

See Also
Tmr

TmReset Example

TmReset 0 'Reset Timer 0
For i = 1 To 10 'Perform operation 10 times
 GoSub CYL
Next
Print Tmr(0)/10 'Calculate and display cycle time

S

Toff Statement

580 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Toff Statement

Turns off execution line display on the LCD.

Syntax
Toff

Description
Excution line will not be displayed on the LCD.

See Also
Ton

Toff Example

Function main
 Ton MyTask
 ...
 Toff
Fend

S

Ton Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 581

Ton Statement

Specifies a task which shows a execution line on the LCD.

Syntax
Ton taskIdentifier
Ton

Parameters
taskIdentifier Task name or integer expression representing the task number.

Task name is a function name used in an Xqt statement or a function started from
the Run window or Operator window.

Task number range is:
Normal tasks : 1 ~ 32

Description
Execution line of task 1 is displayed in initial status.
Ton statement displays the specified task execution line on the LCD.
When taskIdentifier is omitted, the task execution line with Ton statement execution is displayed on the
LCD.

See Also
Toff

Ton Example

Function main
 Ton MyTask
 ...
 Toff
Fend

S

Tool Statement

582 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Tool Statement

Selects or displays the current tool.

Syntax
(1) Tool toolNumber
(2) Tool

Parameters
toolNumber Optional. Integer expression from 0-15 representing which of 16 tool definitions to

use with subsequent motion instructions.

Return Values
Displays current Tool when used without parameters.

Description
Tool selects the tool specified by the tool number (toolNum). When the tool number is 0, no tool is
selected and all motions are done with respect to the center of the end effector joint. However, when
Tool entry 1, 2, or 3 is selected motion is done with respect to the end of the tool as defined with the
tool definition.

Note
Power Off and Its Effect on the Tool Selection

Turning main power off does not change the tool coordinate system selection.

See Also

TGo, TLSet, Tmove

Tool Statement Example
The example shown below shows a good test which can be done from the command window to help
understand the difference between moving when a tool is defined and when no tool is defined.

>tlset 1, 100, 0, 0, 0 'Define tool coordinate system for
 'Tool 1 (plus 100 mm in x direction
 'from hand coordinate system)
>tool 1 'Selects Tool 1 as defined by TLSet
>tgo p1 'Positions the Tool 1 tip position at P1
>tool 0 'Tells robot to use no tool for future motion
>go p1 'Positions the center of the U-Joint at P1

> S

Tool Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 583

Tool Function

Returns the current tool number.

Syntax
Tool

Return Values
Integer containing the current tool number.

See Also
Tool Statement

Tool Function Example

Integer savTool

savTool = Tool
Tool 2
Go P1
Tool savTool

F

Trap Statement (User defined trigger)

584 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Trap Statement (User defined trigger)

Defines interrupts and what should happen when they occur.
With the Trap statement, you can jump to labels or call functions when the event occurs.
Trap statement has 2 types as below:

- 4 Traps that interrupts by the user defined input status
- 7 Traps that interrupts by the system status

Trap with user defined trigger is explained here.

Syntax
Trap trapNumber, ioCondition GoTo label
Trap trapNumber, ioCondition Call funcname
Trap trapNumber, ioCondition Xqt funcname
Trap trapNumber

Parameters
trapNumber Integer number from 1-4 representing which of 4 Trap numbers to use.

(SPEL+ supports up to 4 active Trap interrupts at the same time.)
ioCondition Input status specified as a trigger

[Event] comparative operator (=, <>, >=, >, <, <=) [Integer expression]

The following functions and variables can be used in the Event:
Functions : Sw, In, InW, Oport, Out, OutW, MemSw, MemIn, MemInW, Ctr,
 GetRobotInsideBox, GetRobotInsidePlane
Variables : Byte, Integer, Long global preserve variable, Global variable,
 module variable

In addition, using the following operators you can specify multiple event
conditions.
Operator : And, Or, Xor
Example : Trap 1, Sw(5) = On Call TrapFunc
 Trap 1, Sw(5) = On And Sw(6) = Off Call TrapFunc

label The label where program execution is to be transferred when Trap condition is
satisfied.

funcName The function that is executed when Call or Xqt when the Trap condition is
satisfied.
The function with argument cannot be specified.

Description

A Trap executes interrupt processing which is specified by GoTo, Call, or Xqt when the specified
condition is satisfied.

The Trap condition must include at least one of the functions above.

When variables are included in the Trap condition, their values are computed when setting the Trap
condition. No use of variable is recommended. Otherwise, the condition may be an unintended
condition.

Once the interrupt process is executed, its Trap setting is cleared. If the same interrupt process is
necessary, the Trap instruction must execute it again.

To cancel a Trap setting simply execute the Trap instruction with only the trapNumber parameter. e.g.
"Trap 3" cancels Trap #3.
When the Function that executed Trap GoTo ends (or exit), the Trap Goto will be canceled
automatically.
When the declared task ends, Trap Call will be cancled.
Trap Xqt will be canceld when all tasks have stopped.

S

Trap Statement (User defined trigger)

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 585

If GoTo is specified
The command being executed will be processed as described below, then control branches to the
specified label.
- Any arm motion will pause immediately
- Waiting status by the Wait or Input commands will discontinue
- All other commands will complete execution before control branches

If Call is specified
After executing the same process as GoTo described above, then control branches to the specified
line number or label.
Once the function ends, program execution returns to the next statement after the statement where
program interruption occurred. Call statements cannot be used in the Trap processing function.
When an error occurs in the trap process function, error handling with OnErr will be invalid and an
error will occur.

If Xqt is specified
Program control executes the specified function as an interrupt processing task. In this case, the task
which executes the Trap command will not wait for the Trap function to finish and will continue to
execute.
You cannot execute a task with an Xqt statement from an interrupt processing task.

Notes
For EPSON RC+4.x user

The Trap Call function of EPSON RC+ 4.x or before is replaced with Trap Xqt in EPSON RC+ 6.0.
The Trap GoSub function of EPSON RC+ 4.x or before is removed in EPSON RC+ 6.0. Instead, use
Trap Call.

To use a variables in the event condition expression
- Available variables are Integer type (Byte, Integer, Long)
- Array variables are not available
- Local variables are not available
- If a variable value cannot satisfy the event condition for more than 0.01 second, the system cannot

retrieve the change in variables.
- Up to 64 can wait for variables in one system (including the ones used in the event condition

expressions such as Wait). If it is over 64, an error occurs during the project build.
- If you specify Byref to a waiting variable on any function call, an error occurs.
- When a variable is included in the right side member of the event condition expression, the value

iscalculated when setting the Trap condition. We recommend not using variables in an integer
expression to avoid making unintended conditions.

See Also

Call, GoTo, Xqt

Trap Statement (User defined trigger)

586 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Trap Example
<Example 1> Error process defined by User
Sw(0) Input is regarded as an error input defined by user.

Function Main
 Trap 1, Sw(0)= On GoTo EHandle ' Defines Trap
 .
 .
 .
EHandle:
 On 31 'Signal tower lights
 OpenCom #1
 Print #1, "Error is issued"
 CloseCom #1
Fend

<Example 2> Usage like multi-tasking

Function Main
 Trap 2, MemSw(0) = On Or MemSw(1) = On Call Feeder
 .
 .
 .
Fend
.

Function Feeder
 Select TRUE
 Case MemSw(0) = On
 MemOff 0
 On 2
 Case MemSw(1) = On
 MemOff 1
 On 3
 Send

 ' Re-arm the trap for next cycle
 Trap 2, MemSw(0) = On Or MemSw(1) = On Call Feeder
Fend

<Example 3> Using global variable as event condition
Global Integer gi

Function main
 Trap 1, gi = 5 GoTo THandle
 Xqt sub
 Wait 100
 Exit Function

THandle:
 Print "IN Trap ", gi

Fend

Function sub
 For gi = 0 To 10
 Print gi
 Wait 0.5
 Next
Fend

Trap (System status trigger)

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 587

Trap (System status trigger)

Defines interrupts and what should happen when they occur.
With the Trap statement, you can jump to labels or call functions when the event occurs.
Trap statement has 2 types as below:

- 4 Traps that interrupts by the user defined input status
- 7 Traps that interrupts by the system status

Trap with system status triggers is explained here.

Syntax
Trap {Emergency | Error | Pause | SGOpen | SGClose | Abort | Finish } Xqt funcname
Trap {Emergency | Error | Pause | SGOpen | SGClose | Abort | Finish }

Parameters
Emergency In the emergency stop status, executes the specified function.
Error In the error status, executes the specified function.
Pause In the pause status, executes the specified function.
SGOpen When safeguard is open, executes the specified function.
SGClose When safeguard is closed, executes the specified function.
Abort All tasks except the background tasks stops (such as when a statement

corresponding to the Abort All is executed or Pause buton is pressed) by the user
or system, executes the specified function.

Finish All tasks except the background tasks are completed, executes the specified
function. It cannot be executed in the condition which executes the Trap Abort.

funcname Function of interrupt processing task for which Xqt is executed when the system
status is completed.
Functions with argument cannot be specified.

Note
Trap *** Call function of EPSON RC+4.x or before is replaced to Trap *** Xqt in EPSON RC+ 6.0.

Description

When the system status completes, the specified interrupt processing task is executed.

Even if you execute a interrupt processing task, the Trap settings cannot be cleared.
To clear the Trap setting, omit the funcname and execute the Trap statement.
Example : Trap Emergency clears Trap Emergency
After all normal tasks are completed and the controller is in the Ready status, all Trap settings are
cleared.

You cannot execute more tasks using the Xqt from an interrupt processing.

CAUTION

Forced flag
You can turn On/Off the I/O outputs even in the Emergency Stop status, Safuguard
Open status, Teach mode, or error status by specifying the Forced flag to the I/O
output statement such as On and Off statements.
DO NOT connect the external devices which can move machines such as actuators
with the I/O outputs which specifies the Forced flag. It is extremely dangerous and it
can lead the external devices to move in the Emergency Stop status, Safuguard Open
status, Teach mode, or error status.
I/O outputs which specifies the Forced flag is supposed to be connected with the
external device such as LED as the status display which cannot move machines.

S

Trap (System status trigger)

588 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

If Emergency is specified
When the Emergency Stop is activated, the specified function is executed in the NoEmgAbort task
attribute.
The commands executable from the interrupt processing tasks can execute the NoEmgAbort task.
When the interrupt processing of Emergency Stop is completed, finish the task promptly.
Otherwise, the controller cannot be in the Ready status. You cannot reset the Emergency Stop
automatically by executing the Reset command from the interrupt processing task.
When the task executes I/O On/Off from the interrupt processing task, uncheck the Outputs off
during emergency stop check box in the Controller | Preferences page. If this check box is
checked, the execution order of turn Off by the controller and turn On using the task are not
guaranteed.

If Error is specified
When the Emergency Stop is activated, the specified function is executed in the NoEmgAbort task
attribute.
The commands executable from the interrupt processing tasks can execute the NoEmgAbort task.
When the interrupt processing of Emergency Stop is completed, finish the task promptly.
Otherwise, the controller cannot be in the Ready status.

If Pause is specified
When the Pause is activated, the specified function is executed in the NoEmgAbort task attribute.

If SGOpen is specified
When the Safeguard is open, the specified function is executed in the NoEmgAbort task attribute.

If SGClose is specified
When the safuguard is closed and latched, the specified function is executed in the NoEmgAbort
task attribute.
If you wxecute the Cont statement from the interrupt processing tasks, an error occurs.

If Abort is specified
All tasks except background tasks stop (such as when a statement corresponding to the Abort All
is executed or Pause buton is pressed) by the user or system, executes the specified function in
the NoPause attribute.
When the interrupt processing of Pause is completed, finish the task promptly. Otherwise, the
controller cannot be in the Ready status. Although a task executed with the Trap Abort has an
error, the Trap Error processing task is not executed.
If the Shutdown or Restart statemtns are aborted, processing tasks of neither the Trap Abort or
Trap Finish is executed.

If Finish is specified
All tasks except the background tasks stops (such as when a statement corresponding to the Abort
All is executed or Pause buton is pressed) by the user or system, executes the specified function in
the NoPause attribution. It cannot be executed in the condition which executes the Trap Abort
processing task.
When the shutdown and interrupt processing are completed, finish the tasks promptly. Otherwise,
the controller cannot be in the Ready status.

See Also
Era, Erl, Err, Ert, ErrMsg$, OnErr, Reset, Restart, Xqt

Trap Example
Function main
 :
 Trap Error Xqt suberr
 :
Fend

Function suberr
 Print "Error =", Err
 On ErrorSwitch
Fend

Trim$ Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 589

Trim$ Function

Returns a string equal to specified string without leading or trailing spaces.

Syntax
Trim$(string)

Parameters
string String expression.

Return Values
Specified string with leading and trailing spaces removed.

See Also
LTrim$, RTrim$

Trim$ Function Example

str$ = " data "
str$ = Trim$(str$) ' str$ = "data"

F

TW Function

590 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

TW Function

Returns the status of the Wait, WaitNet, and WaitSig commands.

Syntax
TW

Return Values
Returns False if Wait condition is satisfied within the time interval.
Returns True if the time interval has elapsed.

Description
The Timer Wait function TW returns the status of the preceding Wait condition with time interval with a
False (Wait condition was satisfied) or a True (time interval has elapsed).

See Also
TMOut, Wait

TW Function Example

Wait Sw(0) = On, 5 'Wait up to 5 seconds for input bit 0 On
If TW = True Then
 Print “Time Up” 'Display “Time UP” after 5 seconds
EndIf

F

Type Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 591

Type Statement

Displays the contents of the specified file.

Syntax

Type fileName

Parameters

fileName The path and name of the file to display.
If path is omitted, the file in the current directory is specified.
See ChDisk for the details.

Description

Type causes the specified file's contents to be displayed. Since only ASCII files can be displayed, be
sure to specify only ASCII files. The purpose of Type is to display the contents of files, not to edit files.

See Also

Dir

Type Example

Example from the command window

> type test.dat
MyData Line 1
MyData Line 2
MyData Line 3
>

>

UBound Function

592 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

UBound Function

Returns the largest available subscript for the indicated dimension of an array.

Syntax
UBound (arrayName [, dimension])

Parameters
arrayName Name of the array variable; follows standard variable naming conventions.
dimension Optional. Integer expression indicating which dimension's upper bound is

returned. Use 1 for the first dimension, 2 for the second, and 3 for the third. If
dimension is omitted, 1 is assumed.

See Also

Redim

UBound Function Example

Integer i, a(10)

For i=0 to UBound(a)
 a(i) = i
Next

F

UCase$ Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 593

UCase$ Function

Returns a string that has been converted to uppercase.

Syntax
UCase$ (string)

Parameters
string String expression.

Return Values
The converted uppercase string.

See Also
LCase$, LTrim$, Trim$, RTrim$

UCase$ Example

str$ = "Data"
str$ = UCase$(str$) ' str$ = "DATA"

F

UOpen Statement

594 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

UOpen Statement

Opens a file for read / write access.

Syntax
UOpen fileName As #fileNumber
 .
 .
Close #fileNumber

Parameters
fileName String expression that specifies path and file name.

If path is omitted, the file in the current directory is specified
See ChDisk for the details.

fileNumber Integer expression representing values from 30 ~ 63.
Description

Opens the specified file by the specified file number. This statement is used for writing and loading
data in the specified file.

Note
Do not use a network path, otherwise an error occurs.

If the specified file does not exist on disk, the file will be created and the data will be written into it.
If the specified file already exists on disk, the data will be written and read starting from the beginning
of the existing data.

The read/write position (pointer) of the file can be changed using the Seek command. When switching
between read and write access, you must use Seek to reposition the file pointer.

fileNumber identifies the file while it is open and cannot be used to refer to a different file until the
current file is closed. fileNumber is used by other file operations such as Print#, Read, Write, Seek,
and Close.

Close closes the file and releases the file number.

It is recommended that you use the FreeFile function to obtain the file number so that more than one
task are not using the same number.

See Also

Close, Print #, Input#, AOpen, BOpen, ROpen, WOpen, FreeFile, Seek

UOpen Statement Example

Integer fileNum, i, ｊ

fileNum = FreeFile
UOpen "TEST.DAT" As #fileNum
For i = 0 To 100
 Print #fileNum, i
Next i
Close #fileNum

fileNum = FreeFile
UOpen "TEST.DAT" As #fileNum
Seek #fileNum, 10
Input #fileNum, j
Print "data = ", j
Close #fileNum

Val Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 595

Val Function

Converts a character string that consists of numbers into their numerical value and returns
that value.

Syntax

Val(string)

Parameters
string String expression which contains only numeric characters. The string may also contain

a prefix: &H (hexadecimal), &O (octal), or &B (binary).

Return Values
Returns an integer or floating point result depending upon the input string. If the input string has a
decimal point character than the number is converted into a floating point number. Otherwise the
return value is an integer.

Description
Val converts a character string of numbers into a numeric value. The result may be an integer or
floating point number. If the string passed to the Val instruction contains a decimal point then the
return value will be a floating point number. Otherwise it will be an integer.

See Also
Abs, Asc, Chr$, Int, Left$, Len, Mid$, Mod, Right$, Sgn, Space$, Str$

Val Example
The example shown below shows a program which coverts several different strings to numbers and
then prints them to the screen.

Function ValDemo
 String realstr$, intstr$
 Real realsqr, realvar
 Integer intsqr, intvar

 realstr$ = "2.5"
 realvar = Val(realstr$)
 realsqr = realvar * realvar
 Print "The value of ", realstr$, " squared is: ", realsqr

 intstr$ = "25"
 intvar = Val(intstr$)
 intsqr = intvar * intvar
 Print "The value of ", intstr$, " squared is: ", intsqr
Fend

Here's another example from Command window.

> Print Val("25.999")
25.999
>

F

VxCalib Statement

596 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

VxCalib Statement
Note: This command is only for use with external vision systems and cannot be used with Vision Guide.

Creates calibration data for an external vision system.

Syntax
(1) VxCalib CalNo
(2) VxCalib CalNo, CamOrient, P(pixel_st : pixel_ed), P(robot_st : robot_ed) [,TwoRefPoints]
(3) VxCalib CalNo, CamOrient, P(pixel_st : pixel_ed), P(robot_st : robot_ed), P(ref0) [,P(ref180)]

Parameters

CalNo Integer expression that specifies the calibration data number. The range is from 0 to
15; up to 16 calibrations may be defined.

CamOrient Integer expression that specifies the camera mounting direction using the following
values:
1 to 3: Available only for syntax (2).
4 to 7: Available only for syntax (3).
1: Standalone
2: Fixed downward
3: Fixed upward
4: Mobile on Joint #2
5: Mobile on Joint #4
6: Mobile on Joint #5
7: Mobile on Joint #6

P(pixel_st : pixel_ed)
Specifies the Pixel coordinates (X, Y only) using the continuous point data.

P(robot_st : robot_ed)
Specifies the robot coordinates using the continuous point data.
The robot coordinates must be set as TOOL: 0, ARM: 0.

TwoRefPoints Available for syntax (2).
True, when using two measuring points. False, when using one measuring point.
Specifying two measuring points makes the calibration more accurate.
Optional.
Default: False

P(ref0) Available for syntax (3).
Specifies the robot coordinates of the reference point using the point data.

P(ref180) Available for syntax (3).
Specifies the robot coordinates of the second reference point using the point data.
Specifying two reference points makes the calibration more accurate.
Optional.

Description

The VxCalib comand calculates the vision calibration data for the specified calibration number using
the specified camera orientation, pixel coordinates, robot coordinates, and reference points (Mobile
camera only) given by the parameter.

When you specify only CalNo, the point data and other settings you defined are displayed (only from
the Command Window).

The following figure shows the coordinates system of the pixel coordinates. (Units: pixel)

VxCalib Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 597

 +X

+Y

0, 0

0°

+Θ

For the pixel coordinates and robot coordinates, set the top left position of the window as Point 1 and
set the bottom right position as Point 9 according to the order in the table below.
It is classified into the four categories by the parameter CamOrient and TwoRefPoints.

1) CamOrient = 1 to 3 (Standalone, Fixed Downward, Fixed Upward), TwoRefPoints = False

Data order Position Pixel coordinates Robot coordinates
1 Top left Detection coordinates 1 Measuring point coordinates 1
2 Top center Detection coordinates 2 Measuring point coordinates 2
3 Top right Detection coordinates 3 Measuring point coordinates 3
4 Center right Detection coordinates 4 Measuring point coordinates 4
5 Center Detection coordinates 5 Measuring point coordinates 5
6 Center left Detection coordinates 6 Measuring point coordinates 6
7 Bottom left Detection coordinates 7 Measuring point coordinates 7
8 Bottom center Detection coordinates 8 Measuring point coordinates 8
9 Bottom right Detection coordinates 9 Measuring point coordinates 9

2) CamOrient = 2 (Fixed Downward), TwoRefPoints = True
Note: When the tool is exactly defined, TwoRefPoints is not necessary and should be set to False.

By setting TwoRefPoints to True, two measuring points are used for each calibration position, which
makes the calibration more accurate. 18 robot points with U axis: 0 degree / 180 degrees are required.
After setting 1 to 9 measuring points coordinates, turn the U axis by 180 degrees and set the
measuring point coordinates 10 to 18 where the hand (such as the rod) is positioned at the calibration
target position.

Data order Position Pixel coordinates Robot coordinates U axis
1 Top left Detection coordinates 1 Measuring point coordinates 1

0 degree

2 Top center Detection coordinates 2 Measuring point coordinates 2
3 Top right Detection coordinates 3 Measuring point coordinates 3
4 Center right Detection coordinates 4 Measuring point coordinates 4
5 Center Detection coordinates 5 Measuring point coordinates 5
6 Center left Detection coordinates 6 Measuring point coordinates 6
7 Bottom left Detection coordinates 7 Measuring point coordinates 7
8 Bottom center Detection coordinates 8 Measuring point coordinates 8
9 Bottom right Detection coordinates 9 Measuring point coordinates 9

10 Top left - - - Measuring point coordinates10

180
degrees

11 Top center - - - Measuring point coordinates11
12 Top right - - - Measuring point coordinates12
13 Center right - - - Measuring point coordinates13
14 Center - - - Measuring point coordinates14
15 Center left - - - Measuring point coordinates15
16 Bottom left - - - Measuring point coordinates16
17 Bottom center - - - Measuring point coordinates17
18 Bottom right - - - Measuring point coordinates18

VxCalib Statement

598 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

3) CamOrient = 3 (Fixed Upward), TwoRefPoints = True
Note: When the tool is exactly defined, TwoRefPoints is not necessary and should be set to False.

By setting TwoRefPoints to True, two detection points are used, which makes the calibration more
accurate. For only the pixel coordinates, 18 points of U axis: 0 degree / 180 degrees are required.
After setting 1 to 9 detection coordinates at the each measuring point coordinates at 0 degrees, set
the detection coordinates for points 10 to 18 at 180 degrees.

Data order Position Pixel coordinates Robot coordinates U axis
1 Top left Detection coordinates 1 Measuring point coordinates 1

0 degree

2 Top center Detection coordinates 2 Measuring point coordinates 2
3 Top right Detection coordinates 3 Measuring point coordinates 3
4 Center right Detection coordinates 4 Measuring point coordinates 4
5 Center Detection coordinates 5 Measuring point coordinates 5
6 Center left Detection coordinates 6 Measuring point coordinates 6
7 Bottom left Detection coordinates 7 Measuring point coordinates 7
8 Bottom center Detection coordinates 8 Measuring point coordinates 8
9 Bottom right Detection coordinates 9 Measuring point coordinates 9

10 Top left Detection coordinates 10 - - -

180
degrees

11 Top center Detection coordinates 11 - - -
12 Top right Detection coordinates 12 - - -
13 Center right Detection coordinates 13 - - -
14 Center Detection coordinates 14 - - -
15 Center left Detection coordinates 15 - - -
16 Bottom left Detection coordinates 16 - - -
17 Bottom center Detection coordinates 17 - - -
18 Bottom right Detection coordinates 18 - - -

4) CamOrient = 4 to 7

Data order Position Pixel coordinates Robot coordinates
1 Top left Detection coordinates 1 Measuring point coordinates 1
2 Top center Detection coordinates 2 Measuring point coordinates 2
3 Top right Detection coordinates 3 Measuring point coordinates 3
4 Center right Detection coordinates 4 Measuring point coordinates 4
5 Center Detection coordinates 5 Measuring point coordinates 5
6 Center left Detection coordinates 6 Measuring point coordinates 6
7 Bottom left Detection coordinates 7 Measuring point coordinates 7
8 Bottom center Detection coordinates 8 Measuring point coordinates 8
9 Bottom right Detection coordinates 9 Measuring point coordinates 9

Notes
In addition to the tables above, specify the robot coordinates of the reference points.
Using the two reference points makes the calibration more accurate. In this case, it needs two points
of U axis: 0 degree / 180 degrees.
After setting the first reference points coordinates, turn the U axis by 180 degrees and set the second
reference points coordinates where the hand (such as the rod) is positioned at the calibration target
position. When the tool is exactly defined, the two reference points are not necessary.

See Also

VxTrans Function, VxCalInfo Function, VxCalDelete, VxCalSave, VxCalLoad

VxCalib Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 599

VxCalib Statement Example

Function MobileJ2

 Integer i
 Double d(8)

 Robot 1
 LoadPoints "MobileJ2.pts"

 VxCalib 0, 4, P(21:29), P(1:9), P(0)

 If (VxCalInfo(0, 1) = True) Then
 For i = 0 To 7
 d(i) = VxCalInfo(0, i + 2)
 Next i
 Print "Calibration result:"
 Print d(0), d(1), d(2), d(3), d(4), d(5), d(6), d(7)

 P52 = VxTrans(0, P51, P50)
 Print "Coordinates conversion result:"
 Print P52
 SavePoints "MobileJ2.pts"
 VxCalSave "MobileJ2.caa"
 Else
 Print "Calibration failed"
 EndIf

Fend

VxCalDelete Statement

600 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

VxCalDelete Statement

Note: This command is only for use with external vision systems and cannot be used with Vision Guide.

Deletes the calibration data for an external vision system calibration.

Syntax
VxCalDelete CalNo

Parameters
CalNo Integer expression that specifies the calibration data number. The range is from 0 to

15; up to 16 calibrations may be defined.
Description

Deletes the calibration data defined by the specified calibration number.

See Also
VxCalib, VxTrans Function, VxCalInfo Function, VxCalSave, VxCalLoad

VxCalDelete Statement Example

VxCalDelete "MobileJ2.caa"

VxCalLoad Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 601

VxCalLoad Statement
Note: This command is only for use with external vision systems and cannot be used with Vision Guide.

Loads the calibration data for an external vision system calibration from a file.

Syntax

VxCalLoad FileName

Parameters
FileName Specifies the file name from which the calibration data is loaded using a string

expression.
The file extension is .CAA. If omitted, .CAA is automatically added.
For extensions other than .CAA, they are automatically changed to .CAA.

Description
Loads the calibration data from the specified file in the current project.

See Also
VxCalib, VxTrans Function, VxCalInfo Function, VxCalDelete, VxCalSave

VxCalLoad Statement Example

VxCalLoad "MobileJ2.caa"

VxCalInfo Function

602 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

VxCalInfo Function
Note: This command is only for use with external vision systems and cannot be used with Vision Guide.

Returns the calibration completion status and the calibration data.

Syntax
VxCalInfo (CalNo,CalData)

Parameters
CalNo Integer expression that specifies the calibration data number. The range is from 0 to

15; up to 16 calibrations may be defined.
CalData Specifies the calibration data type to acquire using the integer values in the table below.

CalData Calibration Data Type
1 CalComplete
2 X Avg Error [mm]
3 X Max error [mm]
4 X mm per pixel [mm]
5 X tilt
6 Y Avg error [mm]
7 Y Max error [mm]
8 Y mm per pixel [mm]
9 Y tilt

Return Value

Returns the specified calibration data. For CalData = 1, the data type is Boolean. For all other data,
the data type is Double.

Description
You can check which calibration has defined calibration data.
Also, you can retrieve the calibration data values.

See Also
VxCalib, VxTrans Function, VxCalDelete, VxCalSave, VxCalLoad

VxCalInfo Function Example
Print VxCalInfo(0, 1)

VxCalSave Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 603

VxCalSave Statement
Note: This command is only for use with external vision systems and cannot be used with Vision Guide.

Saves the calibration data for an external vision system calibration to a file.

Syntax
VxCalSave FileName

Parameters

FileName Specifies the file name from which the calibration data is loaded using a string
expression.
The extension is .CAA. If omitted, .CAA is automatically added.
For extensions other than .CAA, they are automatically changed to .CAA.

Description
Saves the calibration data with the specified file name. The file is saved in the current project. If the
file name is already existed, the calibration data is overwritten.

See Also

VxCalib, VxTrans Function, VxCalInfo Function, VxCalDelete, VxCalLoad

VxCalSave Statement Example

VxCalSave "MobileJ2.caa"

VxTrans Function

604 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

VxTrans Function
Note: This command is only for use with external vision systems and cannot be used with Vision Guide.

Converts pixel coordinates to robot coordinates and returns the converted point data.

Syntax
VxTrans (CalNo, P(pixel) [, P(camRobot)]) As Point

Parameters
CalNo Integer expression that specifies the calibration data number. The range is from 0 to

15; up to 16 calibrations may be defined.
P(pixel) Specifies the vision pixel coordinates (X,Y,U only) using point data.
P(camRobot) Optional. For a mobile camera, this is the position where the robot was located when

the image was acquired. If not specified, then the current robot position is used.
The point should be in BASE: 0, TOOL: 0, ARM: 0.

Return Value

Returns the calculated robot coordinates using the point data.

Description
This command converts pixel coordinates to robot coordinates using the calibration data of the
specified calibration number.

When using a mobile camera, specify P(camRobot) if the robot has been moved from the position
where the image was acquired. Ensure that P(camRobot) is in BASE: 0, TOOL: 0, ARM: 0. The Joint
#4 and Joint #6 angles of the set robot coordinates are used for the calculation.

