

Original instructions

Rev.8 ENM238S5868F

EPSON RC+ 7.0

SPEL+ Language
Reference

Ver.7.5

EPSO
N

 R
C

+ 7.0 (Ver.7.5) SPEL
+ Language R

eference R
ev.8

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 i

EPSON RC+ 7.0 (Ver.7.5)

SPEL+ Language Reference

Rev.8

Seiko Epson Corporation 2012-2023

ii EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

FOREWORD
Thank you for purchasing our robot products.
This manual contains the information necessary for the correct use of the EPSON RC+ 7.0
software.
Please carefully read this manual and other related manuals before installing the robot
system.
Keep this manual handy for easy access at all times.

The robot system and its optional parts are shipped to our customers only after being
subjected to the strictest quality controls, tests, and inspections to certify its compliance with
our high performance standards. Please note that the basic performance of the product will
not be exhibited if our robot system is used outside of the usage conditions and product
specifications described in the manuals.

This manual describes possible dangers and consequences that we can foresee. Be sure to
comply with safety precautions on this manual to use our robot system safety and correctly.

TRADEMARKS

Microsoft, Windows, Windows logo, Visual Basic, and Visual C++ are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries. Pentium is a trademark of Intel Corporation. Other brand and product names are
trademarks or registered trademarks of the respective holders.

TRADEMARK NOTATION IN THIS MANUAL
Microsoft® Windows® 8 operating system
Microsoft® Windows® 10 operating system
Microsoft® Windows® 11 operating system
Throughout this manual, Windows 8, Windows 10 and Windows 11 refer to above respective
operating systems. In some cases, Windows refers generically to Windows 8, Windows 10 and
Windows 11.

NOTICE
No part of this manual may be copied or reproduced without authorization.
The contents of this manual are subject to change without notice.
Please notify us if you should find any errors in this manual or if you have any comments
regarding its contents.

MANUFACTURER

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 iii

CONTACT INFORMATION
Contact information is described in “SUPPLIERS” in the first pages of the following
manual:

Robot System Safety Manual Read this manual first

SAFETY PRECAUTIONS

Installation of robots and robotic equipment should only be performed by qualified
personnel in accordance with national and local codes. Please carefully read this manual
and other related manuals when using this software.
Keep this manual in a handy location for easy access at all times.

WARNING

This symbol indicates that a danger of possible serious
injury or death exists if the associated instructions are not
followed properly.

CAUTION

This symbol indicates that a danger of possible harm to
people or physical damage to equipment and facilities
exists if the associated instructions are not followed
properly.

iv EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Table of Contents

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 v

Summary of SPEL+ Commands 1

System Management Commands .. 1
Robot Control Commands .. 2
Torque Commands .. 7
Input / Output Commands ... 7
Point Management Commands .. 9
Coordinate Change Commands ... 10
Program Control Commands ... 11
Program Execution Commands .. 12
Pseudo Statements ... 12
File Management Commands ... 13
Fieldbus Commands .. 14
Numeric Value Commands ... 14
String Commands ... 15
Logical Operators .. 15
Variable Commands .. 16
Security Commands .. 16
Conveyor Tracking Commands ... 16
Force Sensing Commands .. 17
DB Commands .. 17
PG Commands .. 17
Collision Detection Commands ... 18
Parts Consumption Commands ... 18
Simulator Commands... 19
Hand Commands ... 19
Safety Function Commands ... 20

SPEL+ Language Reference 21

Appendix A: SPEL+ Command Use Condition List 857

Appendix B: Precaution of Compatibility 868

B-1: Precaution of EPSON RC+ 6.0 Compatibility 868
B-2: Precaution of EPSON RC+ 5.0 Compatibility 878
B-3: Precaution of EPSON RC+ Ver.4.* Compatibility 889

Table of Contents

vi EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Appendix C: Commands of EPSON RC+7.0 900

C-1: List of Commands Added EPSON RC+4.0 or Later 900
C-2: List of Commands Added for Each Version of EPSON RC+ 7.0 903
C-3: Deletion Commands (Sort by Version) ... 909

Appendix D: Predefined Constants 910

Summary of SPEL+ Commands

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 1

Summary of SPEL+ Commands
The following is a summary of SPEL+ commands.

System Management Commands
Reset Resets the controller.

SysConfig Displays controller setup.
SysErr Returns the latest error status or warning status.

Date Sets the system date.
Time Sets system time.
Date$ Returns the system date as a string.
Time$ Returns system time as a string.