See Also
VxCalib, VxCalInfo Function, VxCalDelete, VxCalSave, VxCalLoad

VxTrans Statement Example

P52 = VxTrans(0, P51, P50)

Wait Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 605

Wait Statement

Causes the program to Wait for a specified amount of time or until the specified input
condition (using MemSw or Sw) is met. (Oport may also be used in the place of Sw to check
hardware outputs.) Also waits for the values of global variables to change.

Syntax
(1) Wait time
(2) Wait inputcondition
(3) Wait inputcondition, time

Parameters
time Real expression between 0 and 2,147,483 which represents the amount of time

to wait when using the Wait instruction to wait based on time. Time is specified in
seconds. The smallest increment is .01 seconds.

inputcondition The following syntax can be used to specify the inputcondition:
 [Event] Comparative operator (=, <>, >=, >, <, <=) [Integer expression]

The following functions and variables can be used in the Event.

Functions : AtHome, Sw, In, InW, Oport, Out, OutW, MemSw, MemIn,
MemInW,
Ctr, GetRobotInsideBox, GetRobotInsidePlane, MCalComplete,
Motor, LOF, ErrorOn, SaftyOn, EstopOn, TeachOn,
Cnv_QueLen, WindowsStatus, LatchState

Operators : Byte, Integer, Long global preserve variables, global variables,
module variables

In addition, using the following operators you can specify multiple input
conditions.
Operator : And, Or, Xor, Mask

Description
(1) Wait with Time Interval

When used as a timer, the Wait instruction causes the program to pause for the amount of time
specified and then continues program execution.

(2) Wait for Event Conditions without Time Interval

When used as a conditional Wait interlock, the Wait instruction causes the program to wait until
specified conditions are satisfied. If after TMOut time interval has elapsed and the Wait conditions
have not yet been satisfied, an error occurs. The user can check multiple conditions with a single
Wait instruction by using the And, Mask, Or, or Xor instructions. (Please review the example
section for Wait.)

(3) Wait with Event Condition and Time Interval
Specifies Wait condition and time interval. After either Wait condition is satisfied, or the time
interval has elapsed, program control transfers to the next command. Use Tw to verify if the Wait
condition was satisfied or if the time interval elapsed.

Notes
Specifying a Timeout for Use with Wait

When the Wait instruction is used without a time interval, a timeout can be specified which sets a time
limit to wait for the specified condition. This timeout is set through using the TMOut instruction. Please
refer to this instruction for more information. (The default setting for TMOut is 0 which means no
timeout.)

Waiting for variable with Wait
- Available variables are Integer type (Byte, Integer, Long)
- Array variables are not available
- Local variables are not available

S

Wait Statement

606 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

- If variables value cannot satisfy the event condition for more than 0.01 second, the change in
variables may not be retrieved.

- Up to 64 can wait for variables in one system (including ones used in the event condition expressions
such as Till). If it is over 64, an error occurs during the project build.

- If you specify Byref to a waiting variable on any function call, an error occurs.
- When a variable is included in the right side member of the event condition expression, the value is

calculated when setting the Trap condition. We recommend not using variables in an integer
expression to avoid making unintended conditions.

When Using PC COM port (1001,1002)
- You cannot use Lof Function for Wait instraction.

See Also

AtHome, Cnv_QueLen, Ctr, ErrorOn, EstopOn, GetRobotInsideBox, GetRobotInsidePlane, In, InW,
LatchState, LOF, Mask, MCalComplete, MemIn, , MemInW, MemSw
Motor, Oport, Out, OutW, SaftyOn, Sw, TeachOn , TMOut, WindowsStatus ,Tw

Wait Example
The example shown below shows 2 tasks each with the ability to initiate motion instructions. However,
a locking mechanism is used between the 2 tasks to ensure that each task gains control of the robot
motion instructions only after the other task is finished using them. This allows 2 tasks to each execute
motion statements as required and in an orderly predictable fashion. MemSw is used in combination
with the Wait instruction to wait until the memory I/O #1 is the proper value before it is safe to move
again.

Function main
 Integer I
 MemOff 1
 Xqt !2, task2
 For i = 1 to 100
 Wait MemSw(1) = Off
 Go P(i)
 MemOn 1
 Next I
Fend

Function task2
 Integer i
 For i = 101 to 200
 Wait MemSw(1) = On
 Go P(i)
 MemOff 1
 Next i
Fend

' Wait until input 0 turns on
Wait Sw(0) = On

' Wait 60.5 secs and then continue execution
Wait 60.5

' Wait until input 0 is off and input 1 is on
Wait Sw(0) = Off And Sw(1) = On

' Wait until memory bit 0 is on or memory bit 1 is on
Wait MemSw(0) = On Or MemSw(1) = On

' Wait one second, then turn output 1 on
Wait 1; On 1

' Wait for the lower 3 bits of input port 0 to equal 1

Wait Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 607

Wait In(0) Mask 7 = 1

' Wait until the global Integer type variable giCounter is over 10
Wait giCounter > 10

' Wait ten seconds, until the global Long type variable glCheck is 30000
Wait glCheck = 30000, 10

WaitNet Statement

608 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

WaitNet Statement

Wait for TCP/IP port connection to be established.

Syntax
WaitNet #portNumber [, timeOut]

Parameters
portNumber Integer expression for TCP/IP port number to connect. Range is 201 - 216
timeOut Optional. Maximum time to wait for connection. Valid range is 0-2147483

seconds in 0.01 second intervals.

See Also
OpenNet, CloseNet

WaitNet Statement Example
For this example, two controllers have their TCP/IP settings configured as follows:

Controller #1:
Port: #201
Host Name: 192.168.0.2
TCP/IP Port: 1000

Function tcpip
 OpenNet #201 As Server
 WaitNet #201
 Print #201, "Data from host 1"
Fend

Controller #2:
Port: #201
Host Name: 192.168.0.1
TCP/IP Port: 1000

Function tcpip
 String data$
 OpenNet #201 As Client
 WaitNet #201
 Input #201, data$
 Print "received '", data$, "' from host 1"
Fend

S

WaitPos Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 609

WaitPos Statement

Waits for robot to decelerate and stop at position before executing the next statement
while path motion is active.

Syntax
WaitPos

Description
Normally, when path motion is active (CP On or CP parameter specified), the motion command starts
the next statement as deceleration starts.
Use the WaitPos command right before the motion to complete the deceleration motion and go on to
the next motion.

See Also
Wait, WaitSig, CP

WaitPos Statement Example

Off 1
CP On
Move P1
Move P2
WaitPos ' wait for robot to decelerate
On 1
CP Off

S

WaitSig Statement

610 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

WaitSig Statement

Waits for a signal from another task.

Syntax
WaitSig signalNumber [, timeOut]

Parameters
signalNumber Integer expression representing signal number to receive. Range is from 0 ~ 63.
timeOut Optional. Real expression representing the maximum time to wait. Valid range

is 0-2147483 seconds in 0.01 second intervals.

Description
Use WaitSig to wait for a signal from another task. The signal will only be received after WaitSig has
started. Previous signals are ignored.

See Also
Wait, WaitPos, Signal

WaitSig Example

Function Main
 Xqt SubTask
 Wait 1
 Signal 1
 .
 .
Fend

Function SubTask
 WaitSig 1
 Print "signal received"
 .
Fend

S

Weight Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 611

Weight Statement

Specifies or displays the inertia of the robot arm.

Syntax
Weight payloadWeight [, distance | S | T]
Weight

Parameters
payloadWeight The weight of the end effector to be carried in Kg unit.
distance The distance from the rotational center of the second arm to the center of the

gravity of the end effector in mm unit. Valid only for SCARA robots (including RS
series).

S Load weight against the additional S axis in kg to 2 decimal places)
T Load weight against the additional T axis in kg to 2 decimal places)

Return Values
Displays the current Weight settings when parameters are omitted.

Description
Specifies parameters for calculating Point to Point motion maximum acceleration. The Weight
instruction specifies the weight of the end effector and the parts to be carried.

The Arm length (distance) specification is necessary only for SCARA robots (including RS series). It is
the distance from the second arm rotation joint centerline to the hand/work piece combined center of
gravity.

If the robot has the additional axis, the loads on the additional axis must be set with the S, T
parameters.

If the equivalent value work piece weight calculated from specified parameters exceeds the maximum
allowable payload, an error occurs.

Potential Errors
Weight Exceeds Maximum

When the equivalent load weight calculated from the value entered exceeds the maximum load weight,
an error will occur.

Potential Damage to the Manipulator Arm
Take note that specifying a Weight hand weight significantly less than the actual work piece weight
can result in excessive acceleration and deceleration. These, in turn, may cause severe damage to
the manipulator.

Note
Weight Values Are Not Changed by Turning Main Power Off

The Weight values are not changed by turning power off.

See Also

Accel, Inertia

> S

Weight Statement

612 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Weight Statement Example
This Weight instruction on the Command window displays the current setting.

> weight
2.000, 200.000
>

Sets the hand weight (3 kg) with the Weight statement
Weight 3.0

Sets the load weight on the additional S axis (3 kg) with the Weight statement
Weight 30.0, S

Weight Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 613

Weight Function

Returns a Weight parameter.

Syntax
Weight(paramNumber)

Parameters
paramNumber Integer expression containing one of the values below:
 1: Payload weight
 2: Arm length
 3: Load on the additional S axis
 4: Load on the additional T axis

Return Values
Real number containing the parameter value.

See Also
Inertia, Weight Statement

Weight Function Example

Print "The current Weight parameters are: ", Weight(1)

F

Where Statement

614 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Where Statement

Displays current robot position data.

Syntax
Where [localNumber]

Parameters
localNumber Optional. Specifies the local coordinate system number. Local 0 is default.

See Also
Joint, PList, Pulse

Where Statement Example

The display type can be different depending on the robot type and
existence of additional axes.
The following example is for Scara robot without the additional axis.

>where
WORLD: X: 350.000 mm Y: 0.000 mm Z: 0.000 mm U: 0.000 deg V: 0.000 deg W: 0.000 deg
JOINT: 1: 0.000 deg 2: 0.000 deg 3: 0.000 mm 4: 0.000 deg
PULSE: 1: 0 pls 2: 0 pls 3: 0 pls 4: 0 pls

> local 1, 100,100,0,0

> where 1
WORLD: X: 250.000 mm Y:-100.000 mm Z: 0.000 mm U: 0.000 deg V: 0.000 deg W: 0.000 deg
JOINT: 1: 0.000 deg 2: 0.000 deg 3: 0.000 mm 4: 0.000 deg
PULSE: 1: 0 pls 2: 0 pls 3: 0 pls 4: 0 pls

>

WindowsStatus Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 615

WindowsStatus Function

Returns the Windows startup status.

Syntax
WindowsStatus

Return Values
Integer value representing the current Windows startup status. The Windows startup status is
returned in a bit image and shows the following status.

Function name System reservation RC+ enabled PC enabled

Bit number 15 ~ 2 1 0

Details of available
functions

Vision Guide
 (Frame grabber type)
VB Guide
Fieldbus master

PC file
PC RS-232C
Data base access
DLL call

Description
This function is used to check the controller startup status when the controller configuration is set to
“Independent mode”. When the controller configuration is set to “Cooperative mode”, programs cannot
be started until both RC+ function and PC function turn available.

WindowsStatus function Example

Print "The current PC Booting up Status is: ", WindowsStatus

F

WOpen Statement

616 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

WOpen Statement

Opens a file for writing.

Syntax
WOpen fileName As #fileNumber
 .
 .
Close #fileNumber

Parameters

fileName A string expression containing the path and file name.
If path is omitted, the file in the current directory is specified.
See ChDisk for the details.

fileNumber Integer expression that specifies 30 ~ 63

Description

Opens the specified file using the specified fileNumber. This statement is used to open and write data
to the specified file. (To append data refer to the AOpen explanation.)

If the specified filename does not exist on the disks current directory, WOpen creates the file and
writes to it. If the specified filename exists, WOpen erases all of the data in the file and writes to it.

Note
Do not use a network path, otherwise an error occurs.
File write buffering

File writing is buffered. The buffered data can be written with Flush statement. Also, when closing a
file with Close statement, the buffered data can be written.

fileNumber identifies the file while it is open and cannot be used to refer to a different file until the
current file is closed. fileNumber is used by other file operations such as Print#, Write, Seek, and
Close.

Close closes the file and releases the file number.

It is recommended that you use the FreeFile function to obtain the file number so that more than one
task are not using the same number.

See Also

AOpen, BOpen, Close, Print#, ROpen, UOpen, FreeFile

WOpen Example

Integer fileNum, i, j

fileNum = FreeFile
WOpen "TEST.DAT" As #fileNum
For i = 0 To 100
 Print #fileNum, i
Next i
Close #fileNum

fileNum = FreeFile
ROpen "TEST.DAT" As #fileNum
For i = 0 to 100
 Input #fileNum, j
 Print "data = ", j
Next i
Close #fileNum

S

Wrist Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 617

Wrist Statement

Sets the wrist orientation of a point.

Syntax
(1) Wrist point, [Flip | NoFlip]
(2) Wrist

Parameters
point Pnumber or P(expr) or point label.
Flip | NoFlip Representing wrist orientation.

Return Values

When both parameters are omitted, the wrist orientation is displayed for the current robot position.
If Flip | NoFlip is ommited, the wrist orientation for the specified point is displayed.

See Also
Elbow, Hand, J4Flag, J6Flag, Wrist Function

Wrist Statement Example

Wrist P0, Flip
Wrist P(mypoint), NoFlip

P1 = 320.000, 400.000, 350.000, 140.000, 0.000, 150.000

Wrist P1, NoFlip

Go P1

Wrist P1, Flip
Go P1

> S

Wrist Function

618 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Wrist Function

Returns the wrist orientation of a point.

Syntax
Wrist [(point)]

Parameters
point Optional. Pnumber or P(expr) or point label or point expression. If point is omitted, then

the wrist orientation of the current robot position is returned.

Return Values
1 NoFlip (/NF)
2 Flip (/F)

See Also

Elbow, Hand, J4Flag, J6Flag, Wrist Statement

Wrist Function Example

Print Wrist(pick)
Print Wrist(P1)
Print Wrist
Print Wrist(P1 + P2)

F

Write Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 619

Write Statement

Writes characters to a file or communication port without end of line terminator.

Syntax
Write #portNumber, string

Parameters
portNumber ID number that specifies the file or communications port

File number can be specified in ROpen, WOpen, AOpen statements.
Communication port number can be specified in OpenCom (RS-232C) or
OpenNet (TCP/IP) statements.

string String expression that will be written to the file.

Description
Write is different from Print in that it does not add an end of line terminator.

Note
File write buffering

File writing is buffered. The buffered data can be written with Flush statement. Also, when closing a
file with Close statement, the buffered data can be written.

See Also

Print, Read

Write Example

OpenCom #1
For i = 1 to 10
 Write #1, data$(i)
Next i
CloseCom #1

S

WriteBin Statement

620 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

WriteBin Statement

Writes binary data to a file or communications port.

Syntax
WriteBin #portNumber, data
WriteBin #portNumber, array(), count

Parameters
portNumber ID number that specifies the file or communications port

File number can be specified in BOpen statements.
Communication port number can be specified in OpenCom (RS-232C) or OpenNet
(TCP/IP) statements.

data Integer expression containing the data to be written.
array() Name of a byte, integer, or long array variable that contains the data bytes to be written.

Specify a one dimension array variable.
count Specifies the number of bytes to be written and must be less than or equal to the

number of array elements.

See Also
ReadBin, Write

WriteBin Statement Example

Integer i, data(100)

OpenCom #1
For i = 0 To 100
 WriteBin #1, i
Next I
WriteBin #1, data(), 100
CloseCom #1

S

Xor Operator

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 621

Xor Operator

Performs the bitwise Xor operation (exclusive OR) on two expressions.

Syntax
result = expr1 Xor expr2

Parameters
expr1, expr2 A numeric value, or a variable name.
result An integer.

Description
The Xor operator performs the bitwise Xor operation on the values of the operands. Each bit of the
result is the Xored value of the corresponding bits of the two operands.

If bit in expr1 is And bit in expr2 is The result is
0 0 0
0 1 1
1 0 1
1 1 0

See Also

And, LShift, Not, Or, Rshift

Xor Operator Example

>print 2 Xor 6
 4
>

> S

Xqt Statement

622 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Xqt Statement

Initiates execution of a task from within another task.

Syntax
Xqt [taskNumber,] funcName [(argList)] [,Normal | NoPause | NoEmgAbort]

Parameters
taskNumber Optional. The task number for the task to be executed. The range of the task

number is 1 to 32.
For background tasks, specifies integer value from 65 ~ 80.

funcName The name of the function to be executed.
argList Optional. List of arguments that are passed to the function procedure when it is

called. Multiple arguments are separated by commas.
taskType Optional. Usually omitted.

For background tasks, specifying a task type means nothing.
Normal Executes a normal task.
NoPause Executes a task that does not pause at Pause statement or Pause input signal

occurance or Safety Door Open.
NoEmgAbort Executes a task that continue processing at Emergency Stop or error occurence.

Description
Xqt starts the specified function and returns immediately.

Normally, the taskNumber parameter is not required. When taskNumber is omitted, SPEL+
automatically assigns a task number to the function, so you don't have to keep track of which task
numbers are in use.

Notes

Task Type
Speciify NoPause or NoEmgAbort as a task type to execute a task that monitors the whole controller.
However, be sure to use these special tasks based on the understanding of the task motion using
SPEL+ or restriction of special tasks.
For details of special tasks, refer to the section Special Tasks in the EPSON RC+ 5.0 User’s Guide.

Background task
When executing Xqt in a background task, the generated task is also the background task.
To execute the main function from a background task, use the StartMain statement.
The details of the background task is explained in the EPSON RC+ 6.0 Users Guide manual: 6.20
Special Task.

Unavailable Commands in NoEmgAbort Task and background task
The following commands cannot be executed in NoEmgAbort task and background task.

A Accel F Find Q QP V VCal

 AccelR Fine QPDecelR VcalPoints
 AccelS G Go QPDecelS VCls
 Arc H Home R Range VCreateCalibration
 Arc3 HomeClr Reset *1 VCreateObject
 Arch HomeSet Restart *2 VCreateSequence
 Arm Hordr S Sense VDeleteCalibration
 ArmSet I Inertia SFree VDeleteObject
 ArmClr J JTran SLock VDeleteSeuence

B Base Jump SoftCP VGet
 BGo Jump3 Speed VLoad
 BMove Jump3CP SpeedR VLoadModel
 Box JRange SpeedS VRun

S

Xqt Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 623

 BoxClr L LimZ SyncRobots VSave
 Brake Local T TC VSaveImage

C Cnv_AbortTrack LocalClr TGo VSaveModel
 Cnv_Fine M MCal Till VSet
 Cnv_QueAdd MCordr TLSet VShowModel
 Cnv_QueMove Motor TLClr VStatsReset
 Cnv_QueReject Move TMove VStatsResetAll
 Cnv_QueUserData O OLAccel Tool VStatsSave
 Cnv_Trigger P Pass Trap VStasShow
 CP Pg_LSpeed VTeach
 Curve Pg_Scan VTrain
 CVMove Plane W WaitPos

E ECP PlaneClr Weight
 ECPClr Power X Xqt *3
 ECPSet PTPBoost XYLim
 Pulse

*1 Reset Error can be executed
*2 Executable from the Trap Error processing task
*3 Executable from the background tasks

See Also
Function/Fend, Halt, Resume, Quit, Startmain, Trap

Xqt Example

Function main
 Xqt flash 'Start flash function as task 2
 Xqt Cycle(5) 'Start Cycle function as task 3

 Do
 Wait 3 'Execute task 2 for 3 seconds
 Halt flash 'Suspend the task

 Wait 3
 Resume flash 'Resume the task
 Loop
Fend

Function Cycle(count As Integer)
 Integer i

 For i = 1 To count
 Jump pick
 On vac
 Wait .2
 Jump place
 Off vac
 Wait .2
 Next i
Fend

Function flash
 Do
 On 1
 Wait 0.2
 Off 1
 Wait 0.2
 Loop
Fend

XY Function

624 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

XY Function

Returns a point from individual coordinates that can be used in a point expression.

Syntax
XY(x, y, z, u, [v, w])

Parameters
x Real expression representing the X coordinate.
y Real expression representing the Y coordinate.
z Real expression representing the Z coordinate.
u Real expression representing the U coordinate.
v Optional for 6-Axis robots. Real expression representing the V coordinate.
w Optional for 6-Axis robots. Real expression representing the W coordinate.

Return Values
A point constructed from the specified coordinates.

Description
When you don’t use the additional ST axis, there are nothing in particular to be care of.
You can move the manipulator to the specified coordinate with XY function like below:
 Go XY(60,30,-50,45)

When you use the additional ST axis, you need to be careful.
XY function returns the only robot point data, not including the additional axis.
If you use XY function lick this: Go XY(60,30,-50,45), the manipulator will move to the specified
coordinate but the additional axis will not move. If you want to move the additional axis as well,
specify like this: Go XY(60,30,-50,45) : ST(10,20).
For the details of additional axis, refer to EPSON RC+ Users Guide: 19. Additional Axis.

See Also

JA, Point Expression, ST Function

XY Function Example

P10 = XY(60, 30, -50, 45) + P20

F

XYLim Statement

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 625

XYLim Statement

Sets or displays the permissible XY motion range limits for the robot.

Syntax
XYLim minX, maxX, minY, maxY, [minZ], [maxZ]
XYLim

Parameters
minX The minimum X coordinate position to which the manipulator may travel.
 (The manipulator may not move to a position with the X Coordinate less than minX.)
maxX The maximum X coordinate position to which the manipulator may travel.
 (The manipulator may not move to a position with the X Coordinate greater than maxX.)
minY The minimum Y coordinate position to which the manipulator may travel.
 (The manipulator may not move to a position with the Y Coordinate less than minY.)
maxY The maximum Y coordinate position to which the manipulator may travel.
 (The manipulator may not move to a position with the Y Coordinate greater than maxY.)
minZ Optional. The minimum Z coordinate position to which the manipulator may travel.
 (The manipulator may not move to a position with the Z Coordinate less than minZ.)
maxZ Optional. The maximum Z coordinate position to which the manipulator may travel.
 (The manipulator may not move to a position with the Z Coordinate greater than maxZ.)

Return Values
Displays current XYLim values when used without parameters

Description
XYLim is used to define XY motion range limits. Many robot systems allow users to define joint limits
but the SPEL+ language allows both joint limits and motion limits to be defined. In effect this allows
users to create a work envelope for their application. (Keep in mind that joint range limits are also
definable with SPEL.)

The motion range established with XYLim values applies to motion command target positions only,
and not to motion paths from starting position to target position. Therefore, the arm may move outside
the XYLim range during motion. (i.e. The XYLim range does not affect Pulse.)

Notes
Turning Off Motion Range Checking

There are many applications which don't require Motion Range limit checking and for that reason there
is a simple method to turn this limit checking off. To turn motion range limit checking off, define the
Motion Range Limit values for minX, maxX, minY, and maxY to be 0. For example XYLim 0, 0, 0, 0.

Default Motion Range Limit Values
The default values for the XYLim instruction are "0, 0, 0, 0". (Motion Range Limit Checking is turned
off.)

Tip
Point & Click Setup for XYLim

EPSON RC+ 6.0 has a point and click dialog box for defining the motion range limits. The simplest
method to set the XYLim values is by using the XYZ Limits page on the Robot Manager .

> S

XYLim Statement

626 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

See Also
Range

XYLim Statement Example

This simple example from the command window sets and then displays the current XYLim setting:

> xylim -200, 300, 0, 500

> XYLim
-200.000, 300.000, 0.000, 500.000

XYLim Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 627

XYLim Function

Returns point data for either upper or lower limit of XYLim region.

Syntax
XYLim(limit)

Parameters
limit Integer expression that specifies which limit to return.
 1: Lower limit.
 2: Upper limit.

Return Values
Point containing the specified limit coordinates.

See Also
XYLim Statement

XYLim Function Example

P1 = XYLim(1)
P2 = XYLim(2)

F

XYLimClr Statement

628 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

XYLimClr Statement

Clears the XYLim definition.

Syntax
XYLimClr

See Also
XYLim, XYLimDef

XYLimClr Function Example
This example uses the XYLimClr function in a program:

Function ClearXYLim

 If XYLimDef = True Then
 XYLimClr
 EndIf
Fend

S >

XYLimDef Function

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 629

XYLimDef Function

Returns whether XYLim has been defined or not.

Syntax
XYLimDef

Return Values
True if XYLim has been defined, otherwise False.

See Also
XYLim, XYLimClr

XYLimDef Function Example
This example uses the XYLimDef function in a program:

Function ClearXYLim

 If XYLimDef = True Then
 XYLimClr
 EndIf
Fend

F

SPEL+ Error Messages

630 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

SPEL+ Error Messages
To get help for any SPEL+ error, place the cursor on the error message in the run or command windows
and press the F1 key.

No. Message Remedy Note 1 Note 2
1 Controller control program started. -

2 Termination due to low voltage of the
power supply.

-

3 Controller control program has
completed.

Stores this log when the
controller is rebooted from
EPSON RC+ or TP1.

4 Preserve variables save area has
been cleaned.

-

5 Function Main started. -

6 Function Main started. Later same
logs are skiped.

Skip the log "Function Main
started." to prevent system
history space run out.

7 Serial number has been saved. -

8 System backup has been executed. -

9 System restore has been executed. -

10 Robot parameters have been
initialized.

-

11
Offset pulse value between the
encoder origin and the home sensor
(HOFS) is changed.

- Value after
change

Value
before
change

17 Message saving mode activated.
Uncommon event.

-

18 Conversion of Robot Parameter file
has been executed.

-

19 DU firmware has been installed. -

20 Enable setting in Teach mode has
been saved. -

21 Enable setting in Teach mode has
been changed. -

100 Device connected to Controller. -

101 Console device has changed.
- 21:PC

22:Remote
26: Remote
 Ethernet

102 Display device has changed. -

103 Working mode has changed. -

104 Cooperative mode has changed. - 0: Independent
1: Cooperative

110 Controller firmware has been
installed.

- 1:Setup
2:Initialize
3:Upgrade
4:Recover

111 IP address has been restored. May store this log when the
controller firmware is installed.

120 RC+ connected to the Controller. - 1:Ethernet
2:USB

121 TP connected to the Controller. -

122 OP connected to the Controller. -

123 RC+ disconnected from the
Controller.

-

124 TP disconnected from the Controller. -

126 Working mode changed to AUTO. -

127 Working mode changed to Program. -

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 631

No. Message Remedy Note 1 Note 2
128 Working mode changed to Teach. -

129
Remote Ethernet connected to the
Controller

-

130
Remote Ethernet disconnected to the
Controller

-

501
Trace history is active. Effects system performance if

trace history is active.

502

Memory has been initialized. When this error occurs, the value
of the Global Preserve variable
will be initialized.
Replace the CPU board battery.
Replace the CPU board.

503
Found Hard disk error.
You shuld replace the hard disk
ASAP.

This is a warning of the hard disk
failure. Replace the hard disk as
soon as possible.

504
An Error occured on a Background
Task.

Make sure there are no
problems in the system and
continue the operation.

511

Battery voltage of the CPU board
backup is lower than the allowed
voltage. Replace the CPU board
battery.

Replace the CPU board battery
immediately. Keep the power to
the controller ON as far as
possible until you replace the
battery.

100 times of
current value

100 times of
boundary value

512
5V input voltage for the CPU board is
lower than the allowed voltage.

If normal voltage is not
generated by a 5V power supply
alone, replace the power supply.

100 times of
current value

100 times of
boundary value

513

24 V input voltage for the motor brake,
encoder and fan is lower than the
specified voltage.

If normal voltage is not
generated by a 24V power
supply alone, replace the power
supply.

100 times of
current value

100 times of
boundary value

514

Internal temperature of the Controller
is higher than the allowed
temperature.

Stop the controller as soon as
possible and check whether the
ambient temperature of the
controller is not high.
Check whether the filter is not
clogged up.

100 times of
current value

100 times of
boundary value

515

Rotating speed of the controller fan is
below the allowed speed. (FAN1)

Check whether the filter is not
clogged up. If the warning is not
cleared after the controller is
rebooted, replace the fan.

Current value Boundary
value

516

Rotating speed of the controller fan is
below the allowed speed. (FAN2)

Check whether the filter is not
clogged up. If the warning is not
cleared after the controller is
rebooted, replace the fan.

Current value Boundary
value

517

Internal temperature of the Controller
is higher than the allowed
temperature.

Stop the controller as soon as
possible and check whether the
ambient temperature of the
controller is not high.
Check whether the filter is not
clogged up.

100 times of
current value

100 times of
boundary value

521
DU1 3.3V input voltage for the board
is lower than the allowed voltage.

If normal voltage is not
generated by 3.3V of Drive Unit
1 power supply alone, replace
the power supply.

100 times of
current value

100 times of
boundary value

SPEL+ Error Messages

632 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

522
DU1 5V input voltage for the board is
lower than the allowed voltage.
0523:

If normal voltage is not
generated by 5V of Drive Unit 1
power supply alone, replace the
power supply.

100 times of
current value

100 times of
boundary value

523
DU1 24 V input voltage for the motor
brake, encoder and fan is lower than
the specified voltage.

If normal voltage is not
generated by 24V of Drive Unit 1
power supply alone, replace the
power supply.

100 times of
current value

100 times of
boundary value

524
DU1 Internal temperature of the
Controller is higher than the allowed
temperature.

Stop Drive Unit 1 as soon as
possible and check whether the
ambient temperature of Drive
Unit 1 is not high.
Check whether the filter is not
clogged up.

100 times of
current value

100 times of
boundary value

525
DU1 Rotating speed of the controller
fan is below the allowed speed.
(FAN1)

Check whether the filter of Drive
Unit 1 is not clogged up. If the
warning is not cleared after the
controller is rebooted, replace
the fan.

Current value
Boundary
value

526
DU1 Rotating speed of the controller
fan is below the allowed speed.
(FAN2)

Check whether the filter of Drive
Unit 1 is not clogged up. If the
warning is not cleared after the
controller is rebooted, replace
the fan.

Current value
Boundary
value

531
DU2 3.3V input voltage for the board
is lower than the allowed voltage.

If normal voltage is not
generated by 3.3V of Drive Unit
2 power supply alone, replace
the power supply.

100 times of
current value

100 times of
boundary value

532
DU2 5V input voltage for the board is
lower than the allowed voltage.

If normal voltage is not
generated by 5V of Drive Unit 2
power supply alone, replace the
power supply.

100 times of
current value

100 times of
boundary value

533
DU2 24 V input voltage for the motor
brake, encoder and fan is lower than
the specified voltage.

If normal voltage is not
generated by 24V of Drive Unit 2
power supply alone, replace the
power supply.

100 times of
current value

100 times of
boundary value

534
DU2 Internal temperature of the
Controller is higher than the allowed
temperature.

Stop Drive Unit 2 as soon as
possible and check whether the
ambient temperature of Drive
Unit 2 is not high.
Check whether the filter is not
clogged up.

100 times of
current value

100 times of
boundary value

535
DU2 Rotating speed of the controller
fan is below the allowed speed.
(FAN1)

Check whether the filter of Drive
Unit 2 is not clogged up. If the
warning is not cleared after the
controller is rebooted, replace
the fan.

Current value
Boundary
value

536
DU2 Rotating speed of the controller
fan is below the allowed speed.
(FAN2)

Check whether the filter of Drive
Unit 2 is not clogged up. If the
warning is not cleared after the
controller is rebooted, replace
the fan.

Current value
Boundary
value

597
The PTP motion to avoid the
singularity point has completed.

PTP motion for the singularity
avoidance was completed.
Clicking the same jog button will
operate the robot in the normal
jog motion.

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 633

No. Message Remedy Note 1 Note 2

599
Jogging attempted near singularity
point.

The robot could not jog in the CP
motion (default).
Clicking the same jog button will
operate the robot in the PTO
motion.

700
Motor driver type does not match the
current robot model. Check the robot
model. Replace the motor driver.

Check the robot model.

736
Encoder has been reset. Reboot the
controller.

Reboot the controller.

737
Low voltage from the encoder battery.
Replace the battery with the controller
ON.

Replace the battery for the robot
with the controller ON.

752 Servo alarm D. -

1001
Operation Failure.
Command parameter is invalid.

-

1002
Requested data cannot be accessed.
The data is not set up or the range is
invalid.

Check whether the target I/O,
variables, and tasks exist.

1003 The password is invalid Enter the correct password.

1004
Cannot execute with unsupported
version.

Use the correct version file.

1005
Cannot execute with invalid serial
number.

Use the backup data for the
same controller to restore the
controller configuration.

1006
Cannot execute with invalid Robot
model.

Use the backup data for the
same controller to restore the
controller configuration.

1007
Cannot execute with invalid
Controller.

Use the supported installer.

1011

Remote setup error.
Cannot assign a bit number which
does not exist to a remote I/O signal.
Check the fieldbus slave size.

Check the fieldbus slave size.

1012

Remote setup error.
Cannot assign a bit number which
does not exist to a remote I/O signal.
Check the fieldbus master size.

Check the fieldbus master size.

1013
Fieldbus slave failure.
Cannot change the size because it
currently includes a remote I/O signal.

-

1014
Fieldbus master failure. Cannot
change the size because it currently
includes a remote I/O signal.

-

1020 Cannot execute in recovery mode. Boot the controller as normal.

1021
Cannot execute due to controller
initialization failure.

Restore the controller
configuration.

1022
Cannot execute without the project
being open.

Open a project.

1023
Cannot execute while the project is
open.

Rebuild the project.

1024 Cannot activate from remote. Enable the remote input.

1025
Execution in Teach mode is
prohibited.

Change to the AUTO mode.

1026
Cannot execute in Teach mode
except from TP.

Change to the AUTO mode.

SPEL+ Error Messages

634 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

1027 Cannot execute in Auto mode. Change to the Program mode.

1028
Cannot execute in Auto mode except
from the main console.

Change to the Program mode.

1030
Does not allow Operation mode to be
changed.

Change to the Auto mode with a
console in the Program mode.

1031
Cannot execute while tasks are
executing.

Stop the task and then execute.

1032
Cannot execute while the maximum
number of tasks are executing.

Stop the task and then execute.

1033
Cannot execute during asynchronous
motion command.

Execute after the motion ends.

1034

Asynchronous command stopped
during operation.

The asynchronous command
already stopped when the
controller received a stop
command.

1035
Cannot execute in Remote enable
except from the Remote.

-

1036
Cannot execute in OP enable except
from the OP.

-

1037
Cannot execute when Remote
Ethernet enabled except from the
remote Ethernet device.

-

1039 Execution is prohibited. -

1041
Cannot execute during Emergency
Stop status.

Cancel the Emergency Stop
status.

1042
Cannot execute while the safeguard is
open.

Close the safeguard.

1043 Cannot execute during error condition. Cancel the error condition.

1044
Cannot execute when the remote
pause input is ON.

Change the remote pause input
to OFF.

1045
Input waiting condition is the only
available condition to input.

The controller received an input
while it was not in the Input
waiting condition.

1046
Cannot execute during file transfer. Execute after the file

transmission.

1047
Cannot cancel the command
executed from other devices.

Cancel the motion command
from the device the command
was issued from.

1048
Cannot execute after after low voltage
was detected.

-

1049 Other devices are in program mode. -

1050 Password is too long. -

1051 Export Controller Status failed. -

1052 Export Controller Status busy. -

1100 File failure. Cannot access the file. -

1102
File failure. Read and write failure of
the registry

-

1103 File is not found. Check whether the file exists.
1104 Project file was not found. Rebuild the project.
1105 Object file was not found. Rebuild the project.
1106 Point files were not found. Rebuild the project.

1107
The program is using a feature that is
not supported by the current controller
firmware version.

-

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 635

No. Message Remedy Note 1 Note 2

1108
One or more source files are updated.
Please build the project.

Rebuild the project.

1109
Not enough storage capacity. Increase free space of the USB

memory.

1110 File is not found. -
1111 Conveyor file was not found. -

1120
File failure.
Setting file is corrupt.

Restore the controller
configuration.

1121
File failure.
Project file is corrupt.

Rebuild the project.

1122
File failure.
Point file is corrupt.

Rebuild the project.

1123
File failure.
I/O label file is corrupt.

Rebuild the project.

1124
File failure.
User error file is corrupt.

Rebuild the project.

1125
File failure.
Error message file is corrupt.

-

1126
File failure.
Software option infomation is corrupt.

-

1127
File failure.
Vision file is corrupt.

Rebuild the project.

1128
File failure.
Backup information file is corrupt.

-

1130
Error message failure.
No item is found in the error history.

-

1131

Cannot access the USB memory. Insert the USB memory properly.
When this error still occurs after
the USB memory is inserted
properly, the memory may be
unrecognizable to controller.
Insert another memory to check
the operation.

1132
File failure.
Failed to copy the file.

-

1133
File failure.
Failed to delete the file.

-

1134
File failure.
GUI Builder file is corrupt.

-

1140
File failure.
Failed to open the object file.

-

1141
File failure.
Failed to open the project file.

-

1142
File failure.
Failed to read the project file.

-

1143
File failure.
Failed to open the condition save file.

-

1144
File failure.
Failed to write the condition save file.

-

1145
File failure.
Failed to open the conveyor file.

-

1146
File failure.
Failed to read the conveyor file.

-

1150
File failure.
Error history is invalid.

-

SPEL+ Error Messages

636 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

1151
File failure.
Failed to map the error history.

-

1152
File failure.
Failed to open the error history file.

-

1153
File failure.
Failed to write the error history file.

-

1155
File failure.
Failed to open the settings file.

Restore the controller
configuration.

1156
File failure.
Failed to save the settings file.

Restore the controller
configuration.

1157
File failure.
Failed to read the settings file.

Restore the controller
configuration.

1158
File failure.
Failed to write the settings file.

Restore the controller
configuration.

1160
MCD failure.
Failed to open the MCD file.

Restore the controller
configuration.

1161
MCD failure.
Failed to read the MCD file.

Restore the controller
configuration.

1162
MCD failure.
Failed to write the MCD file.

Restore the controller
configuration.

1163
MCD failure.
Failed to save the MCD file.

Restore the controller
configuration.

1165
MPD failure.
Failed to open the MPD file.

-

1166
MPD failure.
Failed to read the MPD file.

-

1167
MPD failure.
Failed to write the MPD file.

-

1168
MPD failure.
Failed to save the MPD file.

-

1170
MPL failure.
Failed to open the MPL file.

Reinstall the firmware.

1171
MPL failure.
Failed to read the MPL file.

Update the firmware.

1172
MPL failure.
Failed to write the MPL file.

-

1173
MPL failure.
Failed to save the MPL file.

-

1175
MAL failure.
Failed to open the MAL file.

-

1176
MAL failure.
Failed to read the MAL file.

-

1177
MAL failure.
Failed to write the MAL file.

-

1178
MAL failure.
Failed to save the MAL file.

-

1180
MTR failure.
Failed to create the MTR file.

-

1181
PRM failure.
Failed to replace the PRM file.

-

1185
File failure.
Failed to open the backup information
file.

-

1186
File failure.
Failed to read the backup information
file.

-

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 637

No. Message Remedy Note 1 Note 2

1187
File failure.
Failed to write the backup information
file.

-

1188
File failure.
Failed to save the backup information
file.

-

1189

The backup data was created by an
old version.

Cannot restore the controller
configuration in the specified
procedure for using old backup
data. Check the backup data.

1190
The backup data was created by a
newer version.

-

1191 There is no project in the backup data. -

1192
Cannot execute with invalid robot
number.

Check the Backup data is same
as current robot number.

1193
Cannot execute with invalid robot
information.

Check the Backup data is same
as current robot number.

1200
Compile failure.
Check the compile message.

This error occurs during
compilation from TP. Correct
where the error occurred.

1201
Link failure.
Check the link message.

This error occurs during
compilation from TP. Correct
where the error occurred.

1500 Communication error. -

1501

Command did not complete in time. Execute the command again
after a while. Check the
connection between the EPSON
RC+6.0 and controller.

1502

Communication disconnection
between RC+ and Controller. Re-
establish communication.

Check the connection between
the EPSON RC+6.0 and
controller.

 1:
Communicati
on timeout
2: USB cable
disconnectio
n
3: USB
reception
failure
4: USB
communicati
on shutdown

1503 Disconnection while executing a task. -

1504

Communication disconnection
between Remote Ethernet and
Controller. Re-establish
communication.

-

1510 Out of IP Address range. -

1521
Vision communication.
Initialization failed.

Reboot the controller.

1522
Vision communication.
Termination failed.

-

1523
Vision communication.
Socket handle acquisition failed.

Reboot the controller.

1524
Vision communication.
Communication failed.

Check the connection between
the camera and controller.

1526
Vision communication.
Sending failed.

Check the connection between
the camera and controller.

SPEL+ Error Messages

638 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

1527
Vision communication.
Failed to read from the server.

Check the connection between
the camera and controller.

1528
Vision communication.
Option setting failed.

-

1529
Vision communication.
Initialization process not completed.

Reboot the controller.

1530

Vision communication.
Communication error.
Communication with the server not
completed.

Check the connection between
the camera and controller.

1531
Vision communication.
Sockets are all used.

-

1532
Vision communication.
Sending time-out.

Check the connection between
the camera and controller.

1533
Vision communication.
Receiving time-out.

Check the connection between
the camera and controller.

1534
Vision communication.
Communication error.

Check the connection between
the camera and controller.

1550
Communication failure.
Ethernet initialization error.

-

1551
Communication failure.
USB initialization error.

-

1552
Communication failure.
Controller internal communication
error.

-

1553
Communication failure.
Invalid data is detected.

-

1555
Ethernet transmission error. Check the connection between

the EPSON RC+6.0 and
controller.

1556

Ethernet reception error. Check the connection between
the EPSON RC+6.0 and
controller.
If the router is used between the
PC and controller, confirm that
the DHCP function is disabled.

1557
USB transmission error. Check the connection between

the EPSON RC+6.0 and
controller.

1558
USB reception error. Check the connection between

the EPSON RC+6.0 and
controller.

1580
Parser communication failure.
Communication error.

-

1581
Parser communication failure.
Time-out occurred during
communication.

-

1582
Parser communication failure.
Transmission error.

-

1583
Parser communication failure.
Initialization error.

Reboot the controller.

1584
Parser communication failure.
Connection error.

Reboot the controller.

1585
Parser communication failure.
Invalid parameter

-

1586
Parser communication failure.
Busy

-

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 639

No. Message Remedy Note 1 Note 2

1587
Parser communication failure.
Received an invalid data

-

1700
Initialization failure.
Failed to initialize TP.

-

1701
Initialization failure.
Failed to initialize TP.

-

1702
Initialization failure.
Failed to initialize TP.

-

1703
File failure.
Failed to read the screen data file.

-

1704 Failed to read the setting file. -
1706 Failed to open the TP port. -
1708 Failed to read the key table for TP. -
1709 Failed to change the language. -
1710 Failed to make the screen. -

1800
The controller is already connected to
a RC+.

Only one RC+ can be connected
to the controller.

1802
The command was attempted without
being connected to a controller.

-

1803
Failed to read or write the file on the
PC.

-

1804
Initialization failure.
Failed to allocate memory on the PC.

-

1805

Connection failure.
Check the controller startup and
connection of the communication
cable.

-

1806
Timeout during connection via
Ethernet.

-

1807 Timeout during connection via USB. -

1808
USB driver is not installed. Failed to install EPSON RC+

6.0. Install EPSON RC+ 6.0
again.

1809
Initialization failure.
Failed to initialize PC daemon.

Reboot the System

1810
PC daemon error.
Uncommon error.

-

1901
Unsupported.
Unsupported command was
attempted.

Update the firmware.

1902
Unsupported.
Unsupported parameter was
specified.

-

1903 System error. -

2000
Unsupported.
Unsupported command was
attempted.

Rebuild the project.

2001
Unsupported.
Unsupported motion command was
attempted.

Rebuild the project.

2003
Unsupported.
Unsupported Function argument was
specified.

Rebuild the project.

2004
Unsupported.
Unsupported Function return value
was specified.

Rebuild the project.

SPEL+ Error Messages

640 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

2005
Unsupported.
Unsupported condition was specified.

Rebuild the project.

2006
Unsupported.
Unsupported I/O command was
specified.

Rebuild the project.

2007
Unsupported condition was specified. Cannot jog in the CP motion

(default).

2008
Unsupported.
Unknown error number.

Clicking the same jog button will
operate the robot in the PTP
motion.

2009
Unsupported.
Invalid Task number.

Cannot jog in the CP motion
(default).

2010
Object file error.
Build the project. Out of internal code
range.

Rebuild the project.

2011
Object file error.
Build the project. Function argument
error.

Rebuild the project.

2012
Object file error.
Build the project. Command argument
error.

Rebuild the project.

2013
Object file error.
Build the project. Cannot process the
code.

Rebuild the project.

2014
Object file error.
Build the project. Cannot process the
variable type code.

Rebuild the project.

2015
Object file error.
Build the project. Cannot process the
string type code.

Rebuild the project.

2016
Object file error.
Build the project. Cannot process the
variable category code.

Rebuild the project.

2017
Object file error.
Build the project. Cannot process
because of improper code.

Rebuild the project.

2018
Object file error.
Build the project. Failed to calculate
the variable size.

Rebuild the project.

2019
Object file error.
Cannot process the variable wait.
Build the project.

Rebuild the project.

2020
Stack table number exceeded.
Function call or local variable is out of
range.

Check whether no function is
called infinitely. Reduce the Call
function depth.

2021
Stack area size exceeded.
Stack error. Function call or local
variable is out of range.

If using many local variables,
especially String type, replace
them to global variables.

2022
Stack failure. Required data not
found on the stack.

Rebuild the project.

2023
Stack failure. Unexpected tag found
on the stack.

Rebuild the project.

2024
Stack area size exceeded. Local
variable is out of range.

Change the size of the Local
variable.

2031
System failure.
Robot number is beyond the
maximum count.

Restore the controller
configuration.

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 641

No. Message Remedy Note 1 Note 2

2032
System failure.
Task number compliance error.

Rebuild the project.

2033
System failure.
Too many errors.

Remedy the errors occurring
frequently.

2040
Thread failure.
Failed to create the thread.

Reboot the controller.

2041
Thread failure.
Thread creation timeout.

Reboot the controller.

2042
Thread failure.
Thread termination timeout.

Reboot the controller.

2043
Thread failure.
Thread termination timeout.

Reboot the controller.

2044
Thread failure.
Daemon process timeout.

Reboot the controller.

2045
Thread failure.
Task continuance wait timeout.

Reboot the controller.

2046
Thread failure.
Task stop wait timeout.

Reboot the controller.

2047
Thread failure.
Task startup wait timeout.

Reboot the controller.

2050
Object file operation failure.
Object file size is beyond the
allowable size.

Rebuild the project.

2051
Object file operation failure.
Cannot delete the object file during
execution.

Reboot the controller.

2052
Object file operation failure.
Cannot allocate the memory for the
object file.

Reboot the controller.

2053
Object file update.
Updating the object file.

Perform the same processing
after a while. Rebuild the
project.

2054
Object file operation failure.
Synchronize the project. Function ID
failure.

Synchronize the files of the
project. Rebuild the project.

2055
Object file operation failure.
Synchronize the project. Local
variable ID failure.

Synchronize the files of the
project. Rebuild the project.

2056
Object file operation failure.
Synchronize the project. Global
variable ID failure.

Synchronize the files of the
project. Rebuild the project.

2057
Object file operation failure.
Synchronize the project. Global
Preserve variable ID failure.

Synchronize the files of the
project. Rebuild the project.

2058
Object file operation failure.
Failed to calculate the variable size.

Synchronize the files of the
project.
 Rebuild the project.

2059
Exceed the global variable area.
Cannot assign the Global variable
area.

Reduce the number of Global
variables to be used.

2070
SRAM failure.
SRAM is not mapped.

Replace the CPU board.

2071
SRAM failure.
Cannot delete when Global Preserve
variable is in use.

Perform the same processing
after a while. Rebuild the
project.

SPEL+ Error Messages

642 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

2072
Exceed the backup variable area.
Cannot assign the Global Preserve
variable area.

Reduce the number of Global
Preserve variables to be used.

Maximum
size

The size you
attempted to
use

2073
SRAM failure.
Failed to clear the Global Preserve
variable area.

Rebuild the project.

2074
SRAM failure.
Failed to clean up the Global Preserve
variable save area.

Reboot the controller.

2100
Initialization failure.
Failed to open the initialization file.

Restore the controller
configuration.

2101
Initialization failure.
Duplicated initialization.

Reboot the controller.

2102
Initialization failure.
Failed to initialize MNG.

Reboot the controller.

2103
Initialization failure.
Failed to create an event.

Reboot the controller.

2104
Initialization failure.
Failed to setup a priority.

Reboot the controller.

2105
Initialization failure.
Failed to setup the stack size.

Reboot the controller.

2106
Initialization failure.
Failed to setup an interrupt process.

Reboot the controller.

2107
Initialization failure.
Failed to start an interrupt process.

Reboot the controller.

2108
Initialization failure.
Failed to stop an interrupt process.

Reboot the controller.

2109
Initialization failure.
Failed to terminate MNG.

Reboot the controller.

2110
Initialization failure.
Failed to allocate memory.

Reboot the controller.

2111
Initialization failure.
Failed to initialize motion.

Restore the controller
configuration.

2112
Initialization failure.
Failed to terminate motion.

Reboot the controller.

2113
Initialization failure.
Failed to map SRAM.

Replace the CPU board.

2114
Initialization failure.
Failed to register SRAM.

Replace the CPU board.

2115
Initialization failure.
Fieldbus board is beyond the
maximum count.

Check the number of fieldbus
boards.

2116
Initialization failure.
Failed to initialize fieldbus.

Reboot the controller.
Check the fieldbus board.
Replace the fieldbus board.

2117
Initialization failure.
Failed to terminate fieldbus.

Reboot the controller.

2118
Initialization failure.
Failed to open motion.

Restore the controller
configuration.

2119
Initialization failure.
Failed to initialize conveyor tracking.

Make sure the settings of
conveyor and encoder are
correct.

2120
Initialization failure.
Failed to allocate the system area.

Reboot the controller.

2121
Initialization failure.
Failed to allocate the object file area.

Reboot the controller.

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 643

No. Message Remedy Note 1 Note 2

2122
Initialization failure.
Failed to allocate the robot area.

Reboot the controller.

2123
Initialization failure.
Failed to create event.

Reboot the controller.

2130
MCD failure.
Failed to open the MCD file.

Restore the controller
configuration.

2131
MCD failure.
Failed to map the MCD file.

Restore the controller
configuration.

2132
PRM failure.
PRM file cannot be found.

Restore the controller
configuration.

2133
PRM failure.
Failed to map the PRM file.

Restore the controller
configuration.

2134
PRM failure.
PRM file contents error.

Restore the controller
configuration.

2135
PRM failure.
Failed to convert the PRM file.

Reboot the controller.

2136
PRM failure.
Failed to convert the PRM file.

Reboot the controller.

2137
PRM failure.
Failed to convert the PRM file.

Reboot the controller.

2140
DU lnit Error.
Cannot use drive units.

-

2141
DU Init Error. Failed to initialize drive
units.

Check the connection with drive
units.

2142
DU Init Error.
Failed to initialize drive units.

Check the connection with drive
units.

2143
DU Init Error.
Timeout during initialization of drive
units.

Check the connection with drive
units.

2144
DU Init Error.
No data to download to drive units.

Reboot the control unit and drive
units.

2145
DU Init Error.
Failed to start communication with
drive units.

Reboot the control unit and drive
units.

2146
DU Init Error.
Timeout when starting communication
with drive units.

Reboot the control unit and drive
units.

2147
DU Init Error. Failed to update the
drive units software.

Review the software update
setting.
Check the connection with the
Drive Unit.

2148
DU Init Error. Failed to update the
drive units software.

Check the file name.
Check the update file.

2149
DU Init Error. Failed to update the
drive units software.

Check the Drive Unit power and
connection.
Reboot the Controller.

2150
Operation failure.
Task number cannot be found.

Reboot the Controller.

2151
Operation failure.
Executing the task.

Reboot the Controller.

2152
Operation failure.
Object code size failure.

Reboot the Controller.

2153
Operation failure.
Jog parameter failure.

Reboot the Controller.

2154
Operation failure.
Executing jog.

Reboot the Controller.

SPEL+ Error Messages

644 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

2155
Operation failure.
Cannot execute the jog function.

Reboot the Controller.

2156
Operation failure.
Jog data is not configured.

Reboot the Controller.

2157
Operation failure.
Failed to change the jog parameter.

Reboot the Controller.

2158
Operation failure.
Failed to allocate the area for the
break point.

Reboot the Controller.

2159
Operation failure.
Break point number is beyond the
allowable setup count.

Reduce the break points.

2160
Operation failure.
Failed to allocate the function ID.

Reboot the Controller.

2161
Operation failure.
Failed to allocate the local variable
address.

Reboot the Controller.

2162
Operation failure.
Not enough buffer to store the local
variable.

Review the size of the Local
variable.

2163
Operation failure.
Value change is available only when
the task is halted.

Halt the task by the break point.

2164
Operation failure.
Failed to allocate the global variable
address.

Review the size of the
globalvariable.

2165
Operation failure.
Not enough buffer to store the global
variable.

Review the size of the
globalvariable.

2166
Operation failure.
Failed to obtain the Global Preserve
variable address.

Review the size of the global
preserve variable.

2167
Operation failure.
Not enough buffer to store the Global
Preserve variable.

Review the size of the global
preserve variable.

2168
Operation failure.
SRAM is not mapped.

Reboot the Controller.

2169
Operation failure.
Cannot clear the Global Preserve
variable when loading the object file.

Reboot the Controller.

2170
Operation failure.
Not enough buffer to store the string.

Check the size of the string
variable.

2171
Operation failure.
Cannot start the task after low voltage
was detected.

Check the controller power.
Reboot the Controller.

2172
Operation failure.
Duplicated remote I/O configuration.

Reboot the Controller.

2173
Remote setup error.
Cannot assign non-existing input
number to remote function.

Check the I/O input number.

2174
Remote setup error.
Cannot assign non-existing output
number to remote function.

Check the I/O output number.

2175
Operation failure.
Remote function is not configured.

Reboot the Controller.

2176
Operation failure.
Event wait error.

Reboot the Controller.

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 645

No. Message Remedy Note 1 Note 2

2177
Operation failure.
System backup failed.

Reboot the Controller.
Install the Controller firmware.

2178
Operation failure.
System restore failed.

Reboot the Controller.
Install the Controller firmware.

2179
Remote setup error.
Cannot assign same input number to
some remote functions.

Check the remote setting.

2180
Remote setup error.
Cannot assign same output number to
some remote functions.

Check the remote setting.

2190
Cannot calculate because it was
queue data.

Check the program.

2191
Cannot execute AbortMotion because
robot is not runnning from a task.

If you don’t operate the robot
from a program, you cannot use
AbortMotion.

2192
Cannot execute AbortMotion because
robot task is already finished.

Task is completed.
Review the program.

2193
Cannot execute Recover without
motion because AbortMotion was not
executed.

Execute AbortMotion in advance
to execute Recover
WithoutMove.

2194 Conveyor setting error.
Make sure the settings of
conveyor and encoder are
correct.

2195 Conveyor setting error.
Make sure the settings of
conveyor and encoder are
correct.

2196 Conveyor number is out of range.
Make sure the settings of
conveyor and encoder are
correct.

2197
Command parameter prohibited for
conveyor tracking motion was used.

Delete LJM.

2200

Robot in use.
Cannot execute the motion command
when other tasks are using the robot.

The motion command for the
robot cannot be simultaneously
executed from more than one
task. Review the program.

2201
Robot does not exist. Check whether the robot setting

is performed properly. Restore
the controller configuration.

2202
Motion control module status failure.
Unknown error was returned.

Rebuild the project.

2203
Cannot clear local number ' 0 '. The Local number 0 cannot be

cleared. Review the program.

2204

Cannot clear an arm while in use. The Arm cannot be cleared while
it is in use. Check whether the
Arm is not used.

The Arm
number you
attempted to
clear

2205
Cannot clear arm number ' 0 '. The Arm number 0 cannot be

cleared. Review the program.

2206

Cannot clear a tool while in use. The Tool cannot be cleared
while it is in use. Check whether
the Tool is not used.

The Tool
number you
attempted to
clear

2207
Cannot clear tool number ' 0 '. The Tool number 0 cannot be

cleared. Review the program.

2208
Cannot clear ECP ' 0 '. The ECP number 0 cannot be

cleared. Review the program.

SPEL+ Error Messages

646 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

2209

Cannot clear an ECP while in use. The ECP cannot be cleared
while it is in use. Check whether
the ECP is not used.

The ECP
number you
attempted to
clear

2210
Cannot specify ' 0 ' as the local
number.

The command processing the
Local cannot specify the Local
number 0. Review the program.

2216
Box number is out of range. Available Box numbers are from

1 to 15. Review the program.

2217 Box number is not defined. -

2218
Plane number is out of range. Available Box numbers are from

1 to 15. Review the program.

2219 Plane number is not defined. -

2220
PRM failure. No PRM file data is
found.

Reboot the controller. Restore
the controller configuration.

2221
PRM failure. Failed to flash the PRM
file.

Reboot the controller. Restore
the controller configuration.

2222
Local number is not defined. Check the Local setting. Review

the program.
The specified
Local number

2223
Local number is out of range. Available Local number is from 1

to 15. Review the program.
The specified
Local number

2224 Unsupported. MCOFS is not defined -
2225 CalPls is not defined. Check the CalPls setting.

2226

Arm number is out of range. Available Arm number is from 0
to 3. Depending on commands,
the Arm number 0 is not
available. Review the program.

The specified
Arm number

2227
Arm number is not defined. Check the Arm setting. Review

the program.
The specified
Arm number

2228
Pulse for the home position is not
defined.

Check the HomeSet setting.

2229

Tool number is out of range. Available Tool number is from 0
to 3. Depending on commands,
the Tool number 0 is not
available. Review the program.

The specified
Tool number

2230
Tool number is not defined. Check the Tool setting. Review

the program.
The specified
Tool number

2231

ECP number is out of range. Available Tool number is from 0
to 15. Depending on
commands, the Tool number 0 is
not available. Review the
program.

The specified
ECP number

2232
ECP number is not defined. Check the ECP setting. Review

the program.
The specified
ECP number

2233
Axis to reset the encoder was not
specified.

Be sure to specify the axis for
encoder reset.

2234
Cannot reset the encoder with motor
in the on state.

Turn the motor power OFF
before reset.

2235
XYLIM is not defined. Check the XYLim setting.

Review the program.

2236
PRM failure. Failed to set up the PRM
file contents to the motion control
status module.

Reboot the controller. Restore
the controller configuration.

2240

Array subscript is out of user defined
range. Cannot access or update
beyond array bounds.

Check the array subscript.
Review the program.

The
dimensions
exceeding the
definition

The specified
subscript

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 647

No. Message Remedy Note 1 Note 2

2241
Dimensions of array do not match the
declaration.

Check the array's dimensions.
Review the program.

2242 Zero '0' was used as a divisor. Review the program.

2243
Variable overflow. Specified variable
was beyond the maximum allowed
value.

Check the variable type and
calculation result. Review the
program.

2244
Variable underflow. Specified variable
was below the minimum allowed
value.

Check the variable type and
calculation result. Review the
program.

2245
Cannot execute this command with a
floating point number.

This command cannot be
executed for Real or Double
type. Review the program.

2246
Cannot calculate the specified value
using the Tan function.

Check the specified value.
Review the program.

The specified
value

2247
Specified array subscript is less than '
0 '.

Check the specified value.
Review the program.

The specified
value

2248
Array failure. Redim can only be
executed for an array variable.

You attempted to redimension
the variable that is not array.
Rebuild the project.

2249
Array failure. Cannot specify Preserve
for other than a single dimension
array.

Other than a single dimension
array was specified as Preserve
for Redim. Rebuild the project.