Hour Displays / returns controller operation time.

Stat Returns controller status bits.
CtrlInfo Returns controller information.
RobotInfo Returns robot information.
RobotInfo$ Returns robot text information.
TaskInfo Returns task information.
TaskInfo$ Returns task text information.

DispDev Sets the current display device.
EStopOn Return the Emergency Stop status.
CtrlDev Returns the current control device number.
Cls Clears the EPSON RC+ 6.0 Run, Operator, or Command window

text area.
Clears the TP print panel.

Toff Turns off execution line display on the LCD.
Ton Specifies a task which shows an execution line on the LCD.

SafetyOn Return the Safety Door open status.

Eval Executes a Command window statement from a program and returns

the error status.

ShutDown Shuts down EPSON RC+ and optionally shuts down or restarts

Windows.

TeachOn Returns the Teach mode status.
WindowsStatus Returns the Windows startup status.

Summary of SPEL+ Commands

2 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Robot Control Commands

AIO_TrackingSet Sets the distance tracking function.
AIO_TrackingStart Starts the distance tracking function.
AIO_TrackingEnd Ends the distance tracking function.
AIO_TrackingOn Function Returns the status of the distance tracking function.
AtHome Retunes if the current robot orientation is Home position or not.
Calib Replaces the current arm posture pulse values with the current CalPls

values.
CalPls Specifies and displays the position and orientation pulse values for

calibration.
Hofs Returns the offset pulses used for software zero point correction.
JointAccuracy Specifies and displays offset value of the axis correction accuracy
HofsJointAccuracy Returns the offset pulses used for software zero point correction.

without changing the axis correction accuracy.
MCal Executes machine calibration for robots with incremental encoders.
MCalComplete Returns status of MCal.
MCordr Specifies and displays the moving joint order for machine

calibration Mcal. Required only for robots with incremental
encoders.

Power Sets / returns servo power mode.
Motor Sets / returns motor status.
MHour Function Returns the accumulated MOTOR ON time of the robot motors.
SFree Free joint the specified servo axis.
SLock Release free joint state of the specified servo axis.

SyncRobots Start the reserved robot motion.

Jump Jumps to a point using point to point motion.
Jump3 Jumps to a point using 3D gate motion.
Jump3CP Jumps to a point using 3D motion in continuous path.
JumpTLZ Jumps to a point using 3D gate motion.
Arch Sets / returns arch parameters for Jump motion.
LimZ Sets the upper Z limit for the Jump command.
LimZMargin Sets / returns the margin for error detection when the operation starts

at the position higher than LimZ value.

Sense Sets / returns the condition to stop the manipulator above the target

coordinate when Sense is specified by Jump command.
JS Returns status of Sense operation.
JT Returns the status of the most recent Jump command for the current

robot.
Go Moves the robot to a point using point to point motion.
Pass Executes simultaneous four joint Point to Point motion, passing near

but not through the specified points.
Pulse Moves the robot to a position defined in pulses.
BGo Executes Point to Point relative motion, in the selected local

coordinate system.

Summary of SPEL+ Commands

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 3

BMove Executes linear interpolation relative motion, in the selected local
coordinate system.

TGo Executes Point to Point relative motion, in the current tool coordinate
system.

TMove Executes linear interpolation relative motion, in the selected tool
coordinate system.

Till Specifies motion stop when input occurs.
TillOn Returns the current Till status.
!…! Process statements during motion.

Speed Sets / returns speed for point to point motion commands.
Accel Sets / returns acceleration and deceleration for point to point motion.
SpeedFactor Sets / returns speed for point to point motion commands.

Inertia Specifies or displays the inertia settings for the robot arm.
Weight Specifies or displays the weight settings for the robot arm.

Arc Moves the arm using circular interpolation.
Arc3 Moves the arm in 3D using circular interpolation.
Move Moves the robot using linear interpolation.
Curve Defines the data and points required to move the arm along a curved

path. Many data points can be defined in the path to improve
precision of the path.

CVMove Performs the continuous spline path motion defined by the Curve
instruction.

SpeedS Sets / returns speed for linear motion commands.
AccelS Sets / returns acceleration and deceleration for linear motion.
SpeedR Sets / returns speed for tool rotation.
AccelR Sets / returns acceleration and deceleration for tool rotation.

AccelMax Returns maximum acceleration value limit available for Accel.

Brake Turns brake on or off for specified joint of the current robot.