2250
Array failure. Failed to calculate the
size of the variable area.

Rebuild the project.

2251
Cannot allocate enough memory for
Redim statement.

Reduce the number of subscripts
to be specified for Redim.
Perform Redim modestly.

2252
Cannot allocate enough memory for
ByRef.

Reduce the number of array's
subscripts to be seen by ByRef.

2253

Cannot compare characters with
values.

Check whether the string type
and the numeric data type are
not compared. Review the
program.

2254

Specified data is beyond the array
bounds. Cannot refer or update
beyond the array bounds.

Check the number of array's
subscripts and data. Review the
program.

The number
of array
subscripts

The number
of data to be
referred or
updated

2255
Variable overflow or underflow.
Specified variable is out of value
range.

The value that exceeds the
range of Double type is
specified. Review the program.

2256
Specified array subscript is beyond
the maximum allowed range.

Reduce the number of subscripts
to be specified. For available
subscripts, see the online help.

2260
Task number is out of the available
range.

For available task number, see
the online help. Review the
program.

The specified
task number

2261
Specified task number does not exist. Review the program. The specified

task number

2262
Robot number is out of the available
range.

The available Robot number is 1.
Review the program.

The specified
robot number

2263
Output number is out of the available
range. The Port No. or the Device No.
is out of the available range.

For available output number, see
the online help. Review the
program.

The specified
output
number

2264

Command argument is out of the
available range. Check the validation.
Added data 1: Passed value. Added
data 2: argument order.

For available range of argument,
see the online help. Review the
program.

The Added
value

What
number
argument?

SPEL+ Error Messages

648 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

2265
Joint number is out of the available
range.

Available Joint number is from 1
to 6. Review the program.

The specified
joint number

2266
Wait time is out of available range. Available wait time is from 0 to

2147483. Review the program.
The specified
wait time

2267
Timer number is out of available
range.

Available timer number is from 0
to 15. Review the program.

The specified
timer number

2268
Trap number is out of available range. Available trap number is from 1

to 4. Review the program.
The specified
trap number

2269
Language ID is out of available range. For available language ID, see

the online help. Review the
program.

The specified
language ID

2270
Specified D parameter value at the
parallel process is out of available
range.

Available D parameter value is
from 0 to 100. Review the
program.

The specified
D parameter
value

2271
Arch number is out of available range. Available arch number is from 0

to 7. Review the program.
The specified
arch number

2272

Device No. is out of available range. The specified number
representing a control device or
display device is out of available
range. For available device
number, see the online help.
Review the program.

The specified
device
number

2273

Output data is out of available range. Available output data value is
from 0 to 255. Review the
program.

Output data

What
number byte
data is out of
range?

2274
Asin argument is out of available
range. Range is from -1 to 1.

Review the program.

2275
Acos argument is out of available
range. Range is from -1 to 1.

Review the program.

2276
Sqr argument is out of available
range.

Review the program.

2277
Randomize argument is out of
available range.

Review the program.

2278
Sin, Cos, Tan argument is out of
available range.

Review the program.

2280

Timeout period set by the TMOut
statement expired before the wait
condition was completed in the WAIT
statement.

Investigate the cause of timeout.
Check whether the set timeout
period is proper.

Timeout
period

2281
Timeout period set by TMOut
statement in WaitSig statement or
SyncLock statement expired.

Investigate the cause of timeout.
Check whether the set timeout
period is proper.

Signal
number

Timeout
period

2282
Timeout period set by TMOut
statement in WaitNet statement
expired.

Investigate the cause of timeout.
Check whether the set timeout
period is proper.

Port number
Timeout
period

2283
Timeout.
Timeout at display device setting.

Reboot the controller.

2290

Cannot execute a motion command. Cannot execut the motion
command after using the user
function in the motion command.
Review the program.

2291

Cannot execute the OnErr command. Cannot execute OnErr in the
motiion command when using
user function in the motion
command. Review the program.

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 649

No. Message Remedy Note 1 Note 2

2292
Cannot execute an I/O command
while the safeguard is open. Need
Forced.

I/O command cannot be
executed while the safeguard is
open. Review the program

2293
Cannot execute an I/O command
during emergency stop condition.
Need Forced.

I/O command cannot be
executed during emergency stop
condition.Review the program.

2294
Cannot execute an I/O command
when an error has been detected.
Need Forced.

I/O command cannot be
executed while an error occurs.
Review the program.

2295

Cannot execute this command from a
NoEmgAbort Task and Background
Task.

For details on inexecutable
commads, refe to the online
help.
Review the program.

2296
One or more source files are updated.
Please build the project.

Rebuild the project.

2297
Cannot execute an I/O command in
TEACH mode without the Forced
parameter.

I/O command cannot be
executed in TEACH mode.
Review the program.

2298
Cannot continue execution in Trap
SGClose process.

You cannot execute Cont and
Recover statements with
processing task of Trap
SGClose.

2299
Cannot execute this command. Need
the setting.

Enable the [enable the advance
taskcontrol commands] from
RC+ to execute the command.

2300

Robot in use. Cannot execute the
motion command when other task is
using the robot.

The motion command for the
robot cannot be simultaneously
executed from more than one
task. Review the program.

Task number
that is using
the robot

2301
Cannot execute the motion command
when the Enable Switch is OFF.

Execute ths motion command
with the enable switch gripped.

2302
Cannot execute a Call statement in a
Trap Call process.

Another function cannot be
called from the function called by
Trap Call. Review the program.

2303
Cannot execute a Call statement in a
parallel process.

Review the program.

2304
Cannot execute an Xqt statement in a
parallel process.

Review the program.

2305
Cannot execute a Call statement from
the command window.

Execute Call from the program.

2306
Cannot execute an Xqt statement
from the task started by Trap Xqt.

Review the program.

2307
Cannot execute this command while
tasks are executing.

Check whether all tasks are
completed.

2308

Cannot turn on the motor because of
a critical error.

Find the previously occurring
error in the error history and
resolve its cause. Then, reboot
the controller.

2309
Cannot execute a motion command
while the safeguard is open.

Check the safeguard status.

2310
Cannot execute a motion command
while waiting for continue.

Execute the Continue or Stop
and then execute the motion
command.

2311
Cannot execute a motion command
during the continue process.

Wait until the Continue is
complete and then execute the
motion command.

SPEL+ Error Messages

650 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

2312
Cannot execute a task during
emergency stop condition.

Check the emergency stop
status.

2313
Cannot continue execution
immediately after opening the
safeguard.

Wait 1.5 seconds after the
safeguard is open, and then
execute the Continue.

2314
Cannot continue execution while the
safeguard is open.

Check the safeguard status.

2315
Duplicate execution continue. Wait until the Continue is

completed.

2316
Cannot continue execution after an
error has been detected.

Check the error status.

2317
Cannot execute the task when an
error has been detected.

Reset the error by Reset and
then execute the task.

2318
Cannot execute a motion command
when an error has been detected.

Execute the motion command
after resetting the error by Reset

2319
Cannot execute a I/O command
during emergency stop condition.

Check the emergency stop
status.

2320
Function failure. Argument type does
not match.

Rebuild the project.

2321
Function failure. Return value does
not match to the function.

Rebuild the project.

2322
Function failure.
ByRef type does not match.

Rebuild the project.

2323
Function failure. Failed to process the
ByRef parameter.

Rebuild the project.

2324
Function failure. Dimension of the
ByRef parameter does not match.

Rebuild the project.

2325
Function failure. Cannot use ByRef in
an Xqt statement.

Rebuild the project.

2326
Cannot execute a Dll Call statement
from the command window.

Execute DII Call from the
program.

2327 Failed to execute a Dll Call.
Check the DLL.
Review the program.

2328
Cannot execute the task before
connect with RC+.

You need to connect with RC+
before executing the task.

2329
Cannot execute a Eval statement in a
Trap Call process.

Check the program.

2330
Trap failure.
Cannot use the argument in Trap Call
or Xqt statement.

Check the program.

2331
Trap failure.
Failed to process Trap Goto
statement.

Rebuild the project.

2332
Trap failure.
Failed to process Trap Goto
statement.

Rebuild the project.

2333
Trap failure.
Trap is already in process.

Rebuild the project.

2334
Cannot execute a Eval statement in a
Trap Finsh and Trap Abort process.

Check the program.

2335
Cannot continue execution and Reset
Error in TEACH mode.

Check the program.

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 651

No. Message Remedy Note 1 Note 2

2336
Cannot use Here statemet with a
parallel process.

Go Here :Z(0) ! D10;
MemOn(1) !
is not executable.
Change the program to:
P999 = Here
Go P999 Here :Z(0) ! D10;
MemOn(1) !

2340
Value allocated in InBCD function is
an invalid BCD value.

Review the program.
Tens digit Units digit

2341
Specified value in the OpBCD
statement is an invalid BCD value.

Review the program. The specified
value

2342
Cannot change the status for output
bit configured as remote output.

Check the remote I/O setting.
I/O number

1: bit, 2:
byte, 3: word

2343
Output time for asynchronous output
commanded by On or Off statement is
out of the available range.

Review the program.
The specified
time

2344

I/O input/output bit number. is out of
available range or the board is not
installed.

Review the program.
Check whether the expansion
I/O board and Fieldbus I/O board
are correctly detected.

Bit number

2345

I/O input/output byte number is out of
available range or the board is not
installed.

Review the program.
Check whether the expansion
I/O board and Fieldbus I/O board
are correctly detected.

Byte number

2346

I/O input/output word No. is out of
available range or the board is not
installed.

Review the program.
Check whether the expansion
I/O board and Fieldbus I/O board
are correctly detected.

Word number

2347
Memory I/O bit number is out of
available range.

Review the program. Bit number

2348
Memory I/O byte number is out of
available range.

Review the program. Byte number

2349
Memory I/O word number is out of
available range.

Review the program. Word number

2350
Command allowed only when virtual
I/O mode is active.

The command can be executed
only for virtual I/O mode.

2360
File failure.
Failed to open the configuration file.

Restore the controller
configuration.

2361
File failure.
Failed to close the configuration file.

Restore the controller
configuration.

2362
File failure.
Failed to open the key of the
configuration file.

Restore the controller
configuration.

2363
File failure.
Failed to obtain the string from the
configuration file.

Restore the controller
configuration.

2364
File failure.
Failed to write in the configuration file.

Restore the controller
configuration.

2365
File failure.
Failed to update the configuration file.

Restore the controller
configuration.

2370
The string combination exceeds the
maximum string length.

The maximum string length is
255. Review the program.

Combined
string length

2371
String length is out of range. The maximum string length is

255. Review the program.
The specified
length

2372
Invalid character is specified after the
ampersand in the Val function.

Review the program.

SPEL+ Error Messages

652 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

2373
Illegal string specified for the Val
function.

Review the program.

2374
String Failure. Invalid character code
in the string.

Review the program.

2380
Cannot use ' 0 ' for Step value in
For...Next.

Check the Step value.

2381
Relation between For...Next and
GoSub is invalid. Going in or out of a
For...Next using a Goto statement.

Review the program.

2382
Cannot execute Return while
executing OnErr.

Review the program.

2383
Return was used without GoSub.
Review the program.

Review the program.

2384
Case or Send was used without
Select. Review the program.

Review the program.

2385
Cannot execute EResume while
executing GoSub.

Review the program.

2386
EResume was used without OnErr.
Review the program.

Review the program.

2400
Curve failure.
Failed to open the Curve file.

Reboot the controller.
Create a Curve file again.

2401
Curve failure.
Failed to allocate the header data of
the curve file.

Reboot the controller.
Create a Curve file again.

2402
Curve failure.
Failed to write the curve file.

Reboot the controller.
Create a Curve file again.

2403
Curve failure.
Failed to open the curve file.

Reboot the controller.
Create a Curve file again.

2404
Curve failure.
Failed to update the curve file.

Reboot the controller.
Create a Curve file again.

2405
Curve failure.
Failed to read the curve file.

Reboot the controller.
Create a Curve file again.

2406
Curve failure.
Curve file is corrupt.

Reboot the controller.
Create a Curve file again.

2407
Curve failure.
Specified a file other than the curve
file.

Reboot the controller.
Create a Curve file again.

2408
Curve failure.
Version of the curve file is invalid.

Reboot the controller.
Create a Curve file again.

2409
Curve failure.
Robot number in the curve file is
invalid.

Reboot the controller.
Create a Curve file again.

2410
Curve failure.
Cannot allocate enough memory for
the CVMove statement.

Reboot the controller.

2411
Specified point data in the Curve
statement is beyond the maximum
count.

The maximum number of points
specified in the Curve statement
is 200. Review the program.

2412

Specified number of output
commands in the Curve statement is
beyond the maximum count.

The maximum number of output
commands specified in the
Curve statement is 16. Review
the program.

2413
Curve failure. Specified internal code
is beyond the allowable size in Curve
statement.

Reboot the controller.

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 653

No. Message Remedy Note 1 Note 2

2414
Specified continue point data P(:) is
beyond the maximum count.

The maximum number of points
specified continuously is 200.
Review the program.

Start point End point

2415
Curve failure.
Cannot create the curve file.

Reboot the controller.
Create a Curve file again.

2416
Curve file does not exist. Check whether the specified

Curve file name is correct.

2417
Curve failure.
Output command is specified before
the point data.

Check whether no output
command is specified before the
point data.

2430
Error message failure.
Error message file does not exist.

Reboot the controller.

2431
Error message failure.
Failed to open the error message file.

Reboot the controller.

2432
Error message failure.
Failed to obtain the header data of the
error message file.

Reboot the controller.

2433
Error message failure.
Error message file is corrupted.

Reboot the controller.

2434
Error message failure.
Specified a file other than the error
message file.

Reboot the controller.

2435
Error message failure.
Version of the error message file is
invalid.

Reboot the controller.

2440
File Error.
File number is used.

Check the file number.

2441
File Error.
Failed to open the file.

Make sure the file exists and you
specified the file correctly.

2442
File Error.
The file is not open.

Open the file in advance.

2443
File Error. The file number is being
used by another task.

Check the program.

2444 File Error. Failed to close the file. Check the file.

2445 File Error. File seek failed.
Review the program.
Check the pointer setting.

2446
File Error.
All file numbers are being used.

Close unnecessary files.

2447
File Error.
No read permision.

Use ROpen or UOpen that has
read access to the file.

2448
File Error.
No write permision.

Use WOpen or UOpen that has
write access to the file.

2449
File Error.
No binary permision.

Use BOpen that has binary
access to the file.

2450
File Error.
Failed to access the file.

Check the file.

2451 File Error. Failed to write the file. Check the file.
2452 File Error. Failed to read the file. Check the file.

2453
File Error.
Cannot execute the commnad for
current disk.

The specified command is not
available in the current disk
(ChDisk).

2454 File Error. Invalid disk. Review the program.
2455 File Error. Invalid drive. Review the program.
2456 File Error. Invalid folder. Review the program.

SPEL+ Error Messages

654 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

2460

Database Error.
The database number is already
being used.

Review the program.
Specify the numberof other
satabase.
Close the database.

2461
Database Error.
The database is not open.

Review the program.
Open the database.

2462
Database Error.
The database number is being used
by another task.

Review the program.

2470
Windows Communication Error.
Invalid status.

Reboot the Controller.
Rebuild the project.

2471
Windows Communication Error.
Invalid answer.

Reboot the Controller.
Rebuild the project.

2472
Windows Communication Error.
Already initialized.

Reboot the Controller.

2473
Windows Communication Error. Busy. Reboot the Controller.

Rebuild the project.

2474
Windows Communication Error. No
request.

Reboot the Controller.
Rebuild the project.

2475
Windows Communication Error. Data
buffer overflow.

Reduce the data volume.
Review the program.

2476
Windows Communication Error.
Failed to wait for event.

Reboot the Controller.

2477
Windows Communication Error.
Invalid folder.

Make sure the specified folder is
correct.

2478
Windows Communication Error.
Invalid error code.

Rebuild the project.

2500
Specified event condition for Wait is
beyond the maximum count.

The maximum number of event
conditions is 8. Review the
program.

2501
Specified bit number in the Ctr
function was not setup with a
CTReset statement.

Review the program. The specified
bit number

2502

Task number is beyond the maximum
count to execute.

The available number of the
tasks that can be executed
simultaneously is 16. Review
the program.

2503
Cannot execute Xqt when the
specified task number is already
executing.

Review the program. The specified
task number

2504
Task failure. Specified manipulator is
already executing a parallel process.

Rebuild the project.

2505
Not enough data for Input statement
variable assignment.

Check the content of
communication data. Review
the program.

2506
Specified variable for the Input
statement is beyond the maximum
count.

For OP, only one variable can be
specified. For other devices, up
to 32 variables can be specified.

2507

All counters are in use and cannot
setup a new counter with CTReset.

The available number of the
counters that can be set
simultaneously is 16. Review
the program.

2508
OnErr failure. Failed to process the
OnErr statement.

Rebuild the project.

2509
OnErr failure. Failed to process the
OnErr statement.

Rebuild the project.

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 655

No. Message Remedy Note 1 Note 2

2510
Specified I/O label is not defined. The specified I/O label is not

registered. Check the I/O label
file.

2511
SyncUnlock statement is used without
executing a previous SyncLock
statement. Review the program.

Review the program. Signal
number

2512
SyncLock statement was already
executed.

The SyncLock statement cannot
be executed for the second time
in a row. Review the program.

Signal
number

2513
Specified point label is not defined. The specified point label is not

registered. Check the point file.

2514
Failed to obtain the motor on time of
the robot.

Reboot the controller.

2515
Failed to configure the date or the
time.

Check whether a date and time
is set correctly.

2516
Failed to obtain the debug data or to
initialize.

Reboot the controller.

2517
Failed to convert into date or time. Check the time set on the

controller.
Reboot the controller.

2518
Larger number was specified for the
start point data than the end point
data .

Specify a larger number for the
end point data than that for the
start point data.

Start point End point

2519
Specified the format for FmtStr$ can
not understand.

Check the format.

2520 File name is too long.

Check whether the specified
point file name is correct. The
maximum string length of the file
name is 32.

2521 File path is too long.
Check whether the specified
point file name is correct.

2522 File name is invalid.
Make sure you don’t use
improper characters for file
name.

2523
The continue process was already
executed.

Review the program.

2524
Cannot execute Xqt when the
specified trap number is already
executing.

Review the program.

2525
Password is invalid. Check whether a password is set

correctly.

2526 No wait terms. Rebuild the project.

2527
Too many variables used for global
valiable wait.

Review the program.

2528
The variables cannot use global
valiable wait.

Review the program.

2529
Cannot use Byref if the variables used
for global variable wait.

Review the program.

2530 Too many point files. Check the point file.
2531 The point file is used by another robot. Review the program.

2532
Cannot calculate the point position
because there is undefined data.

Check the point data.

2533 Error on INP or OUTP. -

2534
No main function to start on Restart
statement.

Without executing main function,
Restart is called.

SPEL+ Error Messages

656 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

2541 Duplicate parameter.
Same robot number was
specified.
Check the parameter.

2546
Cannot turn on the motor immediately
after closing the safeguard.

Wait 1.5 seconds after the
safeguard is open, and then
execute the motor on.

2900

Failed to open as server to the
Ethernet port.

Check whether the Ethernet port
is set properly. Check whether
the Ethernet cable is connected
properly.

2901

Failed to open as client to the
Ethernet port.

Check whether the Ethernet port
is set properly. Check whether
the Ethernet cable is connected
properly.

2902
Failed to read from the Ethernet port. Check whether the port of

communication recipient is not
close.

2904 Invalid IP Address was specified. Review the IP address.

2905
Ethernet failure.
No specification of Server/Client.

Review the program.

2906
Ethernet port was not configured. Check whether the Ethernet port

is set properly.
Port number

2907
Ethernet pot was already in use by
another task.

A single port cannot be used by
more than one task.

Port number

2908
Cannot change the port parameters
while the Ethernet port is open.

The port parameters cannot be
changed while the port is open.

Port number

2909
Ethernet port is not open. To use the Ethernet port,

execute the OpenNet statement.
Port number

2910
Timeout reading from an Ethernet
port.

Check the communication. Timeout value

2911 Failed to read from an Ethernet port. Check the communication.

2912
Ethernet port was already open by
another task.

A single port cannot be used by
more than one task.

Port number

2913

Failed to write to the Ethernet port. Check whether the Ethernet port
is set properly. Check whether
the Ethernet cable is connected
properly.

Port number

2914
Ethernet port connection was not
completed.

Check whether the port of
communication recipient is open.

Port number

2915
Data received from the Ethernet port
is beyond the limit of one line.

The maximum length of a line is
255 bytes.

The number
of bytes in a
received line

2920
RS-232C failure.
RS-232C port process error.

Check whether the RS-232C
board is correctly detected.

2921
RS-232C failure.
Uncommon error. RS-232C port read
process error.

Check the parameter and
communication.

2922
Failed to read from the RS-232C port.
Overrun error.

Slow down data transfer or
reduce data size.

2926
The RS-232C port hardware is not
installed.

Check whether the RS-232C
board is correctly detected.

Port number

2927
RS-232C port is already open by
another task.

A single port cannot be used by
more than one task.

Port number

2928
Cannot change the port parameters
while the RS-232C port is open.

The port parameters cannot be
changed while the port is open.

Port number

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 657

No. Message Remedy Note 1 Note 2

2929
RS-232C port is not open. To use the RS-232C port,

execute the OpenCom
statement.

Port number

2930
Timeout reading from the RS-232C
port.

Check the communication. Timeout value

2931 Failed to read from the RS-232C port. Check the communication.

2932
RS-232C port is already open by
another task.

A single port cannot be used by
more than one task.

Port number

2933 Failed to write to the RS-232C port. Check the communication. Port number

2934
RS-232C port connection not
completed.

Check the RS-232C port.

2935
Data received from the RS-232C port
is beyond the limit of one line.

The maximum length of a line is
255 bytes.

The number
of bytes in a
received line

2950
Daemon failure. Failed to create the
daemon thread.

Reboot the Controller.

2951
Daemon failure. Timeout while
creating the daemon thread.

Reboot the Controller.

2952

TEACH/AUTO switching key input
signal failure was detected.

Set the TP key switch to TEACH
or AUTO properly. Check
whether the TP is connected
properly.

2953
ENABLE key input signal failure was
detected.

Check whether the TP is
connected properly.

2954

Relay weld was detected. Overcurrent probably occurred
due to short-circuit failure.
Investigate the cause of the
problem and take necessary
measures and then replace the
DPB.

2955

Temperature of regeneration resistor
was higher than the specified
temperature.

Check whether the filter is not
clogged up and the fan does not
stop.
If there is no problem on the filter
and fan, replace the regenerative
module.

2970
MNG failure.
Area allocate error.

Reboot the Controller.

2971
MNG failure.
Real time check error.

Reboot the Controller.

2972
MNG failure.
Standard priority error.

Reboot the Controller.

2973 MNG failure. Boost priority error. Reboot the Controller.
2974 MNG failure. Down priority error. Reboot the Controller.
2975 MNG failure. Event wait error. Reboot the Controller.
2976 MNG failure. Map close error. Reboot the Controller.
2977 MNG failure. Area free error. Reboot the Controller.
2978 MNG failure. AddIOMem error. Reboot the Controller.
2979 MNG failure. AddInPort error. Reboot the Controller.
2980 MNG failure. AddOutPort error. Reboot the Controller.
2981 MNG failure. AddInMemPort error. Reboot the Controller.

2982
MNG failure.
AddOutMemPort error.

Reboot the Controller.

2983 MNG failure. IntervalOutBit error. Reboot the Controller.
2984 MNG failure. CtrReset error. Reboot the Controller.

SPEL+ Error Messages

658 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

2998
AbortMotion attempted when robot
was not moving

See Help for AbortMotion.

2999
AbortMotion attempted when robot
was moving

See Help for AbortMotion.

3000
OBJ file size is large. TP1 may not be
able to build this project.

-

3001
The number of variable which is using
Wait command are near the maximum
allowed.

-

3002 DLL file cannot be found. -
3003 DLL function cannot be found. -
3050 Main function is not defined. Declare a Main function.
3051 Function does not exist. Declare an unresolved function.
3052 Variable does not exist. Declare an unresolved variable.
3100 Syntax error. Correct the syntax error.

3101
Parameter count error. The number of parameters is

excess or deficiency. Correct
the parameters.

3102
File name length is beyond the
maximum allowed.

Shorten the file name.

3103 Duplicate function definition. Change the function name.
3104 Duplicate variable definition ‘ ** ’. Change the variable name.

3105
Global and Global Preserve variables
cannot be defined inside a function
block.

Declare the Global and Global
Preserve variables outside the
function block.

3106 An undefined function was specified. Specify a valid function name.

3107

Both While and Until for Do...Loop
was specified.

The While/Until statement is
specified for both Do statement
and Loop statement. Delete
either While/Until statement.

3108
Specified line number or label ‘ ** ’
does not exist.

Set the line label.

3109
Overflow error. The direct numerical

specification overflows. Reduce
the numeric value.

3110
An undefined variable was specified
‘ ** ’.

There is an undefined variable.
Declare the variable.

3111
Specified variable is not an array
variable.

Specify the array variable.

3112
Cannot change the dimensions of the
array variable.

-

3113
Specified elements of the array
variable are beyond the maximum
value. (Not in use)

-

3114
Specified Next variable does not
match the specified For variable.

Correct the variable name.

3115
Cannot use a point expression in the
first argument.

Specify a single point for the
point flag setting. Do not specify
a point expression.

3116
Array number of dimensions does not
match the declaration.

Check the number of array
dimensions.

3117 File cannot be found. -

3118
Corresponding EndIf cannot be found. The number of EndIf statements

is not enough. Add the EndIf.

3119
Corresponding Loop cannot be found. The number of Loop statements

is not enough. Add the Loop.

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 659

No. Message Remedy Note 1 Note 2

3120
Corresponding Next cannot be found. The number of Next statements

is not enough. Add the Next.

3121
Corresponding Send cannot be found. The number of Send statements

is not enough. Add the Send.

3122
Cannot specify the second parameter.
(Not in use)

-

3123

On/Off statements are beyond the
maximum count.

An upper limit is set on the
number of On/Off statements.
Check the upper limit and correct
the program.

3124

Point number is beyond the maximum
count.

An upper limit is set on the
available number of points.
Check the upper limit and correct
the program.

3125
Corresponding If cannot be found. The number of EndIf statements

is too many. Delete the
unnecessary EndIf.

3126
Corresponding Do cannot be found. The number of Loop statements

is too many. Delete the
unnecessary Loop.

3127
Corresponding Select cannot be
found.

The number of Send statements
is too many. Delete the
unnecessary Send.

3128
Corresponding For cannot be found. The number of Next statements

is too many. Delete the
unnecessary Next.

3129
'_' cannot be used as the first
character of an identifier.

Change the first character of the
identifier to an alphabetic
character.

3130 Cannot specify Rot parameter. -
3131 Cannot specify Ecp parameter. -
3132 Cannot specify Arch parameter. -
3133 Cannot specify LimZ parameter. -
3134 Cannot specify Sense parameter. -
3135 Invalid parameter is specified. -
3136 Cannot use #include. -

3137
Cannot specify the array variable
subscript.

The array variable subscript
cannot be specified.

3138
ByRef was not specified on Function
declaration.

-

3139

Cannot execute the Xqt statement for
a function that needs a ByRef
parameter.

The Xqt statement cannot be
executed for a function needing
a ByRef parameter. Delete the
ByRef parameter.

3140
Cannot execute the Redim statement
for a ByRef variable.

-

3141 OBJ file is corrupt. -

3142
OBJ file size is beyond the available
size after compiling.

The compilation result exceeds
the limit value. Divide the
program.

3143
Ident length is beyond the available
size.

-

3144 ' ** ' already used for a function name. -

3145
' ** ' already used for a Global
Preserve variable.

-

SPEL+ Error Messages

660 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

3146
' ** ' already used for a Global
variable.

-

3147
' ** ' already used for a Module
variable.

-

3148 ' ** ' already used for a Local variable. -
3149 ' ** ' already used for a I/O label. -

3150
' ** ' already used for a User Error
label.

-

3151
Cannot use a function parameter. Argument cannot be specified for

the function that is executed by
the Trap statement.