Home Moves robot to user defined home position.
HomeClr Clears the home position definition.
HomeDef Returns status of home position definition.
HomeSet Sets user defined home position.
Hordr Sets motion order for Home command.

InPos Checks if robot is in position (not moving).
CurPos Returns current position while moving.
TCPSpeed Returns calculated current tool center point velocity.

Pallet Defines a pallet or returns a pallet point.
PalletClr Clears a pallet definition.

Fine Specifies and displays the positioning error limits. (Unit: pulse)
FineDist Specifies and displays the positioning error limits (Unit: mm)

Summary of SPEL+ Commands

4 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

FineStatus Function Returns whether Fine or FineDist is used by the integer.

QP Sets / returns Quick Pause status.

QPDecelR Sets the deceleration speed of quick pause for the change of tool

orientation during the CP motion.
QPDecelS Sets the deceleration speed of quick pause in the CP motion.

CP Sets CP (Continuous Path) motion mode.

Box Specifies and displays the approach check area.
BoxClr Clears the definition of approach check area.
BoxDef Returns whether Box has been defined or not.

Plane Specifies and displays the approach check plane.
PlaneClr Clears (undefines) a Plane definition.
PlaneDef Returns the setting of the approach check plane.
InsideBox Returns the check status of the approach check area.
InsidePlane Returns the check status of the approach check plane.
GetRobotInsideBox Returns a robot which is in the approach check area.
GetRobotInsidePlane Returns a robot which is in the approach check plane.

Find Specifies or displays the condition to store coordinates during motion.
FindPos Returns a robot point stored by Find during a motion command.
PosFound Returns status of Find operation.

WaitPos Waits for robot to decelerate and stop at position before executing

the next statement while path motion is active.

Robot Selects the current robot. (Returns the robot number by Robot

Function)
RobotModel$ Returns the robot model name.
RobotName$ Returns the robot name.
RobotSerial$ Returns the robot serial number.
RobotType Returns the robot type.

TargetOK Returns a status indicating whether or not the PTP (Point to Point)

motion from the current position to a target position is possible.
ROTOK Function Returns whether an ROT modifier parameter can be added when

issuing a move command to a destination.

JRange Sets / returns joint limits for one joint.
Range Sets limits for all joints.

XYLim Sets or displays the permissible XY motion range limits for the robot.
XYLimClr Clears the XYLim definition.
XYLimDef Returns whether XYLim has been defined or not.
XYLimMode Sets or displays the XYLim monitor method or returns the status.

Summary of SPEL+ Commands

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 5

XY Returns a point from individual coordinates that can be used in a
point expression.

Dist Returns the distance between two robot points.
DiffToolOrientation Function Returns the angle between the coordinate axes of Tool coordinate

systems.
DiffPoint Function Returns the difference between two specified points.

PTPBoost Specifies or displays the acceleration, deceleration and speed

algorithmic boost parameter for small distance PTP (point to point)
motion.

PTPBoostOK Returns whether or not the PTP (Point to Point) motion from a
current position to a target position is a small travel distance.

PTPTime Returns the estimated time for a point to point motion command
without executing it.

CX Sets / returns the X axis coordinate of a point.
CY Sets / returns the Y axis coordinate of a point.
CZ Sets / returns the Z axis coordinate of a point.
CU Sets / returns the U axis coordinate of a point.
CV Sets / returns the V axis coordinate of a point.
CW Sets / returns the W axis coordinate of a point.
CR Sets / returns the R axis coordinate of a point.
CS Sets / returns the S axis coordinate of a point.
CT Sets / returns the T axis coordinate of a point.
Pls Returns the pulse value of one joint.
Agl Returns joint angle at current position.
PAgl Return a joint value from a specified point.
JA Returns a robot point specified in joint angles.
AglToPls Converts robot angles to pulses.
DegToRad Converts degrees to radians.
RadToDeg Converts radians to degrees.

Joint Displays the current position for the robot in joint coordinates.
JTran Perform a relative move of one joint.
PTran Perform a relative move of one joint in pulses.

RealPls Returns the pulse value of the specified joint.
RealPos Returns the current position of the specified robot.
RealAccel Function Returns the Accel value automatically adjusted by OLAccel.

PPls Return the pulse position of a specified joint value from a specified

point.
LJM Function Returns the point data with the orientation flags converted to enable

least joint motion when moving to a specified point based on the
reference point.