3152 Over elements value. -
3153 Parameter type mismatch. -
3154 ' ** ' is not Input Bit label. -
3155 ' ** ' is not Input Byte label. -
3156 ' ** ' is not Input Word label. -
3157 ' ** ' is not Output Bit label. -
3158 ' ** ' is not Output Byte label. -
3159 ' ** ' is not Output Word label. -
3160 ' ** ' is not Memory Bit label. -
3161 ' ** ' is not Memory Byte label. -
3162 ' ** ' is not Memory Word label. -
3163 Too many function arguments. -
3164 Cannot compare Boolean value. -

3165
Cannot use Boolean value in the
expression.

-

3166
Cannot compare between Boolean
and expression.

-

3167
Cannot store Boolean value to the
numeric variable.

-

3168
Cannot store numeric value to the
Boolean variable.

-

3169 Undefined I/O label was specified. -
3170 Invalid condition expression was

specified.
-

3171 Cannot compare between numeric
value and string.

-

3172 Cannot use keyword for the variable
name.

-

3173 ' ** ' already used for a line label. -
3174 Duplicate line number or label (**). -
3175 Undefined Point label was specified. -
3176 An undefined variable was specified. -
3177 ' ** ' already used for a Point label. -
3178 Cannot use the result number. -
3179 String literal is beyond the available

length.
-

3180
Cannot change a calibration property
value with the VSet command.

-

3181
Array variable should be used with
ByRef.

-

3182 Subscription was not specified. -
3183 Parameter can not be omitted. -

3184
RSRV parameter cannot use with
tracking command.

-

3185 Cannot use Queue data. -

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 661

No. Message Remedy Note 1 Note 2

3186
Combination between Queue and
Point data does not match.

-

3187 Invalid Point flag value was specified. -
3188 Call command cannot be used in

parallel processing.
-

3189 Local variables cannot be used with
the Wait command.

-

3190 Array variables cannot be used with
the Wait command.

-

3191 Real variables cannot be used with
the Wait command.

-

3192 String variables cannot be used with
the Wait command.

-

3193 Vision object name is missing. -
3194 Cannot use Boolean value for the

timeout value.
-

3195 (not used) -
3196 Fend is not there. -
3197 Numeric variable name cannot use '$'. -
3198 String variable should has '$'. -
3199 Invalid object is specified. -
3200 Value is missing. -
3201 Expected ' , '. -
3202 Expected ' ('. -
3203 Expected ') '. -
3204 Identifier is missing. -
3205 Point is not specified. -
3206 Event condition expression is missing. -
3207 Formula is missing. -
3208 String formula is missing. -
3209 Point formula is missing. -
3210 Line label was not specified. -
3211 Variable was not specified. -
3212 Corresponding Fend cannot be found. -
3213 Expected ' : '. -
3214 True/False was not specified. -
3215 On/Off was not specified. -
3216 High/Low was not specified. -
3217 Input bit label was not specified. -
3218 Input byte label was not specified. -
3219 Input word label was not specified. -
3220 Output bit label was not specified. -
3221 Output byte label was not specified. -
3222 Output word label was not specified. -
3223 Memory bit label was not specified. -
3224 Memory byte label was not specified. -
3225 Memory word label was not specified. -
3226 User error label was not specified. -
3227 Function name was not specified. -
3228 Variable type was not specified. -

3229
Invalid Trap statement parameter.
Use Goto, Call, or Xqt.

-

3230 Expected For/Do/Function. -
3231 Above/Below was not specified. -
3232 Righty/lefty was not specified. -

SPEL+ Error Messages

662 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2
3233 NoFlip/Flip was specified. -
3234 Port number was not specified. -
3235 String type variable was not specified. -

3236
RS-232C port number was not
specified.

-

3237
Network communication port number
was not specified.

-

3238
Communication speed was not
specified.

-

3239 Data bit number was not specified. -
3240 Stop bit number was not specified. -
3241 Parity was not specified. -
3242 Terminator was not specified. -
3243 Hardware flow was not specified. -
3244 Software flow was not specified. -
3245 None was not specified. -

3246
Parameter ' O ' or ' C ' was not
specified.

-

3247
NumAxes parameter was not
specified.

-

3248 J4Flag value (0-1) was not specified. -

3249
J6Flag value (0-127) was not
specified.

-

3250 Array variable was not specified. -

3251
String Array variable was not
specified.

-

3252 Device ID was not specified. -
3253 I/O type was not specified. -
3254 I/O bit width was not specified. -

3255
ByRef was not specified. Although the ByRef is specified

in the function declaration, no
ByRef is specified for calling.

3256 Variable type was not specified. -

3257
Condition expression does not return
Boolean value.

-

3258
RS232C port number was not
specified.

-

3259
Network communication port number
was not specified.

-

3260 Language ID was not specified. -
3261 Expected '.'. -

3262
Vision Sequence Name was not
specified.

-

3263
Vision Sequence Name or Calibration
Name was not specified.

-

3264
Vision Property Name or Result Name
was not specified.

-

3265
Vision Property Name, Result Name
or Object Name was not specified.

-

3266
Vision Calibration Property Name was
not specified.

-

3267 Task type was not specified. -
3268 Form name was not specified. -

3269
Property Name or Control Name was
not specified.

-

3270 Property Name was not specified. -

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 663

No. Message Remedy Note 1 Note 2
3271 BackColorMode was not specified. -
3272 BorderStyle was not specified. -
3273 DropDownStyle was not specified. -
3274 EventTaskType was not specified. -
3275 ImageAlign was not specified. -
3276 IOType was not specified. -
3277 FormBorderStyle was not specified. -
3278 ScrollBars was not specified. -
3279 SizeMode was not specified. -
3280 StartPosition was not specified. -
3281 TextAlign was not specified. -
3282 TextAlign was not specified. -
3283 TextAlign was not specified. -
3284 WindowState was not specified. -
3285 J1FLAG was not specified. -
3286 J2FLAG was not specified. -
3287 robotID was not specified. -
3288 robotID/All was not specified. -
3289 areaID was not specified. -
3290 File number was not specified. -
3291 MemBlock ID was not specified. -
3292 Database type was not specified. -
3293 Disk type was not specified. -
3294 Variable type was not specified. -
3295 Conveyor area ID was not specified. -

3296
Database file number was not
specified.

-

3297
Vision calibration name was not
specified.

-

3298
Vision object type ID was not
specified.

-

3299 Shutdown mode ID was not specified. -

3300
External definition symbol was
included. (Not in use)

-

3301
Version of linked OBJ file does not
match.

Not all project files are complied
in the same version. Perform
the rebuild.

3302
Linked OBJ file does not match the
compiled I/O label.

The project configuration has
been changed. Perform the
rebuild.

3303
Linked OBJ file does not match the
compiled user error label.

The project configuration has
been changed. Perform the
rebuild.

3304
Linked OBJ file does not match the
compiled compile option.

The project configuration has
been changed. Perform the
rebuild.

3305
Linked OBJ file does not match the
compiled link option.

The project configuration has
been changed. Perform the
rebuild.

3306
Linked OBJ file does not match the
compiled SPEL option.

The project configuration has
been changed. Perform the
rebuild.

3307
Duplicate function. The same function name is used

for more than one file.

SPEL+ Error Messages

664 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

3308
Duplicate global preserve variable. The same global preserve

variable name is used for more
than one file.

3309
Duplicate global variable. The same global variable name

is used for more than one file.

3310
Duplicate module variable. The same module variable name

is used for more than one file.

3311 File cannot be found. -
3312 OBJ file is corrupt. -

3313
The specified file name includes
character(s) that cannot be used.

-

3314
Cannot open the file. The file is used for other

application. Quit the other
application.

3315
' ** ' is already used for the function
name.

-

3316
' ** ' is already used for the global
preserve variable.

-

3317
' ** ' is already used for the global
variable.

-

3318
' ** ' is already used for the module
variable.

-

3319
Dimension of the array variable does
not match the declaration.

-

3320
Return value type of the function does
not match the declaration.

-

3321
' ** ' is already used with function
name.

-

3322
' ** ' is already used with Global
Preserve name.

-

3323 ' ** ' is already used with Global name. -

3324
' ** 'is already used with Module
name.

-

3325 ' ** ' is already used with Local name. -

3326
The number of parameters does not
match the declaration.

-

3327
ByRef was not specified on Function
declaration on parameter **.

-

3328
ByRef was not specified on parameter
**.

-

3329 Parameter ** type mismatch. -

3330
Linked OBJ file does not match the
compiled Vision Project.

-

3331
OBJ file size is beyond the available
size after linking.

The OBJ file size exceeds the
limit value. Reduce the program.

3332 Variable '%s' is redefined. -

3333
Linked OBJ file does not match the
compiled GUI Builder Project.

-

3334
The number of variable which is using
Wait command are beyond the
maximum allowed.

-

3335
Call cannot use in the parallel
processing.

-

3336 Variable was redefined. -
3400 Dialog ID was not specified. -
3401 Main function name was not specified. -

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 665

No. Message Remedy Note 1 Note 2
3402 Vision object name was not specified. -
3403 Recover mode ID was not specified. -
3404 Trap condition was not specified. -
3405 DialogResult was not specified. -
3406 MsgBox_Type was not specified. -
3407 Byte type array variable was not

specified.
-

3408 Single array variable was not
specified.

-

3409 Point list is not specified. -
3410 Code type is not specified. -
3411 Edge type is not specified. -
3412 ECC type is not specified. -
3413 ImageColor type is not specified. -
3414 Point type is not specified. -
3415 Reference type is not specified. -
3416 Edge type is not specified. -
3417 Port number is not specified. -
3418 Axis is not specified. -
3419 CompareType is not specified. -
3420 Integer or Short type array variable is

only available.
-

3426
Singularity avoidance mode was not
specified.

-

3432
Point is not specified. Or formula is
missing.

-

3500
Duplicate macro in #define statement. Another macro with the same

name has been defined.
Change the macro name.

3501 Macro name was not specified. -
3502 Include file name cannot be found. -

3503

Specified include file is not in the
project.

The include file that is not
registered in the project
configuration is specified. Add
the include file to the project
configuration.

3504
Parameter of the macro function does
not match to the declared.

-

3505
Macro has a circular reference. The macro has a circular

reference. Correct the circular
reference.

3506

#define, #ifdef, #ifndef, #else, #endif,
#undef and variable declaration
statements are only valid in an include
file.

-

3507
Over #ifdef or #ifndef nesting level. Reduce the nesting level to

under the limited value.

3508
Cannot find corresponding #ifdef or
#ifndef.

-

3509 No #endif found for #ifdef or #ifndef. -
3510 Cannot obtain the macro buffer. -

3550
Parameter for the macro function was
not specified.

The macro declared as a macro
function is called without
argument.

3600
Tracking motion command cannot use
Sense parameter.

-

SPEL+ Error Messages

666 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

3601

Parameter type is mismatch for the
external function ' ** '.
Check all statements where this
function is called in this file.

-

3602
The specified motion command
cannot use LJM parameter.

-

3603
InReal function cannot be used with
Wait statement.

-

3800 Compile process aborted. -
3801 Link process aborted. -

3802
Compile process aborted. Compile
errors reached the maximum count.

-

3803
Link process aborted. Link errors
reached the maximum count.

-

3804
Specified command cannot be
executed from the Command window.

-

3805
Specified command can only be
executed from the Command window.

-

3806
Specified function cannot be executed
from the Command window.

-

3807
Specified command cannot be
executed in the Gripper function.

-

3808
Specified syntax cannot be used in
the current version.

-

3809
Module variables cannot be used in
the command window.

-

3810 Too many point files. -
3811 Too many registered points. -
3850 File not found. -
3851 Point file not found. -
3852 I/O label file not found. -
3853 User error label file not found. -

3900
Uncommon error. Cannot obtain the
internal communication buffer.

-

3901 Buffer size is not enough. -
3910 Undefined command was specified. -

3911
Cannot enter the file name in the file
name buffer.

-

3912 Cannot obtain the internal buffer. -
3913 Cannot set priority. -
3914 Invalid ICode. -
3915 Invalid ICode. -
3916 Invalid ICode. -
3917 Invalid ICode. -
3918 Invalid ICode. -
3919 Invalid ICode. -
3920 Invalid ICode. -
3921 Invalid ICode. -

4001
Arm reached the limit of motion range. Check the point to move, current

point, and Range setting.

4002
Specified value is out of allowable
range.

Review the setting parameters. The
parameter
causing the
error

4003
Motion device driver failure.
Communication error within the
motion control module.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 667

No. Message Remedy Note 1 Note 2

4004
Motion device driver failure.
Event waiting error within the motion
control module.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

4005
Current point position is above the
specified LimZ value.

Lower the Z axis. Increase the
specified LimZ value.

4006
Target point position is above the
specified LimZ value.

Lower the Z coordinate position
of the target point. Increase the
specified LimZ value.

4007

Coordinates conversion error. The
end/mid point is out of the motion
area. Jogging to the out of the motion
area.

Check whether the coordinate
out of the motion range is not
specified.

4008
Current point position or specified
LimZ value is out of motion range.

Change the specified LimZ
value.

4009
Motion device driver failure. Timeout
error within motion control module.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

4010
Specified Local coordinate was not
defined.

Define the Local coordinate
system.

 Local
number

4011
Arm reached the limit of XY motion
range specified by XYLim statement.

Check the area limited by the
XYLim statement.

4012
Upper limit value of Box is smaller
than the lower limit value. Change the
upper and lower limit values.

Set the upper limit value to be
larger than the lower limit value.

4013
Motion control module internal
calculation error.

-

4014 MCAL was not completed.
Execute MCal. Make sure the
MCOdr is set for the joint
connected to the PG board.

4016

SFree statement was attempted for
prohibited joint(s).

Due to robot mechanistic
limitation, setting some joint(s) to
servo free status is prohibited.
Check the robot specifications.

4018
Communication error within the
motion control module. Check sum
error.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

4021
Point positions used to define the
Local are too close.

Set the distance between points
more than 1μm.

4022
Point coordinate data used to define
the Local is invalid.

Match the coordinate data for the
points to be specified.

4023
Cannot execute when the motor is in
the off state.

Turn the motor power ON and
then execute.

4024

Cannot complete the arm positioning
using the current Fine specification.

Check whether the robot does
not generate vibration or all parts
and screws are secured firmly.
Increase the Fine setting value.

4025
Cannot execute a motion command
during emergency stop condition.

Clear the emergency stop
condition and execute the motion
command.

4026
Communication error within the
motion control module. Servo I/F
failure.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

4028
Communication error within the
motion control module. Device driver
status failure.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

SPEL+ Error Messages

668 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

4030
Buffer for the average torque
calculation has overflowed. Shorten
the time interval from Atclr to Atrq.

Shorten the time interval from
Atclr to Atrq less than about two
minutes.

4031
Cannot execute a motion command
when the motor is in the off state.

Turn the motor power ON and
then execute the motion
command.

4032
Cannot execute a motion command
when one or more joints are in SFree
state.

Set all joints to the SLock state
and execute the motion
command.

4033
The specified command is not
supported for the joints with Pulse
Generator Board.

The specified command is not
permitted for the joints with PG
board.

4034
Specified command is not supported
for this manipulator model.

Use the Jump3 and Jump3CP
statements.

4035

Only the tool orientation was
attempted to be changed by the CP
statement.

Set a move distance between
points. Use the ROT modifier,
SpeedR statement, and AccelR
statement.

4036

Rotation speed of tool orientation by
the CP statement is too fast.

Decrease the setting values for
the SpeedS and AccelS
statements. Use the ROT
modifier, SpeedR statement, and
AccelR statement.

4037
The point attribute of the current and
target point positions differ for
executing a CP control command.

Match the point attribute.

4038
Two point positions are too close to
execute the Arc statement.

Set the distance between points
more than 1μm.

4039
Three point positions specified by the
Arc statement are on a straight line.

Use the Move statement.

4041
Motion command was attempted to
the prohibited area at the backside of
the robot.

Check the robot motion range.

4042
Motion device driver failure.
Cannot detect the circular format
interruption.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

4043
Specified command is not supported
for this manipulator model or this joint
type.

Remove the unsupported
command from the program.

4044
Curve failure. Specified curve form is
not supported.

Create a Curve file again with
the Curve statement.

4045
Curve failure. Specified mode is not
supported.

Specify the Curve mode
properly. Create a Curve file
again with the Curve statement.

4046

Curve failure. Specified coordinate
number is out of the allowable range.

The number of the available
coordinate axes is 2, 3, 4, and 6.
Create a Curve file again with
the Curve statement.

4047
Curve failure. Point data was not
specified.

Create a Curve file again with
the Curve statement.

4048
Curve failure. Parallel process was
specified before the point designation.

Create a Curve file again with
the Curve statement.

4049
Curve failure. Number of parallel
processes is out of the allowable
range.

Create a Curve file again with
the Curve statement.

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 669

No. Message Remedy Note 1 Note 2

4050

Curve failure. Number of points is out
of the allowable range.

The number of available point
numbers differs according to the
curve form. Check the number
of points again.

4051
Curve failure. Local attribute and the
point attribute of all specified points do
not match.

Match the local and point flag for
all the specified points.

4052
Curve failure. Not enough memory to
format the curve file.

-

4053

Curve failure. Failed to format the
curve file.

Review the point data. Check
whether adjacent two points do
not overlap on the specified point
line.

4054
Curve failure. Curve file error The Curve file is broken. Create

a Curve file again with the Curve
statement.

4055
Curve failure. No distance for curve
file movement.

Review the point data.

4056
Curve failure. Point positions for the
Curve statement are too close.

Set the distance between two
points adjacent to the specified
point more than 0.001 mm.

4058
Prohibited command while tracking
was executed.

Remove the prohibited
command from the program.

4059
Executed encoder reset command
while the motor is in the on state.

Turn the motor power OFF.

4060
Executed an invalid command while
the motor is in the on state.

Turn the motor power OFF.

4061

Specified parameter is in use. You attempted to clear the
currently specified Arm and Tool.
Select other Arm and Tool and
execute.

4062
Orientation variation is over 360
degrees.

You attempted to rotate the joint
#J6 more than 360 degrees with
a CP motion command.

4063

Orientation variation of adjacent point
is over 90 degrees.

On the specified point line by the
Curve statement, set the
orientation variation of U, V, and
W coordinate values between
two adjacent points to under 90
degrees.

4064

Cannot execute the orientation
correction automatically.

On the specified point line, a
curve cannot be created by
automatic orientation correction.
Change the specified point line
so that the joint #J6 orientation
variation decreases.

4065

Attempt to revolve J6 one rotation with
the same orientation in CP statement.

You attempted to rotate the joint
#J6 more than 360 degrees with
a CP motion command. You
attempted to revolve the joint 6
one rotation with the same as
motion start orientation.
Change the target point so that
the joint #J6 revolves less than
one rotation.

SPEL+ Error Messages

670 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

4066
Motion command was attempted in
the prohibited area depended on joint
combination.

You attempted to move the joints
to the robot's interference limited
area.

4068
ROT modifier parameter was
specified for the CP motion command
without orientation rotation.

Delete the ROT from the CP
motion command.

4069
Specified ECP without selecting ECP
in CP statement.

Specify a valid ECP.

4070
Specified ECP number does not
match the ECP number used in curve
file creation.

Specify a valid ECP.

4071
Attempted motion command during
electronic brake lock condition.

Release the electromagnetic
brake.

4072
Initialization failure. Hardware monitor
was not initialized.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

4073
Orientation variation of adjacent point
is over 90 degrees.

Any of U, V, or W changes 90
degrees or more. Change the
point or the orientation.

4074
Motor type does not match the current
robot setting.

Check whether the specified
robot model is connected.

4075 ECP Option is not active. Enable the ECP option.

4076
Point positions used to define the
Plane are too close.

Set the distance between points
more than 1 μm.

4077
Point coordinate data used to define
the Plane is invalid.

Match the coordinate data for the
points to be specified.

4078
Only the additional ST axis was
attempted to be changed by the CP
statement.

Use PTP motion commands in
order to move the additional axis
only.

4079
Speed of additional ST axis by the CP
statement is too fast.

Reduce the set values of
SpeedS and AccelS.

4080
Cannot execute when the Enable
Switch is OFF.

Turn the Enable Switch ON and
then execute.

4081

Error was detected during operation. Check the PG board.
Check the connection with the
motor driver.
Replace the PG board.
Replace the controller.

4082

Pulse Generator Board error was
detected during operation.

Check the PG board.
Check the connection with the
motor driver.
Replace the PG board.

4083
MCAL did not complete in time. Set PG parameter so that MCAL

can complete within 120
seconds.

4084
Limit Sensor error was detected
during operation.

Check the limit sensor.

4085 Failed to change to specified location.
Reboot the controller.
Initialize the controller firmware.
Replace the controller.

4086
Cannot execute because it is not dry
run mode.

Change to the dry run mode and
execute.

4087 Failed to format the playback file.

Check the amount of free space
of the computer.
Reboot the computer.
Reinstall the RC+.
Replace the computer.

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 671

No. Message Remedy Note 1 Note 2

4099
Servo error was detected during
operation.

-

4100
Communication error in motion control
module. Cannot calculate the current
point or pulse.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

4101
Communication error in the motion
control module. Cannot calculate the
current point or pulse.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

4103
Initialization failure. Motion control
module initialization error.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

4104

Positioning timeout of the joint
connected to the Pulse Generator
Board.

Cannot receive the positioning
completion signal (DEND) from
the servo motor connected to PG
board.

4105
EMERGENCY connector connection
failure.

-

4106 Drive unit failure. -

4150

Redundant input signal failure of the
emergency stop.

The input status of the redundant
emergency stop input
continuously differs for more
than two seconds.
Check whether no
disconnection, earth fault, or
short-circuit of the emergency
stop input signal exits. Then
reboot the controller.

4151

Redundant input signal failure of the
safeguard.

The input status of the redundant
emergency stop input
continuously differs for more
than two seconds.
Check whether no
disconnection, earth fault, or
short-circuit of the emergency
stop input signal exits. Then
reboot the controller.

4152

Relay welding error of the main circuit. A relay welding error was
detected due to power system
over current.
Replace the controller.
Replace the robot.

4153

Redundant input signal failure of the
enable switch.

The input status of the redundant
enable signal differs
continuously for more than two
seconds.
Check the TP connector
connection.
Replace the TP.
Replace the controller.

4154

Temperature of regeneration resistor
was higher than the specified
temperature.

Robot’s Duty is too high.
Lengthen the waiting time or
reduce the Accel value. If the
error occurs although Duty was
lowered, replace the DPB.

4180
Manipulator initialization failure.
Specified manipulator was is not
found.

-

SPEL+ Error Messages

672 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

4181
Manipulator initialization failure.
Specified manipulator was in use by
another task.

-

4182
Manipulator initialization failure.
Manipulator name is too long.

-

4183
Manipulator initialization failure.
Manipulator data version error.

-

4184
Manipulator initialization failure.
Duplication of single axis joint is
assigned.

-

4185
Manipulator initialization failure.
Specified axis is in use by the other
manipulator.

-

4186
Manipulator initialization failure.
Necessary hardware resource is not
defined.

-

4187
Manipulator initialization failure.
Communication error with the
module : VSRCMNPK.

-

4188
Manipulator initialization failure. Joint
angle interference matrix is invalid.

-

4189
Manipulator initialization failure.
Communication error with the
module : VSRCMC.

-

4191
Manipulator initialization failure.
Physical-logical pulse transformation
matrix is invalid.

-

4192
Manipulator initialization failure.
Communication error with the servo
module.

-

4210

RAS circuit detected the servo system
malfunction. Reboot the controller.
Measure the noise. Replace the
controller.

Reboot the controller, take the
measure against noise, or
replace the DMB.

4211
Servo CPU internal RAM failure.
Reboot the controller. Measure the
noise. Replace the DMB.

Reboot the controller, take the
measure against noise, or
replace the DMB.

4212

RAM for the main and servo CPU
communication failure. Reboot the
controller. Measure the noise.
Replace the DMB.

Reboot the controller, take the
measure against noise, or
replace the DMB.

4213
Servo CPU internal RAM failure.
Reboot the controller. Measure the
noise. Replace the DMB.

Reboot the controller, take the
measure against noise, or
replace the DMB.

4214

Initialization communication of main
CPU and servo CPU failure. Reboot
the Controller. Measure the noise.
Replace DMB.

Reboot the controller, take the
measure against noise, or
replace the DMB.

4215

Initialization communication of the
main and servo CPU failure. Reboot
the controller. Noise measure.
Replace the DMB.

Reboot the controller, take the
measure against noise, or
replace the DMB.

4216
Communication of the main and servo
CPU failure. Reboot the controller.
Measure the noise. Replace the DMB.

Reboot the controller, take the
measure against noise, or
replace the DMB.

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 673

No. Message Remedy Note 1 Note 2

4217
Communication of the main and servo
CPU failure. Reboot the controller.
Measure the noise. Replace the DMB.

Reboot the controller, take the
measure against noise, or
replace the DMB.

4218 Servo long time command overrun. -

4219
Servo long time command check sum
error.

-

4220
System watchdog timer detected the
failure. Reboot the controller. Measure
the noise. Replace the DMB.

Reboot the controller, take the
measure against noise, or
replace the DMB.

4221 Drive unit check failure. -

4222
RAM failure of the servo CPU. Reboot
the controller. Measure the noise.
Replace the DMB.

Reboot the controller, take the
measure against noise, or
replace the DMB.

4223
Failure of duplicate circuit of the
emergency stop or the safeguard.
Check the wiring.

Check the wiring of the
emergency stop or the
safeguard.

4224
Low voltage of the main circuit power
supply is detected. Check the power
supply voltage. Reboot the controller.

Check the power supply voltage,
or reboot the controller.

4225
Control relay contact of the main
circuit power supply is welded.
Replace the DPB.

Replace the DPB.

4230

Servo real time status failure. Check
sum error.

A data checksum error was
detected in the controller.
Check the short-circuit and
improper connection of the
peripheral equipment wiring.
(Emergency, D-I/O, and
Expansion I/O connectors)
Replace the controller.

4232

Servo real time status failure. Free
running counter error with the servo.

A free running counter error was
detected in the controller.
Check the short-circuit and
improper connection of the
peripheral equipment wiring.
(Emergency, D-I/O, and
Expansion I/O connectors)
Replace the controller.

4233

Servo real time status failure.
Communication error with the servo
CPU.

A communication error was
detected in the controller.
Check the short-circuit and
improper connection of the
peripheral equipment wiring.
(Emergency, D-I/O, and
Expansion I/O connectors)
Replace the controller.

4240

Irregular motion control interruption
was detected. Interruption duplicate.

A interruption error was detected
in the controller.
Check the short-circuit and
improper connection of the
peripheral equipment wiring.
(Emergency, D-I/O, and
Expansion I/O connectors)
Replace the controller.

SPEL+ Error Messages

674 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

4241

Over speed during low power mode
was detected.

The robot over speed was
detected during low power
mode.
Check the robot mechanism.
(Smoothness, backlash, non-
smooth motion, loose belt
tension, brake)
Check whether the robot does
not interfere with peripheral
equipment. (Collision, contact)
Replace the motor driver.
Replace the motor. (Motor and
encoder failure)
Check the short-circuit and
improper connection of the
peripheral equipment wiring.
(Emergency, D-I/O, and
Expansion I/O connectors)

4242

Improper acceleration reference was
generated.

You attempted to operate the
robot with the acceleration
reference exceeding the
specified value.
For a CP motion, decrease the
AccelS value.

4243

Improper speed reference is
generated in the high power mode.

The robot over speed was
detected during high power
mode.
Check the robot mechanism.
(Smoothness, backlash, non-
smooth motion, loose belt
tension, brake)
Check whether the robot does
not interfere with peripheral
equipment. (Collision, contact)
Replace the motor driver.
Replace the motor. (Motor and
encoder failure)
Check the short-circuit and
improper connection of the
peripheral equipment wiring.
(Emergency, D-I/O, and
Expansion I/O connectors)

4250
Arm reached the limit of motion range
during the operation.

Check whether a CP motion
trajectory is within the motion
range.

4251
Arm reached the limit of XY motion
range specified by XYLim during the
operation.

Check the XYLim setting.

4252
Coordinate conversion error occurred
during the operation.

Check whether a CP motion
trajectory is within the motion
range.

4261
The Arm reached the limit of motion
range in conveyor tracking.

Place the conveyor inside the
moiton range. Meanwhile, allow
the tracking range for the
deceleration when switching

4262
The Arm reached the limit of XY
motion range in conveyor tracking.

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 675

No. Message Remedy Note 1 Note 2

4263

The Arm reached the limit of pulse
motion range in conveyor tracking.

from tracking motion to non-
tracking.
If error occurs during the shift
from tracking motion, it may be
prevented by increasing the
accel speed to complete the
tracking motion.

4267

Attempt to exceed the J4Flag attribute
without indication.

You attempted to exceed the
J4Flag attribute during motion
without the J4Flag indication.
Change the J4Flag for the target
point.

4268

Attempt to exceed the J6Flag attribute
without indication.

You attempted to exceed the
J6Flag attribute during motion
without the J6Flag indication.
Change the J6Flag for the target
point.

4269

Attempt to exceed the particular wrist
orientation attribute without indication.

You attempted to exceed the
particular wrist orientation
attribute during motion without
the Wrist indication.
Change the Wrist attribute for
the target point.
Change the target point to avoid
a particular wrist orientation.

4270

Attempt to exceed the particular arm
orientation attribute without indication.

You attempted to exceed the
particular hand orientation
attribute during motion without
the Hand indication.
Change the Hand attribute for
the target point.
Change the target point to avoid
a particular hand orientation.

4271

Attempt to exceed the particular elbow
orientation attribute without indication.

You attempted to exceed the
particular elbow orientation
attribute during motion without
the Elbow indication.
Change the Elbow attribute for
the target point.
Change the target point to avoid
a particular elbow orientation.

4272

Specified point flag is invalid. For a CP motion command, the
arm form at the target point is
different from the point flag
specified with the target point.
Change the point flag for the
target point.

4273
J6Flag switched during the lift motion
in coveyor tracking

Adjust the Tool orientation so
that J6Flag will not switch

4274
Manipulator motion did not match to
J6Flag of the target point

For a CP motion command, the
manipulator reached to the
target point with J6Flag which
differs from the one specified for
the target point.
Change J6Flag for the target
point.

SPEL+ Error Messages

676 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

4275
Manipulator motion did not match to
J4Flag of the target point

For a CP motion command, the
manipulator reached to the
target point with J4Flag which
differs from the one specified for
the target point.
Change J4Flag for the target
point.

4276
Manipulator motion did not match to
ArmFlag of the target point

For a CP motion command, the
manipulator reached to the
target point with ArmFlag which
differs from the one specified for
the target point.
Change ArmFlag for the target
point.

4277
Manipulator motion did not match to
ElbowFlag of the target point

For a CP motion command, the
manipulator reached to the
target point with ElbowFlag
which differs from the one
specified for the target point.
Change ElbowFlag for the target
point.

4278
Manipulator motion did not match to
WristFlag of the target point

For a CP motion command, the
manipulator reached to the
target point with WristFlag which
differs from the one specified for
the target point.
Change WristFlag for the target
point.

4291
Data sending failure in motion
network.

Check the connection of the
cable for Drive Unit.

4292
Data receiving failure in motion
network.

Check the connection of the
cable for Drive Unit.

4301
The Pulse Generating Board detected
a limit signal.

-

4302
The Pulse Generating Board detected
an alarm signal.

-

4401
The specified conveyor number is
illegal.

Review the conveyor number.

4402
The specified queue is full. The number of registration

reached the upper limit (1000
pcs.) Delete the queue

4403
Continue operation cannot be done in
tracking motion.

Tracking motion cannot be
continued after aborted/paused?.

4404
The specified queue data does not
exist.

Review the queue number. Or,
check whether the queue is
registered.

4405
The conveyor is not correctly
initialized.

-

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 677

No. Message Remedy Note 1 Note 2

4406

The specified queue data is outside
the set area.

The queue outside of the range
cannot be tracked. If the
specified queue is above the
upstream limit, change the
program so that tracking does
not start until the queue enters
the area below the upper limit. If
the specified queue is below the
downstream limit, change the
program to delete the queue
data.

4407 The encoder is not correctly assigned. Set the encoder.

4409
The parameter of the conveyor
instruction is invalid.

Review the parameter.

4410
The conveyor coordinates conversion
error occurs.

-

4411
Communication error within the
Conveyor Modules.

-

4413 Conveyor tracking starting error. -

4414
Conveyor tracking cannot start after
motion with CP ON.

Start the conveyor tracking using
CP OFF.

4415

The setting of Diagonal Upstream
Limit or Diagonal Downstream Limit is
not appropriate.

The diagonal downstream limit is
above the upstream limit, or the
diagonal upstream/downstream
limit is horizontal to the conveyor
direction. Review the setting of
diagonal upstream/downstream
limit.

5000

Servo control gate array failure.
Check the DMB.

Check the short-circuit and
improper connection of the
peripheral equipment wiring.
(Emergency and I/O connectors)
Replace the DMB.
Replace the additional axis unit.

5001

Disconnection of the parallel encoder
signal. Check the signal cable
connection or the robot internal wiring.

Check the M/C cable signal.
Check the robot signal wiring.
(Missing pin, disconnection,
short-circuit)
Replace the motor.
Replace the DMB.
Check the connector connection
in the controller. (Loosening,
connecting to the serial encoder
terminal on the DMB)
Check the model setting.
Check the peripheral equipment
wiring. (Emergency and I/O)

5002

Motor driver is not installed. Install the
motor driver. Check the DMB or the
motor driver.

Check whether the motor driver
is mounted.
Check the model setting and
hardware setting.
Replace the motor driver.
Replace the DMB.

5003

Initialization communication failure of
incremental encoder. Check the signal
cable connection and the robot
setting.

Check the model setting.
Replace the motor.
Replace the DMB.

SPEL+ Error Messages

678 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

5004
Initialization failure of absolute
encoder. Check the signal cable
connection or the robot setting.

Check the model setting.
Replace the motor.
Replace the DMB.

5005
Encoder division setting failure. Check
the robot setting.

Check the model setting.

5006

Data failure during absolute encoder
initialization. Check the signal cable
connection, the controller, or the
motor.

Replace the motor.
Replace the DMB.
Check the noise
countermeasures.

5007
Absolute encoder multi-turn is beyond
the maximum range. Reset the
encoder.

Reset the encoder.
Replace the motor.

5008
Position is out of the range. Reset the
encoder.

Reset the encoder.
Replace the DMB.
Replace the motor.

5009

No response from the serial encoder.
Check the signal cable connection,
the motor, the DMB, or the encoder IF
board.

Check the model setting.
(Improperly setting of the parallel
encoder model)
Check the signal cable
connection.
Replace the DMB and encoder
I/F board.

5010

Serial encoder initialization failure.
Reboot the controller. Check the
motor, the DMB, or the encoder IF
board.

Check the robot configuration.
Check the signal cable
connection.
Replace the DMB and encoder
I/F board.

5011

Serial encoder communication failure.
Reboot the controller. Check the
motor, the DMB, or the encoder IF
board.

Check the robot configuration.
Check the signal cable
connection.
Replace the DMB and encoder
I/F board.

5012
Servo CPU watchdog timer failure.
Reboot the controller. Check the
motor or the DMB.

Replace the DMB.
Check the noise
countermeasures.

5013

Current control circuit WDT failure.
Reboot the controller. Check the
controller.

Check the power cable
connection.
Check the 15V power supply and
cable connection.
Replace the DMB.
Check the noise
countermeasures.

5015
Encoder is reset. Reboot the
controller.

Reboot the controller.

5016
Power supply failure of the absolute
encoder. Replace the battery. Check
the robot internal wiring.

Reset the encoder.
Check the signal cable
connection.

5017
Backup data failure of the absolute
encoder. Reset the encoder.

Reset the encoder.
Check the signal cable
connection.

5018
Absolute encoder battery alarm. Replace the battery.

Check the signal cable
connection.

5019
Position failure of the absolute
encoder. Reset the encoder. Replace
the motor.

Reset the encoder.
Replace the motor.

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 679

No. Message Remedy Note 1 Note 2

5020
Speed is too high at controller power
ON. Stop the robot and reboot the
controller.

Reboot the controller.

5021
Absolute encoder overheat. Lower the motion duty.

Wait until the temperature of the
encoder decreases.

5032 Servo alarm A. -

5040

Motor torque output failure in high
power state. Check the power cable
connection, the robot, the driver or the
motor.

Specify the Weight/Inertia
setting. Check the load.
Check the robot. (Smoothness,
backlash, non-smooth motion,
loose belt tension, brake)
Check the interference with the
peripheral equipment. (Collision,
contact)
Check the model setting.
Check the power cable
connection.
Check the robot power wiring.
(Missing pin, disconnection,
short-circuit)
Check the power supply voltage.
(Low power supply voltage)
Replace the motor driver.
Replace the DMB.
Replace the motor.

5041

Motor torque output failure in low
power state. Check the power cable
connection, robot, brake, driver, or
motor.

Check the robot. (Smoothness,
backlash, non-smooth motion,
loose belt tension, brake)
Check the interference with the
peripheral equipment. (Collision,
contact)
Check the model setting.
Check the power cable
connection.
Check the robot power wiring.
(Missing pin, disconnection,
short-circuit)
Check the power supply voltage.
(Low power supply voltage)
Replace the motor driver.
Replace the DMB.
Replace the motor.

SPEL+ Error Messages

680 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

5042

Position error overflow in high power
state. Check the power cable
connection, the robot, the driver and
the motor.

Specify the Weight/Inertia
setting. Check the load.
Check the robot. (Smoothness,
backlash, non-smooth motion,
loose belt tension, brake)
Check the interference with the
peripheral equipment. (Collision,
contact)
Check the model setting.
Check the power cable
connection.
Check the robot power wiring.
(Missing pin, disconnection,
short-circuit)
Check the power supply voltage.
(Low power supply voltage)
Replace the motor driver.
Replace the DMB.
Replace the motor.

5043

Position error overflow in low power
state. Check the power cable
connection, robot, brake, driver, or
motor.

Check the robot. (Smoothness,
backlash, non-smooth motion,
loose belt tension, brake)
Check the interference with the
peripheral equipment. (Collision,
contact)
Check the model setting.
Check the power cable
connection.
Check the robot power wiring.
(Missing pin, disconnection,
short-circuit)
Check the power supply voltage.
(Low power supply voltage)
Replace the motor driver.
Replace the DMB.
Replace the motor.

5044

Speed error overflow in high power
state. Check the power cable
connection, robot, brake, driver, or
motor.

Specify the Weight/Inertia
setting. Check the load.
Check the robot. (Smoothness,
backlash, non-smooth motion,
loose belt tension, brake)
Check the interference with the
peripheral equipment. (Collision,
contact)
Check the model setting.
Check the power cable
connection.
Check the robot power wiring.
(Missing pin, disconnection,
short-circuit)
Check the power supply voltage.
(Low power supply voltage)
Replace the motor driver.
Replace the DMB.
Replace the motor.

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 681

No. Message Remedy Note 1 Note 2

5045

Speed error overflow in low power
state. Check the power cable
connection, robot, brake, drive, or
motor.

Check the robot. (Smoothness,
backlash, non-smooth motion,
loose belt tension, brake)
Check the interference with the
peripheral equipment. (Collision,
contact)
Check the model setting.
Check the power cable
connection.
Check the robot power wiring.
(Missing pin, disconnection,
short-circuit)
Check the power supply voltage.
(Low power supply voltage)
Replace the motor driver.
Replace the DMB.
Replace the motor.

5046

Over speed in high power state.
Reduce SpeedS. Check the signal
cable connection, robot, brake, driver
or motor.

Reduce SpeedS of the CP
motion. Change the orientation
of the CP motion.
Specify the Weight/Inertia
setting. Check the load.
Check the robot. (Smoothness,
backlash, non-smooth motion,
loose belt tension, brake)
Check the interference with the
peripheral equipment. (Collision,
contact)
Check the model setting.
Check the power cable
connection.
Check the robot power wiring.
(Missing pin, disconnection,
short-circuit)
Check the power supply voltage.
(Low power supply voltage)
Replace the motor driver.
Replace the DMB.
Replace the motor.

5047

Over speed in low power state. Check
the signal cable connection, robot,
brake, driver, or motor.

Check the motion in high power
state.
Check the robot. (Smoothness,
backlash, non-smooth motion,
loose belt tension, brake)
Check the interference with the
peripheral equipment. (Collision,
contact)
Check the model setting.
Check the power cable
connection.
Check the robot power wiring.
(Missing pin, disconnection,
short-circuit)
Check the power supply voltage.
(Low power supply voltage)
Replace the motor driver.
Replace the DMB.
Replace the motor.

SPEL+ Error Messages

682 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

5048

Over voltage of the main power
circuit. Check the main power voltage
or the regeneration module.

Specify the Weight/Inertia
setting. Check the load.
Check the robot. (Smoothness,
backlash, non-smooth motion,
loose belt tension, brake)
Check the interference with the
peripheral equipment. (Collision,
contact)
Check the model setting.
Check the power cable
connection.
Check the robot power wiring.
(Missing pin, disconnection,
short-circuit)
Check the power supply voltage.
(Low power supply voltage)
Replace the motor driver.
Replace the DMB.
Replace the motor.

5049

Over current of the motor driver.
Check the power cable connection or
the robot internal wiring.

Check the short-circuit and earth
fault of the power line.
Replace the motor driver.
Replace the DMB.

5050
Over speed during torque control.
Check the work motion speed range.

Check the motion speed during
torque control.

5051

15V PWM drive power supply failure.
Reboot the controller. Replace the
15V power supply.

Check the 15V power supply and
cable connection.
Replace the motor driver.
Replace the DMB.

5054

Overload of the motor. Decrease the
motion duty and the Accel.

Lower the motion duty.
Check the Weight/Inertia setting.
Check the robot. (Backlash,
large load, loose belt tension,
brake)

5055

Overload of the motor. Decrease the
operation duty and the Accel.

Lower the motion duty.
Check the Weight/Inertia setting.
Check the robot. (Backlash,
large load, loose belt tension,
brake)

5072 Servo alarm B. -

5080

Motor is overloaded. Decrease the
duty and the Accel.

Lower the motion duty.
Check the Weight/Inertia setting.
Check the robot. (Backlash,
large load, loose belt tension,
brake)

5098

High temperature of the encoder.
Decrease the duty. Check the
reduction gear unit of the robot.

Wait until the temperature of the
encoder decreases.
Lower the motion duty.
Check the Weight/Inertia setting.
Check the robot. (Backlash,
large load, loose belt tension,
brake)

5099

High temperature of the motor driver .
Clean the controller fan filter. Check
the ambient temperature. Decrease
the duty.

Clean the cooling fan filter.
Lower the motion duty.
Check the Weight/Inertia setting.
Lower the ambient temperature.

5112 Servo alarm C. -

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 683

No. Message Remedy Note 1 Note 2
6001 Calibration number is out of range. -
6002 Calibration is not defined. -
6003 Camera orientation is out of range. -
6004 TwoRefPoints flag is out of range. -

6005
Cannot calculate the point position
because there is invalid data.

-

6006
Calibration failed. Cannot calculate
because there is invalid data.

-

6007
Coordinate transformation failed.
Cannot calculate because there is
invalid data.

-

6009 Calibration file name is invalid. -
6010 Calibration file is not found. -
6012 Failed to read the calibration file. -
6013 Failed to write the calibration file. -

6014
9 pixel coordinate points should be
specified.

-

6015
18 pixel coordinate points should be
specified.

-

6016
9 robot coordinate points should be
specified.

-

6017
18 robot coordinate points should be
specified.

-

6018
9 robot coordinate points and 1
reference point should be specified.

-

6019
9 robot coordinate points and 2
reference points should be specified.

-

7003
The specified robot cannot be found. Reboot the controller.

Initialize the control firmware.

7004
Duplicate allocation of the point data
area.

Reboot the controller.
Initialize the control firmware.

7006
Specified point number cannot be
found. Specify a valid point number.

Check the specified point
number.

7007
Specified point number was not
defined. Specify a teach point
number.

Check whether point data is
registered in the specified point.
Perform the teaching.

7010
Cannot allocate the memory area for
the pallet definition.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

7011
Cannot free the memory area for the
pallet definition.

Reboot the controller.
Initialize the controller firmware.

7012
Specified pallet number cannot be
found. Specify a valid pallet number.

Check the pallet number.

7013

Specified pallet is not defined. Specify
a defined pallet or define the pallet.

Check whether the specified
pallet is defined by the Pallet
statement.
Declare the pallet.

7014
Specified division number is beyond
the pallet division number definition.
Specify a valid division.

Check the specified division
number.

7015
Specified coordinate axis number
does not exist.

Check the specified coordinate
axis number.

7016
Specified arm orientation number
does not exist.

Check the specified arm
orientation number.

SPEL+ Error Messages

684 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

7017
Cannot allocate the required memory. Reboot the controller.

Initialize the controller firmware.
Replace the controller.

7018
Specified point label cannot be found.
Specify a valid point label.

Check the specified point label.

7019
Parameter setup in the initialization
file is invalid.

Reboot the controller.
Initialize the controller firmware.

7021
Duplicate point label. Specified label
name is already registered. Change
the label name.

Change the point label.

7022

Specified local coordinate system is
not defined. Specify a valid local
coordinate system number.

Check the specified local
number.
Define the Local coordinate
system.

7023
Specified string is not in the correct
format.

-

7024
Point data memory area for the
specified robot is not allocated.

Rebuild the project.

7026
Cannot open the point file. Specify a
valid point file name.

Check the point file name.
Check whether the point file
specified for the project exists.

7027
Cannot read the point data from the
point file.

Create the point file again.

7028
Point area is allocated beyond the
available point number.

There are too many points.
Review the number of points.

7029
Specified point file name is not
correct. Specify a valid point file
name.

Check the file extension.

7030
Specified point label is beyond the
maximum length. Specify a valid point
label.

Change the point label.

7031
Description for the specified point is
beyond the maximum length. Specify
a valid description.

Change the comment.

7032
Point file is corrupted. Check sum
error.

Create the point file again.

7033
Specified point file cannot be found.
Specify a valid point file name.

Check the name of the specified
point file.

7034 Cannot save the point file.

Failed to save the point file
(create a temporary file).
Reboot the controller.
Initialize the controller firmware.
Replace the controller.

7035 Cannot save the point file.

Failed to save the point file (file
open).
Reboot the controller.
Initialize the controller firmware.
Replace the controller.

7036 Cannot save the point file.

Failed to save the point file
(renew the file header).
Reboot the controller.
Initialize the controller firmware.
Replace the controller.

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 685

No. Message Remedy Note 1 Note 2

7037 Cannot save the point file.

Failed to save the point file
(create the file name).
Reboot the controller.
Initialize the controller firmware.
Replace the controller.

7038 Cannot save the point file.

Failed to save the point file (copy
the file).
Reboot the controller.
Initialize the controller firmware.
Replace the controller.

7039 Cannot save the point file.

Failed to save the point file
(change the file name).
Reboot the controller.
Initialize the controller firmware.
Replace the controller.

7040
The point label is not correct. Specify
a valid point point label.

The initial character of the point
label name is improper. Correct
the lable name.

7041
The point label is not correct. Specify
a valid point point label.

Inadequate character is used.
Correct the lable name.

7042 The pallet cannot be defined.

Undefined flag for pallet data is
mixed.
Check the point data.
Correct the point data.

7043 Invalid a point file version.
The point file version is different.
Re-create the point file.

7101

Communication error occur during
transform.

The fieldbus slave board is
broken or the controller software
is damaged. Restore the
controller firmware.

1
2
3
4
10

A communication data error was
detected during communication.
The communication cable has a
problem. Check the
communication cable and its
related units.

11
12

The fieldbus slave board is
broken or the controller software
is damaged. Restore the
controller firmware.

13
14
15

The PLC is not running or not
connected.
Check the PLC, the
communication cable, and
peripherals.
(If Code 1 is 22 when the CC-
Link board is used.)

22

7103

Timeout error occurs during
transform.

The fieldbus slave board is
broken or the controller software
is damaged. Restore the
controller firmware.

1
2
3

SPEL+ Error Messages

686 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2
A communication data error was
detected during communication.
The communication cable has a
problem. Check the
communication cable and its
related units.

4

7200 Invalid argument. Check the parameter.
7201 The system error occurred. -
7202 There is not enough memory. -
7203 Access is denied. -
7210 Drive is not ready. Set the device.

7211 The specified path is invalid. Make sure the specified path
exists.

7212
The specified path is already existing. If the specified directory or file

already exists, you cannot
execute.

7213 The file specified by path does not
exist.

Make sure the specified file
exists.

7214 File size is too large. Specify the file that is less than
2G bytes.

7215
The specified file is open. The specified file number is

already existing. Use another
file number.

7216 The open mode is illegal. Make sure you opened in
reading or writing mode.

7217 There is no read data. Make sure there are data to
read.

7230
The specified connection is open. The specified file number is

already existing. Use another
file number.

7231 A connection-level error occurred
while opening the connection.

Check the access right of
database.

7232 The connection is closed. Use OpenDB and open the
database.

7233 The data type not supported is
included.

Convert the data into string or
numeric value.

7234
Data size is too large. Too large data in a line. Specify

the query so that necessary field
are only retrieved.

7235 The specified file type is not
supported.

Check the type of Excel file.

7236 There is no selected data. Make sure the data you retrieved
exists.

7250 No bytes were available to read. There are no retrieved data.
Check the send program.

7251 The port is in an invalid state. Check the decive setting for the
specified port.

7252 The specified port is open. Check the port number to open.
7253 The port is closed Check the port number to close.
7254 The specified port is not Check the port number to open.

7255
Timeout reading from the port. Check the port timeout period

and update to the appropriate
setting.

7256
Timeout writing to the port. Check the port timeout period

and update to the appropriate
setting.

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 687

No. Message Remedy Note 1 Note 2
7260 The checksum in project file is invalid. Rebuild the project.

7261 Invalid function. Check the function definition to
call.

7262 Invalid parameters. Check the function definition to
call.

7300
Vision Communication.
Server mode not supported.

-

7302
Vision Communication.
Failed to read from the camera.

Check the connection with the
camera.

7303
Vision Communication.
Read data overflow.

-

7304
Vision Communication.
Failed to open the Ethernet port.

-

7305
Vision Communication.
Invalid IP address of camera.

Rebuild the project. Check the
camera configuration.

7306
Vision Communication.
No specification of Server/Client.

-

7307
Vision Communication.
Failed to send to the camera.

Check the connection with the
camera.

7308
Vision Communication.
Camera version is old.

-

7321
Vision Communication.
Camera setting has not been set.

Rebuild the project. Check the
camera configuration.

7322
Vision Communication.
Read timeout.

-

7323
Vision Communication.
Read invalid data.

Check the connection with the
camera.

7324
Vision Communication.
Failed to send to the camera.

Check the connection with the
camera.

7325
Vision Communication.
Connection is not completed.

Check the connection with the
camera.

7326
Vision Communication.
Read data is too long.

-

7327
Vision Communication.
Undefined vision sequence.

-

7328
Vision Communication.
Camera setting has not been set.

Rebuild the project. Check the
camera configuration.

7329
Vision Communication.
Vis file is not found.

Rebuild the project. Check the
camera configuration.

7330
Vision Communication.
Failed to allocate memory.

-

7341
Vision Communication.
Out of max camera number.

-

7342
Vision Communication.
Invalid camera number.

-

7343
Vision Communication.
VSet parameter is too long.

-

7344
Vision Communication:
Too many parameters for VGet.

-

7345
Vision Communication.
Not enough data for VGet statement
variable assignment.

-

7346
Vision Communication.
Cannot execute a Vision statement
from the command window.

-

SPEL+ Error Messages

688 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

7500
Smart camera.
Out of memory.

-

7501
Smart camera.
Project does not exist.

-

7502
Smart camera.
Project has not been set.

-

7503
Smart camera.
Vision property or result not
supported.

-

7504
Smart camera.
Cannot open project file.

-

7505 Undefined vision sequence. -
7506 Undefined vision object. -

7507
Smart camera.
Critical error.

-

7508
Smart camera.
Invalid command.

-

7509 Invalid vision property value. -
7510 Invalid vision property. -
7511 Vision model not trained. -
7512 Undefined vision calibration. -
7513 Vision model object not Self. -
7514 Invalid vision result. -
7515 Vision object not found. -
7516 No vision calibration. -
7517 Incomplete vision calibration. -

7518
Smart camera.
Cannot connect with camera.

-

7819
Smart camera.
Communication error.

-

7520 Window out of bounds. -
7521 OCR font is invalid. -

7522
The specified vision calibration
already exists.

-

7523
The specified vision sequence already
exists.

-

7524
The specified vision object already
exists.

-

7525 Cannot load vision project. -
7526 Cannot save vision project. -
7527 Vision processor. Critical error. -
7528 Image file not found. -
7529 Camera does not exist. -
7530 Acquisition failed. -
7531 Vision object is not taught. -

7600
GUI Builder.
Cannot execute a GUI Builder
statement from the command window.

-

7602
GUI Builder.
GSet parameter is too long.

Correct the parameter to the
proper length.

7603
GUI Builder.
Too many parameters for GGet.

Check the number of
parameters.

7604
GUI Builder.
Not enough data for GGet statement
variable assignment.

Specify the variable.

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 689

No. Message Remedy Note 1 Note 2

7610

GUI Builder.
The event task cannot be executed.
System in pause state and
EventTaskType is Normal.

The system can be operated by
changing EventTaskType to
“NoPause”

7611

GUI Builder.
The event task cannot be executed.
Safeguard is open and
EventTaskType is Normal.

The system can be operated by
changing EventTaskType to
“NoEmgAbort”

7612

GUI Builder.
The event task cannot be executed.
Estop is active and EventTaskType is
not NoEmgAbort.

The system can be operated by
changing EventTaskType to
“NoEmgAbort”

7613

GUI Builder.
The event task cannot be executed.
System in error state and
EventTaskType is not NoEmgAbort.

The system can be operated by
changing EventTaskType to
“NoEmgAbort”

7650
GUI Builder.
Invalid property.

Specify the valid property.

7651
GUI Builder.
Invalid form.

Specify the valid form.

7652
GUI Builder.
Invalid control.

Specify the valid control.

7653
GUI Builder.
The specified form is already open.

Modify the program to avoid
double launch.

7654
GUI Builder.
Event function does not exist.

Check the function name set for
the event.

7655
GUI Builder.
Item does not exist.

Specify the valid item.

7656
GUI Builder.
Invalid property value.

Check the property value and
specify the valid value.

7700
Security.
Invalid user.

Contact the administrator to
register the user

7701
Security.
Invalid password.

Check the password.

7702
Security.
Permission denied.

Contact the administrator to set
authority.

7703
Security.
Option not active.

Register the options.

7710
Source and destination cannot be the
same.

Specify another destination.

7711
Point file name is used by another
robot.

Check the point file name.

7712 Invalid axis specified.
Check whether the specified axis
is valid. Check if the axis is
specified correctly.

7713 Option not enabled Enable the option.
7714 File not found. Specify the correct file name.
7715 Robot number is out of the available

range.
Check the robot number.

7716 Robot does not exist.
Check whether the robot is
registered.

7717 File Error. Invalid folder. Check the folder name.

7800
Data cannot be changed, because it is
not data of PG axis.

-

7801 Invalid joint number is selected. -
7802 The type of robot is invalid. -

SPEL+ Error Messages

690 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2
7803 The parameter is invalid. -
7804 The number of robot is invalid. -

7805
MCD failure.
Failed to open the MCD file.

Restore the controller
configuration.

7806
MCD failure.
Failed to read the MCD file.

Restore the controller
configuration.

7807
MCD failure.
Failed to save the MCD file.

Restore the controller
configuration.

7808
MCD failure.
Failed to create the MCD file.

Restore the controller
configuration.

7809
MCD failure.
Failed to write the MCD file.

Restore the controller
configuration.

7810
MPL failure.
Failed to open the MPL file.

Reinstall the firmware.

7811
MPL failure.
Failed to read the MPL file.

Update the firmware.

7812
MPL failure.
Failed to write the MPL file.

-

7815
IFS failure.
Failed to open the IFS file.

Restore the controller
configuration.

7816
IFS failure.
Failed to read the IFS file.

Restore the controller
configuration.

7817
IFS failure.
Failed to write the IFS file.

Restore the controller
configuration.

7820
MTR failure.
Failed to create the MTR file.

-

7821
MTR failure.
Failed to open the MTR file.

-

7822
MTR failure.
Failed to read the MTR file.

-

7823
MTR failure.
Failed to write the MTR file.

-

7824
MTR failure.
Failed to save the MTR file.

-

7825
PRM failure.
Failed to create the PRM file.

Restore the controller
configuration.

7826
PRM failure.
Failed to open the PRM file.

Restore the controller
configuration.

7827
PRM failure.
Failed to read the PRM file.

Restore the controller
configuration.

7828
PRM failure.
Failed to write the PRM file.

Restore the controller
configuration.

7829
PRM failure.
Failed to save the PRM file.

Restore the controller
configuration.

7830
File failure.
Cannot access the file.

-

7831 The type of motor is invalid. -
7840 Area allocate error. Reboot the controller.
7900 Fieldbus not installed -
7901 Fieldbus invalid parameter -

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 691

No. Message Remedy Note 1 Note 2
7902 Fieldbus line defect Check the connection of the

communication cable for the
fieldbus.
Check whether the
communication cable for the
fieldbus is powered. (if the
fielsbus requires power supply)
Check the connection of the
fieldbus slave.

7903 Fieldbus device not configured Check that the fieldbus master
board is installed.
Reboot the computer where the
fieldbus master board is
installed.
Replace the fieldbus master
board.

7904 Fieldbus invalid board Check that the fieldbus master
board is installed.
Reboot the computer where the
fieldbus master board is
installed.
Replace the fieldbus master
board.

7905 Fieldbus connection denied -
7906 Fieldbus invalid device configuration Check that the fieldbus master

board is installed.
Reboot the computer where the
fieldbus master board is
installed.
Replace the fieldbus master
board.

7907 Fieldbus general error Check that the fieldbus master
board is installed.
Reboot the computer where the
fieldbus master board is
installed.
Replace the fieldbus master
board.

7908 Fieldbus configuration error Check the fieldbus master
setting.

7909
Fieldbus slaves were not detected. Register the slave to the fieldbus

master by accompanying
applicomIO Console application

9001

Emergency stop circuit failure was
detected. Disconnection or other
failure was found in one of the
redundant inputs.

Check whether no
disconnection, earth fault, or
short-circuit of the emergency
stop input signal exits. Then
reboot the controller.

9002

Safeguard circuit failure was detected.
Disconnection or other failure was
found in one of the redundant inputs.

Check whether no
disconnection, earth fault, or
short-circuit of the safeguard
input signal exits. Then reboot
the controller.

SPEL+ Error Messages

692 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

9003
Initialization failure.
Failed to initialize the firmware.

This is likely because of the
controller hardware failure.
Check the wiring is correct. If
the error is not cleared after the
controller is rebooted, contact
us.

9004

Initialization failure.
Failed to initialize the DU.
Ckeck the DU power and the
connection.

The number of set Drive Unit(s)
disagrees with the number of
recognized Drive Unit(s). Check
the wirings of power supply and
between Control Unit and Drive
Unit are correct. If the error is
not cleared after the controller is
rebooted, contact us.

9005
Initialization failure.
Failed to initialize the DU.
Ckeck the connection.

This is likely because of the
Drive Unit hardware failure.
Check the wiring is correct. If
the error is not cleared after the
controller is rebooted, contact
us.

9011

Battery voltage of the CPU board
backup is lower than the specified
voltage. Replace the CPU board
battery.

Replace the battery for the CPU
board immediately. Keep the
controller ON as long as possible
until the battery is replaced.

9012
5V input voltage for CPU board is
lower than the specified voltage.

If normal voltage is not
generated by 5V power supply
alone, replace the power supply.

9013
24 V input voltage for the motor brake,
encoder and fan is lower than the
specified voltage.

If normal voltage is not
generated by 24V power supply
alone, replace the power supply.

9014

Internal temperature of the Controller
is higher than the specified
temperature.

Stop the controller as soon as
possible and check whether the
ambient temperature of the
controller is not high.
Check whether the filter is not
clogged up.

Current value Boundary
value

9015

Rotating speed of the controller fan is
below the allowed speed. (FAN1)

Check whether the filter is not
clogged up. If the warning is not
cleared after the controller is
rebooted, replace the fan.

Current value Boundary
value

9016

Rotating speed of the controller fan is
below the allowed speed. (FAN2)

Check whether the filter is not
clogged up. If the warning is not
cleared after the controller is
rebooted, replace the fan.

Current value Boundary
value

9017

Internal temperature of the Controller
is higher than the specified
temperature.

Stop the controller as soon as
possible and check whether the
ambient temperature of the
controller is not high.
Check whether the filter is not
clogged up.

9021
DU1 3.3V input voltage for the board
is lower than the allowed voltage.

If normal voltage is not
generated by 3.3V of Drive Unit
1 power supply alone, replace
the power supply.

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 693

No. Message Remedy Note 1 Note 2

9022
DU1 5V input voltage for the board is
lower than the allowed voltage.

If normal voltage is not
generated by 5V of Drive Unit 1
power supply alone, replace the
power supply.

9023
DU1 24 V input voltage for the motor
brake, encoder and fan is lower than
the specified voltage.

If normal voltage is not
generated by 24V of Drive Unit 1
power supply alone, replace the
power supply.

9024
DU1 Internal temperature of the
Controller is higher than the allowed
temperature.

Stop the Drive Unit 1 as soon as
possible and check whether the
ambient temperature of the
controller is not high.
Check whether the filter is not
clogged up.