AutoLJM Sets the Auto LJM
AutoLJM Function Returns the state of the Auto LJM
AutoOrientationFlag Changes orientation flag of N6-A1000**
AutoOrientationFlag Function Returns the state of the AutoOrientationFlag

Summary of SPEL+ Commands

6 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

AvoidSingularity Sets the Singularity avoiding function
AvoidSingularity Function Returns the state of the Singularity avoiding function
SingularityAngle Sets the singularity neighborhood angle for the singularity

avoiding function
SingularityAngle Function Returns the singularity neighborhood angle for the singularity

avoiding function
SingularitySpeed Sets the singularity neighborhood speed for the singularity

avoiding function
SingularitySpeed Function Returns the singularity neighborhood speed for the singularity

avoiding function
SingularityDist Sets the singularity neighborhood distance necessary for the

singularity avoiding function.
SingularityDist Function Returns the singularity neighborhood distance necessary for the

singularity avoiding function.

AbortMotion Aborts a motion command and puts the running task in error status.

Align Function Returns point data converted to align robot orientation with the

nearest coordinate axis in local coordinate system.
AlignECP Function Returns point data converted to align robot orientation with a nearest

coordinate axis in ECP coordinate system.

SoftCP Sets / returns SoftCP motion mode.
SoftCP Function Returns the status of SoftCP motion mode.

Here Teach a robot point at the current position.
Where Displays current robot position data.

PerformMode Sets the mode of the robot.
PerformMode Function Returns the robot performance mode number.
VSD Sets the variable speed CP motion of SCARA robots.
VSD Function Returns the variable speed CP motion setting of SCARA robots.
CP_Offset Sets the offset time to start the subsequent motion command when

executing CP On.
CP_Offset Function Returns the offset time to start the subsequent motion command

when executing CP On.

AvgSpeedClear Clears and initializes the average of the joint speed.
AvgSpeed Displays the average of the joint speed.
AvgSpeed Function Returns the average value of the joint speed.
PeakSpeedClear Clears and initializes the peak speed for one or more joints.
PeakSpeed Displays the peak speed values for the specified joint.
PeakSpeed Function Returns the peak speed for the specified joint.

Summary of SPEL+ Commands

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 7

Torque Commands

TC Returns the torque control mode setting and current mode.
TCSpeed Specifies the speed limit in the torque control.
TCLim Specifies the torque limit of each joint for the torque control mode.
RealTorque Returns the current torque instruction value of the specified joint.

ATCLR Clears and initializes the average torque for one or more joints.
ATRQ Displays the average torque for the specified joint.
PTCLR Clears and initializes the peak torque for one or more joints.
PTRQ Displays the peak torque for the specified joint.

OLAccel Sets up the automatic adjustment of acceleration/deceleration

that is adjusted.
OLRate Display overload rating for one or all joints for the current robot.

LimitTorque Sets / returns the upper torque value in High power mode.
LimitTorque Function Returns the LimitTorque setting value.
LimitTorqueLP Sets / returns the upper limit torque value in Low power mode.
LimitTorqueLP Function Returns the LimitTorqueLP setting value.
LimitTorqueStop Specifies /returns whether or not to stop the robot when torque

reaches the upper limit in High power mode.
LimitTorqueStop Function Returns the LimitTorqueStop setting value.
LimitTorqueStopLP Specifies / returns whether or not to stop the robot when torque

reaches the upper limit in Low power mode.
LimitTorqueStopLP Function Returns the LimitTorqueStopLP setting value.

Input / Output Commands

On Turns an output on.
Off Turns an output off.
Oport Reads status of one output bit.

Sw Returns status of input.
In Reads 8 bits of inputs.
InW Returns the status of the specified input word port.
InBCD Reads 8 bits of inputs in BCD format.

Out Sets / returns 8 bits of outputs.
OutW Simultaneously sets 16 output bits.
OpBCD Simultaneously sets 8 output bits using BCD format.

MemOn Turns a memory bit on.
MemOff Turns a memory bit off.
MemSw Returns status of memory bit.
MemIn Reads 8 bits of memory I/O.
MemOut Sets / returns 8 memory bits.
MemInW Returns the status of the specified memory I/O word port.

Each word port contains 16 memory I/O bits.
MemOutW Simultaneously sets 16 memory I/O bits.

Summary of SPEL+ Commands

8 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Wait Wait for condition or time.
TMOut Sets default time out for Wait statement.
Tw Returns the status of the Wait condition and Wait timer interval.