9025
DU1 Rotating speed of the controller
fan is below the allowed speed.
(FAN1)

Check whether the filter of the
Drive Unit 1 is not clogged up.
Replace the fan.

9026
DU1 Rotating speed of the controller
fan is below the allowed speed.
(FAN2)

Check whether the filter of the
Drive Unit 1 is not clogged up.
Replace the fan.

9031
DU2 3.3V input voltage for the board
is lower than the allowed voltage.

If normal voltage is not
generated by 3.3V of Drive Unit
2 power supply alone, replace
the power supply.

9032
DU2 5V input voltage for the board is
lower than the allowed voltage.

If normal voltage is not
generated by 5V of Drive Unit 2
power supply alone, replace the
power supply.

9033
DU2 24 V input voltage for the motor
brake, encoder and fan is lower than
the specified voltage.

If normal voltage is not
generated by 24V of Drive Unit 2
power supply alone, replace the
power supply.

9034
DU2 Internal temperature of the
Controller is higher than the allowed
temperature.

Stop the Drive Unit 2 as soon as
possible and check whether the
ambient temperature of the
controller is not high.
Check whether the filter is not
clogged up.

9035
DU2 Rotating speed of the controller
fan is below the allowed speed.
(FAN1)

Check whether the filter of the
Drive Unit 2 is not clogged up.
Replace the fan.

9036
DU2 Rotating speed of the controller
fan is below the allowed speed.
(FAN2)

Check whether the filter of the
Drive Unit 2 is not clogged up.
Replace the fan.

9100
Initialization failure.
Failed to allocate memory.

Reboot the controller.

9101 Message queue has become full. -

9233
The Fieldbus I/O driver is in an
abnormal state.

The module is broken or the
controller software is damaged.
Restore the controller firmware.

9234
Fieldbus I/O driver initialization failure. The module is broken or the

controller software is damaged.
Restore the controller firmware.

9610

RAS circuit detected a servo system
malfunction. Reboot the controller.
Check for noise. Replace the
controller.

Check the noise
countermeasures.
Replace the DMB.

SPEL+ Error Messages

694 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

9611
Servo CPU internal RAM failure.
Reboot the controller. Check for
noise. Replace the DMB.

Check the noise
countermeasures.
Replace the DMB.

9612

RAM for the main and servo CPU
communication failure. Reboot the
controller. Check for noise. Replace
the DMB.

Check the noise
countermeasures.
Replace the DMB.

9613
Servo CPU internal RAM failure.
Reboot the controller. Check for
noise. Replace the DMB.

Check the noise
countermeasures.
Replace the DMB.

9614

Initialization communication of main
CPU and servo CPU failure. Reboot
the Controller. Check for noise.
Replace DMB.

Check the noise
countermeasures.
Replace the DMB.

9615

Initialization communication of the
main and servo CPU failure. Reboot
the controller. Check for noise.
Replace the DMB.

Check the noise
countermeasures.
Replace the DMB.

9616
Communication of the main and servo
CPU failure. Reboot the controller.
Check for noise. Replace the DMB.

Check the noise
countermeasures.
Replace the DMB.

9617
Communication of the main and servo
CPU failure. Reboot the controller.
Check for noise. Replace the DMB.

Check the noise
countermeasures.
Replace the DMB.

9618
Servo long time command overrun. Check the noise

countermeasures.
Replace the DMB.

9619
Servo long time command check sum
error.

Check the noise
countermeasures.
Replace the DMB.

9620
System watchdog timer detected a
failure. Reboot the controller. Check
for noise. Replace the DMB.

Check the noise
countermeasures.
Replace the DMB.

9621
Drive unit check failure. Check the noise

countermeasures.
Replace the DMB.

9622
RAM failure of the servo CPU. Reboot
the controller. Check for noise.
Replace the DMB.

Check the noise
countermeasures.
Replace the DMB.

9623
Failure of the redundant circuitry for
the emergency stop or the safeguard.
Check the wiring.

Check the noise
countermeasures.
Replace the DMB.

9624

Low voltage of the main circuit power
supply was detected. Check the
power supply voltage. Reboot the
controller.

Check the noise
countermeasures.
Replace the DMB.

9625
Control relay contact of the main
circuit power supply is welded closed.
Replace the DPB.

Replace the DMB.

9630

Servo real time status failure.
Check sum error.

Reboot the controller.
Replace the DMB.
Check the noise
countermeasures.

9632

Servo real time status failure.
Servo free running counter error

Reboot the controller.
Replace the DMB.
Check the noise
countermeasures.

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 695

No. Message Remedy Note 1 Note 2

9633

Servo real time status failure.
Servo CPU communication error.

Reboot the controller.
Replace the DMB.
Check the noise
countermeasures.

9640

Irregular motion control interruption
was detected.
Interruption duplicate.

Reboot the controller.
Replace the DMB.
Check the noise
countermeasures.

9691
Data sending failure in motion
network.

Check the connection of the
cable for Drive Unit.

9692
Data receiving failure in motion
network.

Check the connection of the
cable for Drive Unit.

9700

Servo control gate array failure.
Check the DMB.

Check the short-circuit and
improper connection of the
peripheral equipment wiring.
(Emergency and I/O connectors)
Replace the DMB.
Replace the additional axis unit.

9701

Disconnection of the parallel encoder
signal. Check the signal cable
connection or the robot internal wiring.

Check the M/C cable signal.
Check the robot signal wiring.
(Missing pin, disconnection,
short-circuit)
Replace the motor. (Encoder
failure)
Replace the DMB. (Detection
circuit failure)
Check the connector connection
in the controller. (Loosening,
connecting to the serial encoder
terminal on the DMB)
Check the model setting.
(Improperly setting of the parallel
encoder)
Check the peripheral equipment
wiring. (Emergency and I/O)

9702

Motor driver is not installed. Install the
motor driver. Check the DMB or the
motor driver.

Check whether the motor driver
is mounted.
Check the model setting and
hardware setting.
Replace the motor driver.
Replace the DMB.

9703

Initialization communication failure of
incremental encoder. Check the signal
cable connection and the robot
setting.

Check the model setting.
Replace the motor. (Encoder
failure)
Replace the DMB.

9704

Initialization failure of absolute
encoder. Check the signal cable
connection or the robot setting.

Check the model setting.
Replace the motor. (Encoder
failure)
Replace the DMB.

9705
Encoder division setting failure. Check
the robot setting.

Check the model setting.

9706

Data failure at the absolute encoder
initialization. Check the signal cable
connection, the controller, or the
motor.

Replace the motor. (Encoder
failure)
Replace the DMB.
Check the noise
countermeasures.

SPEL+ Error Messages

696 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

No. Message Remedy Note 1 Note 2

9707
Absolute encoder multi-turn is beyond
the maximum range. Reset the
encoder.

Reset the encoder.
Replace the motor. (Encoder
failure)

9708

Position is out of the range. Reset the
encoder.

Reset the encoder.
Replace the DMB.
Replace the motor. (Encoder
failure)

9709

No response from the serial encoder.
Check the signal cable connection,
the motor, the DMB, or the encoder IF
board.

Check the model setting.
(Improperly setting of the parallel
encoder model)
Check the signal cable
connection.
Replace the DMB and encoder
I/F board.

9710

Serial encoder initialization failure.
Reboot the controller. Check the
motor, the DMB, or the encoder IF
board.

Check the robot configuration.
Check the signal cable.
Replace the DMB and encoder
I/F board.

9711

Serial encoder communication failure.
Reboot the controller. Check the
motor, the DMB, or the encoder IF
board.

Check the robot configuration.
Check the signal cable.
Replace the DMB and encoder
I/F board.

9712
Servo CPU watchdog timer failure.
Reboot the controller. Check the
motor or the DMB.

Replace the DMB.
Check the noise
countermeasures.

9713

Current control circuit WDT failure.
Reboot the controller. Check the
controller.

Check the power cable
connection.
Check the 15V power supply and
cable connection.
Replace the DMB.
Check the noise
countermeasures.

9715
Encoder is reset. Reboot the
controller.

Reboot the controller.

9716
Power supply failure of the absolute
encoder. Replace the battery to a new
one. Check the robot internal wiring.

Reset the encoder.
Check the signal cable
connection.

9717
Backup data failure of the absolute
encoder. Reset the encoder.

Reset the encoder.
Check the signal cable
connection.

9718
Absolute encoder battery alarm. Replace the battery.

Check the signal cable
connection.

9719
Position failure of the absolute
encoder. Reset the encoder. Replace
the motor.

Reset the encoder.
Replace the motor. (Encoder
failure)

9720
Speed is too high at controller power
ON. Stop the robot and reboot the
controller.

Reboot the controller.

9721
Absolute encoder over heat. Lower the motion duty.

Wait until the temperature of the
encoder decreases.

9732 Servo alarm A. -
10000 Command aborted by user -
10001 Command timeout. -
10002 Bad point file line syntax -
10003 Project could not be built. -

SPEL+ Error Messages

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 697

No. Message Remedy Note 1 Note 2
10004 Cannot initialize Spel class instance. -
10005 Cannot initialize parser. -
10006 Cannot initialize wbproxy. -

10007 Project does not exist. Check whther the project name
and the path are correct.

10008 No project specified. Specify the project.

10009 Cannot open file. Check whether the project name
and the path are correct.

10010 Cannot create file. -

10011 File not found Check whether the project name
and the path are correct.

10012 Option not enabled Close the robot manager and
execute.

10013
Cannot execute LoadPoints with
Robot Manager open.

Close the robot manager and
execute.

10014
Project cannot be locked. It is being
used by another session.

Terminate other applications.

10015 Project could not be synchronized. -

10016 Drive not ready Check whether the drive
designation is correct.

10017 Invalid IP address Check the IP address.

10018 Invalid IP mask Check the IP mask.

10019 Invalid IP gateway Check the IP gateway.

10020 IP address or gateway cannot be the
subnet address.

Check the IP address.

10021
IP address or gateway cannot be the
broadcast address.

Check the IP address.

10022 Invalid DNS address Check the DNS.

10023 Commands cannot be executed
because the project build is not
complete.

Execute after the project build is
completed.

10024 Invalid task name. Check the task name.

10100 Command already in cycle. -

10101 Command aborted by user. -

10501 Connection aborted. -

10502 Cannot connect with the SPEL
controller board.

-

10503 Controller firmware is not compatible
with this version of RC+.

Check the connection number.

10600 Frame grabber driver not installed. Install the driver.

Precaution of EPSON RC+ 5.0 Compatibility

698 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Precaution of EPSON RC+ 5.0 Compatibility

Overview

This section contains information for customers using EPSON RC+ 6.0 with RC620
Controller that have already used EPSON RC+ 5.0 with RC170/RC180.
EPSON RC+ 6.0 and EPSON RC+ 5.0 differs in such as harware, adaptable manipulators,
number of joint allowance, and software execution enviornment. Please read this section
and understand the contents for the safety use of the Robot system.
EPSON RC+ 6.0 is an improved software that has compatibility with products before
EPSON RC+ 6.0 and designed to innovate advanced software technologies. However,
some parts do not have compatibility with EPSON RC+ 5.0 or have been deleted to
specialize in the robot controller and for ease of use.
The following compatibility is indicated based on EPSON RC+ 5.0 compared to EPSON
RC+ 6.0.

Precaution of EPSON RC+ 5.0 Compatibility

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 699

General Differences
General differences of EPSON RC+ 5.0 and EPSON RC+ 6.0 are as follows.

Item EPSON RC+ 6.0 EPSON RC+ 5.0
Number of task Up to 32 tasks

(Backgroundtask : Up to 16 tasks)
Up to 16 tasks

Type of task Able to specify NoPouse task
Able to specify NoEmgAbort task
Able to specify Background task

Able to specify NoPouse task
Able to specify NoEmgAbort task

Special TRAP
such as TRAP ERROR

Supported Not supported

Task starts by TRAP number Dedicated task number Dedicated task number
Multi Manipulator Supported Not supported
Robot number 1 to 16 1
Number of significant figure for
Real type

6 digits 6 digits

Number of significant figure for
Double type

14 digits 14 digits

Array elements number Other than string variable Other than string variable
Local variable 2,000 Local variable 1,000
Global variable 100,0000 Global variable 10,000
Module variable 100,0000 Module variable 10,000
Global Preserve variable 4,000 Global Preserve variable 1,000

String variable String variable
Local variable 200 Local variable 100
Global variable 10,000 Global variable 1,000
Module variable 10,000 Module variable 1,000
Global Preserve variable 400 Global Preserve variable 100

Device number 21:PC
22:REMOTE
24:TP
28:LCD

21:PC
22:REMOTE
23:OP
24:TP

Control device Remote I/O
PC

Remote I/O
PC
OP1
REMOTE Ethernet

Timer number range 0 to 63 0 to 15
Program capacity 8 MB 4 MB
Signal No range
for SyncLock, SyncUnlock

0 to 63 0 to 15

Signal No range
for WaitSig, Signal

0 to 63 0 to 5

Memory I/O port 1024 256
I/O port number Common with EPSON RC+ 5.0
Port No of Ethernet 201 to 206 201 to 208
Remote I/O assignment Default: -- Assigned as defautlt
Port No of
RS-232C communication

1 to 8, 1001, 1002 1 to 8

OpenCom execution of
RS-232C communication port

Optional Mandatory

Input/output to files Supported Not supported
File number 30 to 63 Not supported
Access number for the database 501 to 508 Not supported
VisionGuide Smart camera type

Frame grubber type
Smart camera type

Conveyor tracking Supported Not supported
PG robot Supported Not supported
OCR Supported Not supported

Precaution of EPSON RC+ 5.0 Compatibility

700 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Item EPSON RC+ 6.0 EPSON RC+ 5.0
Security Supported Not supported
VBGuide Supported VBGuide Lite is supported
Fieldbus I/O Use normal I/O commands Use normal I/O commands
Fieldbus master Response is not guaranteed Not supported
Fieldbus slave Response is guaranteed Response is guaranteed
GUI Builder Supported Not supported
Group in the project Supported Not supported
Error number Common with EPSON RC+ 5.0

Precaution of EPSON RC+ 5.0 Compatibility

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 701

Compatibility List of Commands
+ Function expansion / function changes have been made with upper compatibility.
− No changes.
! Pay attention. Function changes or syntax changes have been made.
!! Pay attention. Significant changes have been made.
× Deleted.

Command Compatibility Note

A Abs Function −
 Accel Statement −

 Accel Function −

 AccelMax Statement −

 AccelR Statement −
 AccelR Function −
 AccelS Statement −
 AccelS Function −
 Acos Function −
 AglToPls Function −
 Agl Function −
 AlignECP Function −
 Align Function −
 And Statement −
 Arc Statement −
 Arc3 Statement −
 Arch Statement −
 Arch Function −
 Arm Statement −
 Arm Function −
 ArmClr Statement −
 ArmDef Function −
 ArmSet Statement −
 ArmSet Function −
 Asc Function −
 Asin Function −
 Atan Function −
 Atan2 Function −
 ATCLR Statement −
 ATRQ Statement −
 ATRQ Function −
B Base Statement −
 Base Function −
 BClr Function −
 BGo Statement −
 BMove Statement −
 Boolean Statement −
 Box Statement + Added the robot number designation
 Box Function + Added the robot number designation

Precaution of EPSON RC+ 5.0 Compatibility

702 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Command Compatibility Note
 BoxClr Function + Added the robot number designation
 BoxDef Function + Added the robot number designation
 Brake Statement −
 Brake Function −
 BSet Function −
 BTst Function −
 Byte Statement −
C Call Statement + DLL function Call is supported
 ChkCom Function −
 ChkNet Function −
 Chr$ Function −
 ClearPoints Statement −
 CloseCom Statement −
 CloseNet Statement −
 Cls Statement −
 Cos Function −
 CP Statement −
 CP Function −
 CTReset Statement −
 Ctr Function −
 CtrlDev Function ! Changed device ID
 CtrlInfo Function − Changed the obtaining contents
 CurPos Function −
 Curve Statement −
 CVMove Statement −
 CX to CW Statement + Added CR, CS, CT
 CX to CW Function + Added CR, CS, CT
D Date Statement ! Only displays
 Date$ Function −
 DegToRad Function −
 DispDev Statement −
 DispDev Function −
 Dist Function −
 Do...Loop Statement −
 Double Statement −
E ECP Statement −
 ECP Function −
 ECPClr Statement −
 EcpDef Function −
 ECPSet Statement −
 ECPSet Function −
 Elbow Statement −
 Elbow Function −
 Era Function −
 Erase Statement ×
 EResume Statement −
 Erf$ Function −

Precaution of EPSON RC+ 5.0 Compatibility

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 703

Command Compatibility Note
 Erl Function −
 Err Function −
 ErrMsg$ Function −
 Error Statement −
 ErrorOn Function −
 Ert Function −
 EStopOn Function −
 Exit Statement −
F Find Statement −
 FindPos Function −
 Fine Statement −
 Fine Function −
 Fix Function −
 FmtStr$ Statement −
 For...Next −
 Function...Fend −
G Global Statement −
 Go Statement + *1
 Gosub...Return −
 Goto Statement −
H Halt Statement −
 Hand Statement −
 Hand Function −
 Here Statement −
 Here Function −
 Hex$ Function −
 Home Statement −
 HomeClr Statement −
 HomeDef Function −
 HomeSet Statement −
 HomeSet Function −
 HOrdr Statement −
 HOrdr Function −
 Hour Statement −
 Hour Function −
I If...EndIf −
 In Function −
 InBCD Function −
 Inertia Statement −
 Inertia Function −
 InPos Function −
 Input Statement −
 Input# Statement + Added the device number

 InsideBox Function ! Added the designation of robot number and All
Cannot use with Wait statement

 InsidePlane Function ! Added the designation of robot number and All
Cannot use with Wait statement

 InStr Function −

Precaution of EPSON RC+ 5.0 Compatibility

704 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Command Compatibility Note
 Int Function −
 Integer Statement −
 InW Function −
 IOLabel$ Function −
 IONumber Function −
 IONumber Function −
J J1Flag Statement −
 J1Flag Function
 J2Flag Statement
 J2Flag Function
 J4Flag Statement
 J4Flag Function −
 J6Flag Statement −
 J6Flag Function −
 JA Function −
 Joint −
 JRange Statement −
 JRange Function −
 JS Function −
 JT Function −
 JTran Statement −
 Jump Statement + *1
 Jump3 Statement + *1
 Jump3CP Statement + *1
L LCase$ Function −
 Left$ Function −
 Len Function −
 LimZ Statement −
 LimZ Function −
 Line Input Statement −
 Line Input# Statement + Added the device number
 LJM Function −

 LoadPoints −

 Local Statement −

 Local Function −

 LocalClr Statement −
 LocalDef Function −
 Lof Function −
 Long Statement −
 LSet$ Function −
 LShift Function −
 LTrim$ Function −
M Mask Operator −
 MemIn Function −
 MemInW Function −
 MemOff Statement −
 MemOn Statement −

Precaution of EPSON RC+ 5.0 Compatibility

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 705

Command Compatibility Note
 MemOut Statement −
 MemOutW Statement −
 MemSw Function −
 Mid$ Function −
 Mod Operator −
 Motor Statement −
 Motor Function −
 Move Statement −
 MyTask Function −
N Not Operator −
O Off Statement −
 OLAccel Statement −
 OLAccel Function −
 OLRate Statement −
 OLRate Function −
 On Statement −
 OnErr −
 OpBCD Statement −
 OpenCom Statement −
 OpenNet Statement −
 Oport Function −
 Or Operator −
 Out Statement −
 Out Function −
 OutW Statement −
 OutW Function −
P PAgl Function −
 Pallet Statement −
 Pallet Function −
 ParsStr Statement −
 ParsStr Function −
 Pass Statement + *1
 Pause Statement −
 PauseOn Function −
 PDef Function −
 PDel −
 PLabel$ Function −
 PLabel Statement −
 Plane Statement + Added the robot number designation
 Plane Function + Added the robot number designation
 PlaneClr Statement + Added the robot number designation
 PlaneDef Function + Added the robot number designation
 PList Statement ! Changed te display type
 PLocal Statement −
 PLocal Function −
 Pls Function −
 PNumber Function −

Precaution of EPSON RC+ 5.0 Compatibility

706 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Command Compatibility Note
 PosFound Function −
 Power Statement −
 Power Function −
 PPls Function −
 Print Statement −
 Print# Statement + Changed the device number
 PTCLR Statement −
 PTPBoost Statement −
 PTPBoost Function −
 PTPBoostOK Function −
 PTPTime Function −
 PTran Statement −
 PTRQ Statement −
 PTRQ Function −
 Pulse Statement −
 Pulse Function −
Q QP Statement −
 Quit Statement −
R RadToDeg Function −
 Randmize Statement −
 Range Statement −
 Read Statement −
 ReadBin Statement −
 Real Statement −
 RealPls Function −
 RealPos Function −
 RealTorque Statement −
 Redim Statement −
 Reset Statement −
 Resume Statement −
 Restart Statement ×
 Return Statement −
 RobotInfo Function + Added the information
 RobotInfo$ Function + Added the display of default point file name
 RobotModel$ Function −
 RobotName$ Function −
 RobotSerial$ Function −
 RobotType Function −
 RSet$ Function −
 RShift Function −
 RTrim$ Function −
S SafetyOn Function −
 SavePoints Statement −
 Select...Send Statement −
 Sense Statement −
 SetCom Statement −
 SetInW Statement −

Precaution of EPSON RC+ 5.0 Compatibility

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 707

Command Compatibility Note
 SetIn Statement −
 SetNet Statement −
 SetSw Statement −
 SFree Statement −
 SFree Function −
 Sgn Function −
 Signal Statement −
 Sin Function −
 SLock Statement −
 SoftCP Statement −
 SoftCP Function −
 Space$ Function −
 Speed Statement −
 Speed Function −
 SpeedR Statement −
 SpeedR Function −
 SpeedS Statement −
 SpeedS Function −

 SPELCom_Event
Statement −

 Sqr Function −
 Stat Function + Added the information
 Str$ Function −
 String Statement −
 Sw Function −
 SyncLock Statement ! Error occurs by executing SyncLock repeatedly
 SyncUnlock Statement −
 SysConfig Statement + Added the information
 SysErr Function + Added the function to retrieve the warnings
T Tab$ Function −
 Tan Function −
 TargetOK Function −
 TaskDone Function −
 TaskInfo Function −

 TaskInfo$ Function −
 TaskState Statement + Added the display of background task
 TaskState Function −

 TaskWait Statement −
 TC Statement −
 TCLim Statement −
 TCLim Function −
 TCSpeed Statement −
 TCSpeed Function −
 TGo Statement −
 TillOn Function −
 Time Command ! Only displays
 Time Function −

Precaution of EPSON RC+ 5.0 Compatibility

708 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Command Compatibility Note
 Time$ Function −
 TLClr Statement −
 TlDef Function −
 TLSet Statement −
 TLSet Function −
 TMOut Statement −
 TMove Statement −
 Tmr Function −
 TmReset Statement −
 Toff Statement −
 Ton Statement −
 Tool Statement −
 Tool Function −

 Trap Statement ! Added the Trap that interrupts the controller
status

 Trim$ Function −
 Tw Function −
U UBound Function −
 UCase$ Function −
V Val Function −

W Wait Statement ! Added the grobal variables and others as the
wait condition

 WaitNet Statement −
 WaitPos Statement −
 WaitSig Statement −
 Weight Statement + Added the designation of S, T
 Weight Function + Added the designation of S, T
 Where Statement −

 Wrist Statement −
 Wrist Function −
 Write Statement −
 WriteBin Statement −
X Xor Operator −
 Xqt Statement −
 XY Function −
 XYLim Statement −
 XYLim Function −
 XYLimClr Statement −
 XYLimDef Statement −
 XYLimDef Function −

*1: LJM parameter will be supported by Ver.6.1 (Controller firmware Ver.6.2.0.0) or greater.

Precaution of EPSON RC+ 5.0 Compatibility

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 709

EPSON RC+ 6.2.0 List of New Commands
Cnv_OffsetAngle
Cnv_OffsetAngle Function
Force_Calibrate
Force_GetForces
Force_GetForce Function
Force_Sensor
Force_Sensor Function
Force_SetTrigger

InReal Function
LatchEnable
LatchState Function
LatchPos Function
MHour Function
OpenCom Function
OpenNet Function
OutReal
OutReal Function

VxCalib
VxCalDelete
VxCalLoad
VxCalInfo Function
VxCalSave
VxTranse Function

EPSON RC+ 6.1.0 List of New Commands
AtHome Function

EPSON RC+ 6.0.0 List of New Commands
AbortMotion Statement
ChDisk Statement
CloseDB Statement
CR Statement
CR Function
CS Statement
CS Function
CT Statement
CT Function
Flush Statement
GetRobotInsideBox Function
GetRobotInsidePlane Function

J1Angle Statement
J1Angle Function
OpenDB Statement
PG_FastStop Statement
PG_LSpeed Statement
PG_LSpeed Function
PG_Scan Statement
PG_SlowStop Statement
QPDECELR Statement
QPDECELR Function
QPDECELS Statement
QPDECELS Function

RecoverPos Function
Recover Statement
SelectDB Statement
SetLCD Statement
Shutdown Function
StartMain Statement
SyncRobots Statement
SyncRobots Function
TeachOn Function
WindosStatus Function

Commands from EPSON RC+ Ver.4.* (Not supported in EPSON RC+ 5.0)
Aopen Statement
BOpen Statement
Calib Statement
CalPls Statement
ChDir Statement
ChDrive Statement
Close Statement
Cnv_AbortTrack Statement
Cnv_Downstream Statement
Cnv_Fine Statement
Cnv_Fine Function
Cnv_Name$ Function
Cnv_Number Function
Cnv_Point Function
Cnv_PosErr Function
Cnv_Pulse Function
Cnv_QueAdd Statement
Cnv_QueGet Function
Cnv_QueLen Function
Cnv_QueList Statement
Cnv_QueMove Statement
Cnv_QueReject Statement
Cnv_QueReject Function
Cnv_QueRemove Statement
Cnv_QueUserData Statement

Cnv_QueUserData Function
Cnv_RobotConveyor Function
Cnv_Speed Function
Cnv_Trigger Statement
Cnv_Upstream Function
Cont Statement
Copy Statement
CurDir$ Function
CurDrive$ Function
Declare Statement
Del Statement
Dir Statement
Eof Function
Eval Function
FbusIO_GetBusStatus Function
FbusIO_GetDeviceStatus Function
FbusIO_SendMsg Statement
FileDateTime$ Function
FileExists Function
FileLen Function
FolderExists Function
FreeFile Function
GetCurrentUser$ Statement
Hofs Statement

Hofs Function
ImportPoints Statement
InputBox Statement
LogIn Function
MCalComplete Function
MCal Statement
MCordr Statement
MCordr Function
MKDir Statement
MsgBox Statement
Recover Function
Rename Statement
RenDir Statement
Restart Statement
RmDir Statement
Robot Statement
Robot Function
ROpen Statement
RunDialog Statement
Seek Statement
Shutdown Statement
Type Statement
UOpen Statement
WOpen Statement

Precaution of EPSON RC+ Ver.4.* Compatibility

710 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Precaution of EPSON RC+ Ver.4.* Compatibility

Overview

This section contains information for customers using EPSON RC+ 6.0 with RC620
Controller that have already used EPSON RC+ Ver.4.* with RC520 or RC420.
EPSON RC+ 6.0 and EPSON RC+ Ver.4.* differs in such as harware, adaptable
manipulators, number of joint allowance, and software execution enviornment. Please
read this section and understand the contents for the safety use of the Robot system.
EPSON RC+ 6.0 is an improved software that has compatibility with products before
EPSON RC+ 6.0 and designed to innovate advanced software technologies. However,
some parts do not have compatibility with EPSON RC+ Ver.4.* or have been deleted to
specialize in the robot controller and for ease of use.
The following compatibility is indicated based on EPSON RC+ Ver.4.* compared to
EPSON RC+ 6.0.

Precaution of EPSON RC+ Ver.4.* Compatibility

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 711

General Differences
General differences of EPSON RC+ Ver.4.* and EPSON RC+ 6.0 are as follows.

Item EPSON RC+ 6.0 EPSON RC+ Ver.4.*
Number of task Up to 32 tasks

(Background task : Up to 16 tasks)
Up to 32 tasks

Type of task Able to specify NoPouse task
Able to specify NoEmgAbort task
Able to specify Background task

Able to specify NoPouse task

Special TRAP
such as TRAP ERROR

Supported Supported

Task starts by TRAP number Dedicated task number Task number only using 1 to 32
Multi manipulator Supported Supported
Robot number 1 to 16 1 to 16
Number of significant figure for
Real type

6 digits 7 digits

Number of significant figure for
Double type

14 digits 15 digits

Array elements number Other than string variable As far as the memory remains
Local variable
Global variable
Module variable
Global Preserve variable

2000
10,000,00
10,00,000

4,000
String variable

Local variable
Global variable
Module variable
Global Preserve variable

200
10,000
10,000

400
Line number Not supported Supported
Device number 21:PC

22:REMOTE
24:TP
28:LCD

1:Controller
2:REMOTE
3:OP

Control device Remote I/O
PC

Remote I/O
PC
OP500RC

Timer number range 0 to 63 0 to 63
Program capacity 8 MB 4 MB
Signal No range
for SyncLock, SyncUnlock

0 to 63 1 to 32

Signal No range
for WaitSig, Signal

0 to 63 0 to 127

Memory I/O port 1024 512
I/O port number Dufferent with EPSON RC+ Ver.4.*
Port No of Ethernet 201 to 216 128 to 147
Remote I/O assignment Default: -- Default: --
Port No of
RS-232C communication

1 to 8, 1001,1002 1 to 16

OpenCom execution of
RS-232C communication port

Mandatory Optional

Input/output to files Supported Supported
File number for the file access 30 to 63 30 to 63
Access number for the database 501 to 508 Not supported
VisionGuide Smart camera type

Frame grubber type
Frame grubber type

Conveyor tracking Supported Supported
PG robot Supported Supported
OCR Supported Supported
Security Supported Supported

Precaution of EPSON RC+ Ver.4.* Compatibility

712 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Item EPSON RC+ 6.0 EPSON RC+ Ver.4.*
VBGuide Supported Supported
Fieldbus I/O Use normal I/O commands Use special commands
Fieldbus master Response is not guaranteed Response is not guaranteed
Fieldbus slave Response is guaranteed Response is not guaranteed
GUI Builder Supported Not supported
Group in the project Not supported Supported
Error number Different with EPSON RC+ Ver.4.*

Precaution of EPSON RC+ Ver.4.* Compatibility

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 713

Compatibility List of Commands
+ Function expansion / function changes have been made with upper compatibility.
− No changes.
! Pay attention. Function changes or syntax changes have been made.
!! Pay attention. Significant changes have been made.
× Deleted.

Command Compatibility Note

A Abs Function −

 Accel Statement + Able to specify more than 100 for some
robots

 Accel Function −
 AccelR Statement −
 AccelR Function −
 AccelS Statement −
 AccelS Function −
 Acos Function + Argument range check has been added
 Agl Function −
 AglToPls Function −
 And Operator −
 AOpen Statement ×
 Arc Statement −
 Arc3 Statement −
 Arch Statement −
 Arch Function −
 Arm Statement −
 Arm Function −
 ArmClr Statement −
 ArmSet Statement −
 ArmSet Function −
 Asc Function −
 Asin Function + Argument range check has been added
 Atan Function −
 Atan2 Function −
 ATCLR Statement −
 ATRQ Statement −
 ATRQ Function −
B Base Statement −
 BClr Function + Argument range check has been added
 Beep Statement ×
 BGo Statement −
 BMove Statement −
 Boolean Statement −
 BOpen Statement −
 Brake Statement −
 BSet Function + Argument range check has been added
 BTst Function + Argument range check has been added
 Byte Statement −

Precaution of EPSON RC+ Ver.4.* Compatibility

714 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Command Compatibility Note
C Calib Statement −
 Call Statement −
 CalPls Statement −
 CalPls Function −
 Chain Statement ×
 ChDir Statement −
 ChDrive Statement −
 ChkCom Function −
 ChkNet Function −
 Chr$ Function −
 Clear Statement ! Renamed to ClearPoints
 Close Statement −
 CloseCom Statement −
 CloseNet Statement + Able to specify All

 ClrScr Statement ! Remaned to Cls
Device ID can be spscified for argumants

 Cnv_** −
 Cont Statement ! Able to execute by the setting
 Copy Statement −
 Cos Function −
 CP Statement −
 CP Function −
 Ctr Function −
 CTReset Statement −
 CtrlDev Statement ×
 CtrlDev Function ! Changed device ID
 CtrlInfo Function !! Changed the obtaining contents
 CurDir$ Function −
 CurDrive$ Function −
 CurPos Function −
 Curve Statement −
 CVMove Statement −
 CX to CW Statement + Added CR, CS, CT
 CX to CW Function + Added CR, CS, CT
D Date Statement ! Only displays
 Date$ Function −
 Declare Statement ! The processing is slow
 DegToRad Function −
 Del Statement −
 Dir Statement −
 Dist Function −
 Do...Loop Statement −
 Double Statement ! Significant figure is 14 digits
E EClr Statement ×
 ECP Statement −
 ECP Function −
 ECPClr Statement −
 ECPSet Statement −

Precaution of EPSON RC+ Ver.4.* Compatibility

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 715

Command Compatibility Note
 ECPSet Function −
 Elbow Statement −
 Elbow Function −
 ENetIO_**** ×
 Eof Function −
 EPrint Statement ×
 Era Function −
 Erase Statement ×
 EResume Statement −
 Erf$ Function + Able to ommit the task number
 Erl Function + Able to ommit the task number
 Err Function −
 ErrHist Statement ×
 ErrMsg$ Function ! Argument has language ID
 Error Statement + Able to specify task number for arguments
 Ert Function −
 EStopOn Function + Able to specify Wait
 Eval Function ! Differences in the error output
 Exit Statement −
F FbusIO_**** × Normal I/O command avaiable
 FileDateTime$ Function −
 FileExists Function −
 FileLen Function −
 Find Statement −
 FindPos Function −
 Fine Statement −
 Fine Function −
 Fix Function −
 FmtStr$ Statement !! Function is limited significantly
 FoldrExist Function −
 For...Next −
 FreeFile Function −
 Function...Fend −
G GetCurrentUser$ Function −
 Global Statement −
 Go Statement −
 Gosub...Return −
 Goto Statement −
H Halt Statement −
 Hand Statement −
 Hand Function −
 Here Statement −
 Here Function −
 Hex$ Function −
 Hofs Statement −
 Hofs Function −
 Home Statement −

Precaution of EPSON RC+ Ver.4.* Compatibility

716 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Command Compatibility Note
 HomeSet Statement −
 HomeSet Function −
 HOrdr Statement −
 HOrdr Function −
 Hour Statement −
 Hour Function −
 HTest Statement ×
 HTest Function ×
I If...EndIf −
 ImportPoints Statement ! Extension “.pnt” has changed to “.pts”
 In Function −
 In($n) Statement × Replaced to MemIn
 InBCD Function −
 Inertia Statement −
 Inertia Function −
 InPos Function −
 Input Statement −
 Input# Statement + Input is available from devices
 InputBox Statement −
 InStr Function −
 Int Function −
 Integer Statement −
 InW Function −
 InW($n) Statement × Replaced to MemInW
 IONumber Function −
J J4Flag Statement −
 J4Flag Function −
 J6Flag Statement −
 J6Flag Function −
 JA Function −
 JRange Statement −
 JRange Function −
 JS Function ! Returns True/False
 JT Function −
 JTran Statement −
 Jump Statement −
 Jump3 Statement −
 Jump3CP Statement −
K Kill Statement × Replaced with Del
L LCase$ Function −
 Left$ Function −
 Len Function −
 LimZ Statement −
 LimZ Function −
 Line Input Statement −
 Line Input# Statement + Input is available from devices
 LoadPoints ! Extension “.pnt” has changed to “.pts”

Precaution of EPSON RC+ Ver.4.* Compatibility

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 717

Command Compatibility Note
 Local Statement ! Local number “0” is an error
 Local Function ! Local number “0” is an error
 LocalClr Statement −
 Lof Function −
 LogIn Statement ! Changed from a statement to a function
 Long Statement −
 LPrint Statement ×
 LSet$ Function −
 LShift Function + Argument range check has been added
 LTrim$ Function −
M Mask Operator −
 MCal Statement −
 MCalComplete Function −
 MCofs Statement ×
 MCofs Function ×
 MCordr Statement −
 MCordr Function −
 Mcorg Statement ×
 MemIn Function −
 MemInW Function −
 MemOff Statement −
 MemOn Statement −
 MemOut Statement −
 MemOutW Statement −
 MemSw Function −
 Mid$ Function −
 MKDir Statement −
 Mod Operator −
 Motor Statement −
 Motor Function −
 Move Statement −
 MsgBox Statement −
 MyTask Function −
N Not Operator −
O Off Statement −
 Off$ Statement × Replaced to MemOff
 OLRate Statement −
 OLRate Function −
 On Statement −
 On$ Statement × Replaced to MemOn
 OnErr −
 OP_* ×
 OpBCD Statement −
 OpenCom Statement ! OpenCom is mandatory
 OpenNet Statement −
 Oport Function −
 Or Operator −

Precaution of EPSON RC+ Ver.4.* Compatibility

718 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Command Compatibility Note
 Out Statement −
 Out Function −
 Out$ Statement × Replaced to MemOut
 OutW Statement −
 OutW Function −
 OutW$ Statement × Replaced to MemOutW
P PAgl Function −
 Pallet Statement −
 Pallet Function −
 ParsStr Statement −
 ParsStr Function −
 Pass Statement + Able to specify continuous point
 Pause Statement −
 PauseOn Function −
 PDef Function −
 PDel + Argument check has been added
 PLabel$ Function −
 PLabel Statement −

 PList !!
Changed the display type
Argument check has been added
Function of Plist* has been deleted

 PLocal Statement −
 PLocal Function −
 Pls Function −
 PNumber Function −
 Point Assignment −
 Point Expression −
 POrient Statement ×
 POrient Function ×
 PosFound Function ! Returns True/False
 Power Statement −
 Power Function −
 PPls Function −

 Print Statement !
Outputs all flags at point output
Sets the output digit number of Double type
and Real type to significant figure

 Print# Statement ! Same as Print Statement
Enables Print to each devices

 PTCLR Statement −
 PTPBoost Statement −
 PTPBoost Function −
 PTPBoostOK Function ! Returns True/False
 PTPTime Function −
 PTran Statement −
 PTRQ Statement −
 PTRQ Function −
 Pulse Statement −
 Pulse Function −

Precaution of EPSON RC+ Ver.4.* Compatibility

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 719

Command Compatibility Note
Q QP Statement −
 Quit Statement −
R RadToDeg Function −
 Randmize Statement + Seed value can be specified
 Range Statement −
 Read Statement −
 ReadBin Statement + Able to read mauliple bytes to array variable
 Real Statement ! 6 digit significant figure
 Recover Statement ! Able to execute by the setting

 Redim Statement ! Element number is limited
Array called by reference cannot be executed

 Rename Statement −
 RenDir Statement −
 Reset Statement −
 Resume Statement −
 Restart Statement −
 Reset Statement + Added Reset Error
 Return Statement −
 Right$ Function −
 RmDir Statement −
 Rnd Function −
 Robot Statement + Added the RS series
 Robot Function −
 RobotModel$ Function −
 RobotType Function −
 ROpen Statement ×
 RSet$ Function −
 RShift Function + Argument check has been added
 RTrim$ Function −
 RunDialog Statement −
S SafetyOn Function + Able to specify Wait
 SavePoints Statement ! Extension (.pnt) has changed to (.pts)
 Seek Statement −
 Select...Send −
 Sense −

 SetCom Statement ! Cannot specify “56000” for the transfer rate
Port with OpenCom cannot be executed

 SetNet Statement −
 SFree Statement −
 SFree Function −
 Sgn Function −
 Shutdown Statement −
 Signal Statement −
 Sin Function −
 SLock Statement −
 Space$ Function −
 Speed Statement −
 Speed Function + Argument optional

Precaution of EPSON RC+ Ver.4.* Compatibility

720 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

Command Compatibility Note
 SpeedR Statement −
 SpeedR Function −
 SpeedS Statement −
 SpeedS Function −

 SPELCom_Event
Statement −

 SPELCom_Return
Statement ×

 Sqr Function −
 Stat Function ! Some information cannot be retrival
 Str$ Function −
 String Statement −
 Sw Function −
 Sw($) Function × Replaced to MemSw

 SyncLock Statement !
Error occurs by executing SyncLock
repeatedly
Lock is released when the task is completed

 SyncUnlock Statement −
T Tab$ Function −
 Tan Function −
 TargetOK Function ! Returns True/False
 TaskDone Function −

 TaskState Function ! 6 specified tasks do not return while Wait
statement execution

 TaskWait Statement −
 TGo Statement −
 TillOn Function −
 Time Command ! Only displays
 Time Function −
 Time$ Function −
 TLClr Statement −
 TLSet Statement −
 TLSet Function −
 TMOut Statement −
 TMove Statement −
 Tmr Function −
 TmReset Statement −
 Tool Statement −
 Tool Function −

 Trap Statement !!
Compatibility with Trap Goto
Trap Gosub abolished and replaced to Trap
Call
Trap Call is renamed to Trap Xqt
Added Trap Finish

 Trim$ Function −
 Tw Function ! Returns True/False
 Type Statement −
U UBound Function −
 UCase$ Function −
 UOpen Statement −

Precaution of EPSON RC+ Ver.4.* Compatibility

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 721

Command Compatibility Note
V Val Function −
 Ver Statement × Replaced to SysConfig
 Verinit Statement ×

W Wait Statement + Added the global variables and others as the
wait condition

 WaitNet Statement −
 WaitPos Statement −
 WaitSig Statement −
 Weight Statement + Added the designation of S, T
 Weight Function + Added the designation of S, T
 Where Statement ! Coordinate value always diplays 6-axis
 While..Wend × Replaced to Do...Loop
 WOpen Statement −
 Wrist Statement −
 Wrist Function −
 Write Statement −

 WriteBin Statement + Multiple bytes can be listed from the array
variable

X Xor Operator −
 Xqt Statement + Able to specify NoEmgAbort
 XY Function −
 XYLim Statement −
 XYLim Function −
Z ZeroFlg Function ×

Precaution of EPSON RC+ Ver.4.* Compatibility

722 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

List of New Commands
AbortMotion Statement
AccelMax Function
AglToPls Function
Align Function
AlignECP Function
ArmDef Function
ATCLR Statement
AtHome Function
ATRQ Statement
ATRQ Function

BClr Function
Box Statement
Box Function
BoxClr Function
BoxDef Function
Brake Function
Bset Function
BTst Function

ChDisk Statement
ChkCom Function
ChkNet Function
CloseCom Statement
CloseDB Statement
CloseNet Statement
Cls Statement
CP Statement
CP Function
CR Statement
CR Function
CS Statement
CS Function
CT Statement
CT Function
CtrlDev Function
Curve Statement
CVMove Statement
Cnv_OffsetAngle
Cnv_OffsetAngle Function

DegToRad Function
DispDev Statement
DispDev Function
Dist Function

EcpDef Function
EResume Statement
ErrorOn Function
Error Statement
EStopOn Function
Exit Statement

FindPos Function
Find Statement
Fix Function
Flush Statement

GetRobotInsideBox Function
GetRobotInsidePlane
FunctionHere Statement
Here Function
Hex$ Function
HomeClr Statement
HomeDef Function

InReal Function
InsideBox Function
InsidePlane Function
InStr Function
IOLabel$ Function
IONumber Function

J1Angle Statement
J1Angle Function
JA Function
Joint Statement
JTran Statement

LatchEnable
LatchState Function
LatchPos Function
LJM Function
LocalDef Function

MemInW Function
MemOutW Statement
MHour Function

OLAccel Statement
OLAccel Function
OpenCom Statement
OpenCom Function
OpenDB Statement
OpenNet Statement
OpenNet Function
OutReal
OutReal Function

P# Statement
PauseOn Function
PDef Function
PDel Statement
PG_FastStop Statement
PG_LSpeed Statement
PG_LSpeed Function
PG_Scan Statement
PG_SlowStop Statement
PLabel Statement
PLabel$ Function
PlaneClr Statement
PlaneDef Statement
Plane Statement
Plane Function
PList Statement
PLocal Statement
PLocal Function
PNumber Function
PosFound Function
PTCLR Statement
PTPBoostOK Function
PTPTime Function
PTran Statement
PTRQ Statement
PTRQ Function
QPDECELR Statement

QPDECELR Function
QPDECELS Statement
QPDECELS Function

RadToDeg Function
Randomize Statement
ReadBin Statement
Read Statement
RealPls Function
RealPos Function
RealTorque Function
RecoverPos Function
Recover Statement
Redim Statement
Rnd Function
RobotInfo Function
RobotInfo$ Function
RobotModel$ Function
RobotName$ Function
RobotSerial$ Function
RobotType Function

Precaution of EPSON RC+ Ver.4.* Compatibility

EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5 723

SafetyOn Function
SelectDB Statement
SetCom Statement
SetInW Statement
SetIn Statement
SetLCD Statement
SetNet Statement
SetSw Statement
Shutdown Function
SoftCP Statement
SoftCP Function
StartMain Statement
SyncRobots Statement
SyncRobots Function
SysErr Function

Tab$ Function
TargetOK Function
TaskDone Function
TaskInfo Function
TaskInfo$ Function
TaskState Statement
TaskState Function
TaskWait Statement
TC Statement
TCLim Statement
TCLim Function
TCSpeed Statement
TCSpeed Function
TeachOn Function
TillOn Function
TlDef Function
Toff Statement
Ton Statement

UBound Function

VxCalib
VxCalDelete
VxCalLoad
VxCalInfo Function
VxCalSave
VxTrans Function

WaitNet Statement
WaitPos Statement
Where Statement
WindosStatus Function
WriteBin Statement
Write Statement

XYLimClr Statement
XYLimDef Statement
XY Function

Precaution of EPSON RC+ Ver.4.* Compatibility

724 EPSON RC+ 6.0 (Ver.6.2) SPEL+ Language Reference Rev.5

	EM15XC3086F_EPSON RC+6.0_Ver.6.2 SPEL+Language Reference_Rev5
	PREFACE
	FOREWORD
	WARRANTY
	TRADEMARKS
	TRADEMARK NOTATION IN THIS MANUAL
	NOTICE
	INQUIRIES
	SERVICE CENTER
	MANUFACTURER
	SUPPLIERS
	SAFETY PRECAUTIONS

	Table of Contents
	Summary of SPEL+ Commands 1
	System Management Commands 1
	Robot Control Commands 1
	Torque Commands 5
	Input / Output Commands 5
	Point Management Commands 7
	Coordinate Change Commands 7
	Program Control Commands 8
	Program Execution Commands 8
	Pseudo Statements 9
	File Management Commands 9
	Fieldbus Commands 10
	Numeric Value Commands 10
	String Commands 10
	Logical Operators 11
	Variable Commands 11
	Security Commands 11
	Conveyor Tracking Commands 11
	Force Sensing Commands 12
	DB Commands 12
	PG Commands 12

	SPEL+ Language Reference 13
	SPEL+ Error Messages 630
	Precaution of EPSON RC+ 5.0 Compatibility 698
	Overview 698
	General Differences 699
	Compatibility List of Commands 701
	EPSON RC+ 6.2.0 List of New Commands 709
	EPSON RC+ 6.1.0 List of New Commands 709
	EPSON RC+ 6.0.0 List of New Commands 709
	Commands from EPSON RC+ Ver.4.*
	(Not supported in EPSON RC+ 5.0) 709

	Precaution of EPSON RC+ Ver.4.* Compatibility 710
	Overview 710
	General Differences 711
	Compatibility List of Commands 713
	List of New Commands 722

	Summary of SPEL+ Commands
	System Management Commands
	Robot Control Commands
	Torque Commands
	Input / Output Commands
	Point Management Commands
	Coordinate Change Commands
	Program Control Commands
	Program Execution Commands
	Pseudo Statements
	File Management Commands
	Fieldbus Commands
	Numeric Value Commands
	String Commands
	Logical Operators
	Variable commands
	Security Commands
	Conveyor Tracking Commands
	Force Sensing Commands
	DB Commands
	PG Commands

	SPEL+ Language Reference
	!
	!...! Parallel Processing

	#
	#define
	#ifdef...#else...#endif
	#ifndef...#endif
	#include
	#undef

	A
	AbortMotion
	Abs Function
	Accel Statement
	Accel Function
	AccelMax Function
	AccelR Statement
	AccelR Function
	AccelS Statement
	AccelS Function
	Acos Function
	Agl Function
	AglToPls Function
	Align Function
	AlignECP Function
	And Operator
	AOpen Statement
	Arc, Arc3 Statements
	Arch Statement
	Arch Function
	Arm Statement
	Arm Function
	ArmClr Statement
	ArmDef Function
	ArmSet Statement
	ArmSet Function
	Asc Function
	Asin Function
	AtHome Function
	Atan Function
	Atan2 Function
	ATCLR Statement
	ATRQ Statement
	ATRQ Function
	AutoLJM Statement
	AutoLJM Function
	AvoidSingularity Statement
	AvoidSingularity Function

	B
	Base Statement
	BClr Function
	BGo Statement
	BMove Statement
	Boolean Statement
	BOpen Statement
	Box Statement
	Box Function
	BoxClr Statement
	BoxDef Function
	Brake Statement
	Brake Function
	BSet Function
	BTst Function
	Byte Statement

	C
	Calib Statement
	Call Statement
	CalPls Statement
	CalPls Function
	ChDir Statement
	ChDisk Statement
	ChDrive Statement
	ChkCom Function
	ChkNet Function
	Chr$ Function
	ClearPoints Statement
	Close Statement
	CloseCom Statement
	CloseDB Statement
	CloseNet Statement
	Cls Statement
	Cnv_AbortTrack Statement
	Cnv_Accel Statement
	Cnv_Accel Function
	Cnv_Downstream Function
	Cnv_Fine Statement
	Cnv_Fine Function
	Cnv_LPulse Function
	Cnv_Mode
	Cnv_Mode Function
	Cnv_Name$ Function
	Cnv_Number Function
	Cnv_OffsetAngle
	Cnv_OffsetAngle Function
	Cnv_Point Function
	Cnv_PosErr Function
	Cnv_Pulse Function
	Cnv_QueAdd Statement
	Cnv_QueGet Function
	Cnv_QueLen Function
	Cnv_QueList Statement
	Cnv_QueMove Statement
	Cnv_QueReject Statement
	Cnv_QueReject Function
	Cnv_QueRemove Statement
	Cnv_QueUserData Statement
	Cnv_QueUserData Function
	Cnv_RobotConveyor Function
	Cnv_Speed Function
	Cnv_Trigger Statement
	Cnv_Upstream Function
	Cont Statement
	Copy Statement
	Cos Function
	CP Statement
	CP Function
	Ctr Function
	CTReset Statement
	CtrlDev Function
	CtrlInfo Function
	CurDir$ Function
	CurDisk$ Function
	CurDrive$ Function
	CurPos Function
	Curve Statement
	CVMove Statement
	CX, CY, CZ, CU, CV, CW, CR, CS, CT Statements
	CX, CY, CZ, CU, CV, CW, CR, CS, CT Functions

	D
	Date Statement
	Date$ Function
	Declare Statement
	DegToRad Function
	Del Statement
	Dir Statement
	DispDev Statement
	DispDev Function
	Dist Function
	Do...Loop Statement
	Double Statement

	E
	ECP Statement
	ECP Function
	ECPClr Statement
	ECPDef Function
	ECPSet Statement
	ECPSet Function
	Elbow Statement
	Elbow Function
	Eof Function
	Era Function
	EResume Statement
	Erf$ Function
	Erl Function
	Err Function
	ErrMsg$ Function
	Error Statement
	ErrorOn Funcion
	Ert Function
	EStopOn Function
	Eval Function
	Exit Statement
	ExportPoints Statement

	F
	FbusIO_GetBusStatus Function
	FbusIO_GetDeviceStatus Function
	FbusIO_SendMsg Statement
	FileDateTime$ Function
	FileExists Function
	FileLen Function
	Find Statement
	FindPos Function
	Fine Statement
	Fine Function
	Fix Function
	Flush
	FmtStr$ Function
	FolderExists Function
	For...Next Statement
	Force_Calibrate Statement
	Force_ClearTrigger
	Force_GetForces Statement
	Force_GetForce Function
	Force_Sensor Statement
	Force_Sensor Function
	Force_SetTrigger Statement
	FreeFile Function
	Function...Fend Statement

	G
	GetCurrentUser$ Function
	GetRobotInsideBox Function
	GetRobotInsidePlane Function
	Global Statement
	Go Statement
	GoSub...Return
	GoTo Statement

	H
	Halt Statement
	Hand Statement
	Hand Function
	Here Statement
	Here Function
	Hex$ Function
	Hofs Statement
	Hofs Function
	Home Statement
	HomeClr Function
	HomeDef Function
	HomeSet Statement
	HomeSet Function
	Hordr Statement
	Hordr Function
	Hour Statement
	Hour Function

	I
	If…Then…Else…EndIf Statement
	ImportPoints Statement
	In Function
	InBCD Function
	Inertia Statement
	Inertia Function
	InPos Function
	Input Statement
	Input # Statement
	InputBox Statement
	InReal Function
	InsideBox Function
	InsidePlane Function
	InStr Function
	Int Function
	Integer Statement
	InW Function
	IOLabel$ Function
	IONumber Function

	J
	J1Angle Statement
	J1Angle Function
	J1Flag Statement
	J1Flag Function
	J2Flag Statement
	J2Flag Function
	J4Flag Statement
	J4Flag Function
	J6Flag Statement
	J6Flag Function
	JA Function
	Joint Statement
	JRange Statement
	JRange Function
	JS Function
	JT Function
	JTran Statement
	Jump Statement
	Jump3, Jump3CP Statements

	L
	LatchEnable Statement
	LatchState Function
	LatchPos Function
	LCase$ Function
	Left$ Function
	Len Function
	LimitTorque Statement
	LimitTorque Function
	LimZ Statement
	LimZ Function
	Line Input Statement
	Line Input # Statement
	LJM Function
	LoadPoints Statement
	Local Statement
	Local Function
	LocalClr Statement
	LocalDef Function
	Lof Function
	LogIn Statement
	Long Statement
	LSet$ Function
	LShift Function
	LTrim$ Function

	M
	Mask Operator
	MCal Statement
	MCalComplete Function
	MCordr Statement
	MCordr Function
	MemIn Function
	MemInW Function
	MemOff Statement
	MemOn Statement
	MemOut Statement
	MemOutW Statement
	MemSw Function
	MHour Function
	Mid$ Function
	MkDir Statement
	Mod Operator
	Motor Statement
	Motor Function
	Move Statement
	MsgBox Statement
	MyTask Function

	N
	Next Statement
	Not Operator

	O
	Off Statement
	OLAccel Statement
	OLAccel Function
	OLRate Statement
	OLRate Function
	On Statement
	OnErr Statement
	OpBCD Statement
	OpenDB Statement
	OpenCom Statement
	OpenCom Function
	OpenNet Statement
	OpenNet Function
	Oport Function
	Or Operator
	Out Statement
	Out Function
	OutReal Statement
	OutReal Function
	OutW Statement
	OutW Function

	P
	PAgl Function
	Pallet Statement
	Pallet Function
	ParseStr Statement / Function
	Pass Statement
	Pause Statement
	PauseOn Function
	PDef Function
	PDel Statement
	PG_FastStop Statement
	PG_LSpeed Statement
	PG_LSpeed Function
	PG_Scan Statement
	PG_SlowStop Statement
	PLabel Statement
	PLabel$ Function
	Plane Statement
	Plane Function
	PlaneClr Statement
	PlaneDef Function
	PList Statement
	PLocal Statement
	PLocal Function
	Pls Function
	PNumber Function
	Point Assignment
	Point Expression
	PosFound Function
	Power Statement
	Power Function
	PPls Function
	Print Statement
	Print # Statement
	PTCLR Statement
	PTPBoost Statement
	PTPBoost Function
	PTPBoostOK Function
	PTPTime Function
	PTran Statement
	PTRQ Statement
	PTRQ Function
	Pulse Statement
	Pulse Function

	Q
	QP Statement
	QPDecelR Statement
	QPDecelR Function
	QPDecelS Statement
	QPDecelS Function
	Quit Statement

	R
	RadToDeg Function
	Randomize Statement
	Range Statement
	Read Statement
	ReadBin Statement
	Real Statement
	RealPls Function
	RealPos Function
	RealTorque Function
	Recover Statement
	Recover Function
	RecoverPos Function
	Redim Statement
	Rename Statement
	RenDir Statement
	Reset Statement
	Restart Statement
	Resume Statement
	Return Statement
	Right$ Function
	RmDir Statement
	Rnd Function
	Robot Statement
	Robot Function
	RobotInfo Function
	RobotInfo$ Function
	RobotModel$ Function
	RobotName$ Function
	RobotSerial$ Function
	RobotType Function
	ROpen Statement
	RSet$ Function
	RShift Function
	RTrim$ Function
	RunDialog Statement

	S
	SafetyOn Function
	SavePoints Statement
	Seek Statement
	Select...Send Statement
	SelectDB Statement
	Sense Statement
	SetCom Statement
	SetLatch Statement
	SetLCD Statement
	SetIn Statement
	SetInW Statement
	SetNet Statement
	SetSw Statement
	SFree Statement
	SFree Function
	Sgn Function
	ShutDown Statement
	ShutDown Function
	Signal Statement
	Sin Function
	SingularityAngle Statement
	SingularityAngle Function
	SingularityDist Statement
	SingularityDist Function
	SingularitySpeed Statement
	SingularitySpeed Function
	SLock Statement
	SoftCP Statement
	SoftCP Function
	Space$ Function
	Speed Statement
	Speed Function
	SpeedR Statement
	SpeedR Function
	SpeedS Statement
	SpeedS Function
	Sqr Function
	ST Function
	StartMain Statement
	Stat Function
	Str$ Function
	String Statement
	Sw Function
	SyncLock Statement
	SyncUnlock Statement
	SyncRobots Statement
	SyncRobots Function
	SysConfig Command
	SysErr Function

	T
	Tab$ Function
	Tan Function
	TargetOK Function
	TaskDone Function
	TaskInfo Function
	TaskInfo$ Function
	TaskState Function
	TaskWait Statement
	TC Statement
	TCLim Statement
	TCLim Function
	TCPSpeed Function
	TCSpeed Statement
	TCSpeed Function
	TeachOn Function
	TGo Statement
	Till Statement
	TillOn Function
	Time Statement
	Time Function
	Time$ Function
	TLClr Statement
	TLDef Function
	TLSet Statement
	TLSet Function
	TMOut Statement
	TMove Statement
	Tmr Function
	TmReset Statement
	Toff Statement
	Ton Statement
	Tool Statement
	Tool Function
	Trap Statement (User defined trigger)
	Trap (System status trigger)
	Trim$ Function
	TW Function
	Type Statement

	U
	UBound Function
	UCase$ Function
	UOpen Statement

	V
	Val Function
	VxCalib Statement
	VxCalDelete Statement
	VxCalLoad Statement
	VxCalInfo Function
	VxCalSave Statement
	VxTrans Function

	W
	Wait Statement
	WaitNet Statement
	WaitPos Statement
	WaitSig Statement
	Weight Statement
	Weight Function
	Where Statement
	WindowsStatus Function
	WOpen Statement
	Wrist Statement
	Wrist Function
	Write Statement
	WriteBin Statement

	X
	Xor Operator
	Xqt Statement
	XY Function
	XYLim Statement
	XYLim Function
	XYLimClr Statement
	XYLimDef Function

	SPEL+ Error Messages
	Precaution of EPSON RC+ 5.0 Compatibility
	Precaution of EPSON RC+ Ver.4.* Compatibility