Input Receives input data from the display device and stored in a

variable(s).
InReal Reads an input data of 2 words (32 bits) as a floating-point data

(IEEE754 compliant) of 32 bits.
Print Display characters on current display window.
Line Input Input a string from the current display window.

Input # Allows string or numeric data to be received from a file,

communications port, or database and stored in one or more
variables.

Print # Outputs data to the specified file, communications port, database,
or device.

Line Input # Reads data of one line from a file, communication port, database,
or the device.

Lof Checks whether the specified RS-232 or TCP/IP port has any
lines of data in its buffer.

SetIn For Virtual IO, sets specified input port (8 bits) to the specified

value.
SetInW For Virtual IO, sets specified input word (16 bits) to the specified

value.
SetSw For Virtual IO, sets specified input bit to the specified value.

IOLabel$ Returns the I/O label for a specified input or output bit, byte, or

word.
IONumber Returns the I/O number of the specified I/O label.
IODef Returns whether the specified I/O label is defined.

OpenCom Open an RS-232 communication port.
OpenCom Function Acquires the task number that executes OpenCom.
CloseCom Close the RS-232C port that has been opened with OpenCom.
SetCom Sets or displays parameters for RS-232C port.
ChkCom Returns number of characters in the reception buffer of a

communication port

OpenNet Open a TCP/IP network port.
OpenNet Function Acquires the task number that executes OpenNet.
OutReal Output the output data of real value as the floating-point data

(IEEE754 compliant) of 32 bits to the output port 2 words (32
bits).

CloseNet Close the TCP/IP port previously opened with OpenNet.
SetNet Sets parameters for a TCP/IP port.
ChkNet Returns number of characters in the reception buffer of a network

port
WaitNet Wait for TCP/IP port connection to be established.

Summary of SPEL+ Commands

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 9

Read Reads characters from a file or communications port.
ReadBin Reads binary data from a file or communications port.
Write Writes characters to a file or communication port without end of

line terminator.
WriteBin Writes binary data to a file or communications port.

InputBox Displays a prompt in a dialog box, waits for the operator to input

text or choose a button, and returns the contents of the box.
MsgBox Displays a message in a dialog box and waits for the operator to

choose a button.
RunDialog Runs an EPSON RC+ dialog from a SPEL+ program.

LatchEnable Enable / Disable the latch function for the robot position by the

R-I/O input.
LatchState Function Returns the latch state of robot position using the R-I/O.
LatchPos Function Returns the robot position latched using the R-I/O input signal.
SetLatch Sets the latch function of the robot position using the R-I/O input.
AIO_In Function Reads analog value form analog I/O input channel.
AIO_InW Function Reads one word input data from analog I/O input channel.
AIO_Out Output analog value on the analog I/O output channel.
AIO_Out Function Returns the output state of analog I/O output channel.
AIO_OutW Output the one word data to analog I/O output channel.
AIO_OutW Function Returns the output state by one word of analog I/O output

channel.
AIO_Set Output the speed information to analog I/O output channel.
AIO_Set Function Returns setting information of robot speed output which is set

on optional analog I/O output channel.

Point Management Commands

ClearPoints Clears all point data in memory.
LoadPoints Loads point data from a file in memory.
SavePoints Saves point data to a file in memory.
ImportPoints Imports a point file into the current project for the specified robot.
ExportPoints Exports a point file to the specified path in the PC.
P# Defines a specified point.
PDef Returns the definition status of a specified point.
PDel Deletes specified position data.
PLabel Defines a label for a specified point.
PLabel$ Returns the point label associated with a point number.
PNumber Returns the point number associated with a point label.
PList Displays point data in memory for the current robot.
PLocal Sets the local attribute for a point.
PDescription Define a description of specified point data.
PDescription$ Returns description of point that defined to the specified

point number

Summary of SPEL+ Commands

10 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

WorkQue_Add Adds the work queue data (point data and user data) to the
specified work queue.

WorkQue_AutoRemove Sets the auto delete function to the specified work queue.
WorkQue_AutoRemove Function Returns the state of the auto delete function set to the work

queue.
WorkQue_Get Function Returns the point data from the specified work queue.
WorkQue_Len Function Returns the number of the valid work queue data registered

to the specified work queue.
WorkQue_List Displays the work queue data list (point data and user data)

of the specified work queue
WorkQue_Reject Sets and displays the minimum distance for double

registration prevention of the point data to the specified work
queue

WorkQue_Reject Function Returns the distance of the double registration prevention set
to the specified work queue

WorkQue_Remove Deletes the work queue data (point data and user data) from
the specified work queue

WorkQue_Sort Sets and displays the Sort type of the specified work queue
WorkQue_Sort Function Returns the Sort type of the specified work queue
WorkQue_UserData Resets and displays the user data (real number) registered to

the specified work queue
WorkQue_UserData Function Returns the user data (real number) registered to the specified

work queue

Coordinate Change Commands

AreaCorrection Function Returns point at which correction was made using correction
area

AreaCorrectionClr Clears correction area
AreaCorrectionDef Returns correction area settings
AreaCorrectionInv Function Returns corrected points to their original condition
AreaCorrectionOffset Function Returns points relatively displaced from corrected points
AreaCorrectionSet Sets and displays correction area
Arm Sets / returns current arm.
ArmSet Defines an arm.
ArmDef Returns status of arm definition.
ArmClr Clears an arm definition.
ArmCalib Sets and returns enable or disable of arm length calibration.
ArmCalibClr Clears arm length calibration.
ArmCalibDef Returns status of arm length calibration.
ArmCalibSet Defines and displays arm length calibration.

Tool Sets / returns the current tool number.
TLSet Defines or displays a tool coordinate system.
TLDef Returns status of tool definition.
TLClr Clears a tool definition.

ECP Sets / returns the current ECP number.

Summary of SPEL+ Commands

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 11

ECPSet Defines or displays an external control point.
ECPDef Returns status of ECP definition.
ECPClr Clears an ECP definition.

Base Defines and displays the base coordinate system.

Local Define a local coordinate system.
LocalDef Returns status of local definition.
LocalClr Clears (undefines) a local coordinate system.

Elbow Sets / returns elbow orientation of a point.
Hand Sets / returns hand (arm) orientation of a point.
Wrist Sets / returns wrist orientation of a point.
J4Flag Sets / returns the J4Flag setting of a point.
J6Flag Sets / returns the J6Flag orientation of a point.
J1Flag Sets / returns the J1Flag setting of a point.
J2Flag Sets / returns the J2Flag orientation of a point.
J1Angle Returns the J1Angle attribute of a point.
J4Angle Returns the J4Angle attribute of a point.

VxCalib Creates the calibration data.
VxTrans Converts the pixel coordinates to the robot coordinates and

returns the converted the point data.
VxCalInfo Returns the calibration completion status / calibration data.
VxCalDelete Deletes the calibration data.
VxCalSave Saves the calibration data to the file.
VxCalLoad Loads the calibration data from the file.

Program Control Commands

Function Declare a function.
For...Next Executes one or more statements for a specific count.
GoSub Execute a subroutine.
Return Returns from a subroutine.
GoTo Branch unconditionally to a line number or label.
Call Call a user function.
If…Then...Else...EndIf Conditional statement execution.
Else Used with the If instruction to allow statements to be

executed when the condition used with the If instruction is
False. Else is an option for the If/Then instruction.

Select ... Send Executes one of several groups of statements, depending on
the value of an expression.

Do...Loop Do...Loop construct.
Declare Declares an external function in a dynamic link library (DLL).
Trap Specify a trap handler.
OnErr Defines an error handler.
Era Returns the robot joint number for last error.
Erf$ Returns the function name for last error.

Summary of SPEL+ Commands

12 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Erl Returns the line number of error.
Err Returns the error number.
Ert Returns the task number of error.
Errb Returns the robot number of error.
ErrMsg$ Returns the error message.
Signal Sends a signal to tasks executing WaitSig.
SyncLock Synchronizes tasks using a mutual exclusion lock.
SynUnlock Unlocks a sync ID that was previously locked with SyncLock.
WaitSig Waits for a signal from another task.

ErrorOn Returns the error status of the controller.
Error Generates a user error.
EResume Resumes execution after an error-handling routine is finished.
PauseOn Returns the pause status.
Exit Exits a loop construct or function.

Program Execution Commands

Xqt Execute a task.
Pause Pause all tasks that have pause enabled.
Cont Resumes the controller after a Pause statement has been

executed and continues the execution of all tasks.
Halt Suspend a task.
Quit Quits a task.
Resume Resume a task in the halt state.
MyTask Returns current task.

TaskDone Returns the completion status of a task.
TaskState Returns the current state of a task.
TaskWait Waits to for a task to terminate.

Restart Restarts the current main program group.
Recover Executes safeguard position recovery and returns status.
RecoverPos Returns the position where a robot was in when safeguard

was open.

StartMain Executes the main function from a background task.

Pseudo Statements

#define Defines a macro.
#ifdef ... #endif Conditional compile.
#ifndef ... #endif Conditional compile.
#include Include a file.
#undef Undefines an identifier previously defined with #define.

Summary of SPEL+ Commands

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 13

File Management Commands

ChDir Changes and displays the current directory.
ChDisk Sets the object disk for file operations.
MkDir Creates a subdirectory on a controller disk drive.
RmDir Removes an empty subdirectory from a controller disk

drive.
RenDir Rename a directory.

FileDateTime$ Returns the date and time of a file.
FileExists Checks if a file exists.
FileLen Returns the size of a file.
FolderExists Checks if a folder exists.

Del Deletes one or more files.
Copy Copies a file to another location.
Rename Renames a file.

AOpen Opens file in the appending mode.
BOpen Opens file in binary mode.
ROpen Opens a file for reading.
Uopen Opens a file for read / write access.
WOpen Opens a file for writing.
Input # Allows string or numeric data to be received from a file,

communications port, or database and stored in one or
more variables.

Print # Outputs data to the specified file, communications port,
database, or device.

Line Input # Reads data of one line from a file, communication port,
database, or the device.

Read Reads characters from a file or communications port.
ReadBin Reads binary data from a file or communications port.
Write Writes characters to a file or communication port without

end of line terminator.
WriteBin Writes binary data to a file or communications port.
Seek Changes position of file pointer for a specified file.
Close Closes a file.
Eof Returns end of file status.
ChDrive Changes the current disk drive for file operations.
CurDir$ Returns a string representing the current directory.
CurDrive$ Returns a string representing the current drive.
CurDisk$ Returns a string representing the current disk.

Flush Writes a file's buffer into the file.

Summary of SPEL+ Commands

14 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Fieldbus Commands

FbusIO_GetBusStatus Returns the status of the specified Fieldbus.
FbusIO_GetDeviceStatus Returns the status of the specified Fieldbus device.
FbusIO_SendMsg Sends an explicit message to a Fieldbus device and returns

the reply.

Numeric Value Commands

Ctr Return the value of a counter.
CTReset Resets a counter.
ElapsedTime Measures a takt time.
ResetElapsedTime Resets and starts a takt time measurement timer.
Tmr Returns the value of a timer.
TmReset Resets a timer to 0.

Sin Returns the sine of an angle.
Cos Returns cosine of an angle.
Tan Returns the tangent of an angle.
Acos Returns arccosine.
Asin Returns arcsine.
Atan Returns arctangent.
Atan2 Returns arctangent based on X, Y position.
Sqr Returns the square root of a number.
Abs Returns the absolute value of a number.
Sgn Returns the sign of a number.

Int Converts a real number to an integer.

BClr Clears one bit in a number and return the new value.
BSet Sets a bit in a number and returns the new value.
BTst Returns the status of 1 bit in a number.
BClr64 Clears one bit in a number and return the new value.
BSet64 Sets a bit in a number and returns the new value.
BTst64 Returns the status of 1 bit in a number.
Fix Returns the integer portion of a real number.
Hex Returns a string representing a specified number in

hexadecimal format.
Randomize Initializes the random-number generator.
Redim Redimension an array at run-time.

Rnd Return a random number.
UBound Returns the largest available subscript for the indicated

dimension of an array.

Summary of SPEL+ Commands

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 15

String Commands

Asc Returns the ASCII value of a character.
Chr$ Returns the character of a numeric ASCII value.

Left$ Returns a substring from the left side of a string.
Mid$ Returns a substring.
Right$ Returns a substring from the right side of a string.
Len Returns the length of a string.
LSet$ Returns a string padded with trailing spaces.
RSet$ Returns a string padded with leading spaces.
Space$ Returns a string containing space characters.
Str$ Converts a number to a string.
Val Converts a numeric string to a number.

LCase$ Converts a string to lower case.
UCase$ Converts a string to upper case.
LTrim$ Removes spaces from beginning of string.
RTrim$ Removes spaces from end of string.
Trim$ Removes spaces from beginning and end of string.
ParseStr Parse a string and return array of tokens.
FmtStr Format a number or string.
FmtStr$ Format a number or string.

InStr Returns position of one string within another.
Tab$ Returns a string containing the specified number of tabs

characters.

Logical Operators

And Performs logical and bitwise AND operation.
Or Or operator.
LShift Shifts bits to the left.
LShift64 Shifts bits to the left.
Mod Modulus operator.
Not Not operator.
RShift Shifts bits to the right.
RShift64 Shifts bits to the right.
Xor Exclusive Or operator.
Mask Performs bitwise AND operation in Wait statements.

Summary of SPEL+ Commands

16 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Variable commands

Boolean Declares Boolean variables.
Byte Declares byte variables.
Double Declares double variables.
Global Declares global variables.
Int32 Declares 4-byte integer variables.
Integer Declares 2-byte integer variables.
Long Declares long integer variables.
Int64 Declares 8-byte integer variables.
Real Declares real variables.
Short Declares 2-byte integer variables.
String Declares string variables.
UByte Declares unsigned integer variables.
UInt32 Declares unsigned 4-byte integer variables.
UShort Declares unsigned 2-byte integer variables.
UInt64 Declares unsigned 8-byte integer variables.

Security Commands

GetCurrentUser$ Returns the current EPSON RC+ user.
Login Log into EPSON RC+ 6.0 as another user.

Conveyor Tracking Commands

Cnv_AbortTrack Aborts tracking motion to a conveyor queue point.
Cnv_Accel Function Returns acceleration and deceleration for the conveyor.
Cnv_Accel Sets acceleration and deceleration for the conveyor.
Cnv_AccelLim Sets limit of acceleration and deceleration after the conveyor

tracked.
Cnv_AccelLim Function Returns limit of acceleration and deceleration after the

conveyor tracked.
Cnv_Adjust Sets whether operate to tracking delay of conveyor.
Cnv_AdjustClear Clear adjustment of tracking delay of conveyor.
Cnv_AdjustGet Function Returns adjustment of tracking delay of conveyor.
Cnv_AdjustSet Sets adjustment of tracking delay of conveyor.
Cnv_Downstream Function Returns the downstream limit for the specified conveyor.
Cnv_Downstream Sets the downstream limit for the specified conveyor.
Cnv_Fine Function Returns the current Cnv_Fine setting.
Cnv_Fine Sets the value of Cnv_Fine for one conveyor.
Cnv_Flag Function Returns the tracking state of the tracking abort line.
Cnv_Mode Function Returns the setting mode value of the conveyor
Cnv_Mode Sets the setting mode value of the conveyor
Cnv_Name$ Function Returns the name of the specified conveyor.
Cnv_Number Function Returns the number of a conveyor specified by name.
Cnv_OffsetAngle Sets the offset value for the conveyor queue data.
Cnv_OffsetAngle Function Returns the offset value of the conveyor queue data.
Cnv_Point Function Returns a robot point in the specified conveyor's coordinate

system derived from sensor coordinates.

Summary of SPEL+ Commands

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 17

Cnv_PosErr Function Returns deviation in current tracking position compared to
tracking target.

Cnv_PosErrOffset Sets an offset value to correct the deviation in current
tracking position compared to tracking target.

Cnv_Pulse Function Returns the current position of a conveyor in pulses.
Cnv_QueAdd Adds a robot point to a conveyor queue.
Cnv_QueGet Function Returns a point from the specified conveyor's queue.
Cnv_QueLen Function Returns the number of items in the specified conveyor's

queue.
Cnv_QueList Displays a list of items in the specified conveyor's queue.
Cnv_QueMove Moves data from upstream conveyor queue to downstream

conveyor queue.
Cnv_QueReject Sets and displays the queue reject distance for a conveyor.
Cnv_QueReject Function Returns the current part reject distance for a conveyor.
Cnv_QueRemove Removes items from a conveyor queue.
Cnv_QueUserData Sets and displays user data associated with a queue entry.
Cnv_QueUserData Function Returns the user data value associated with an item in a

conveyor queue.
Cnv_RobotConveyor Function Returns the conveyor being tracked by a robot.
Cnv_Speed Function Returns the current speed of a conveyor.
Cnv_Trigger Latches current conveyor position for the next Cnv_QueAdd

statement.
Cnv_Upstream Function Returns the upstream limit for the specified conveyor.
Cnv_Upstream Sets the upstream limit for the specified conveyor.

Force Sensing Commands

Force_Calibrate Sets zero offsets for all axes for the current force sensor.
Force_ClearTrigger Clears all trigger conditions for the current force sensor.
Force_GetForces Returns the forces and torques for all force sensor axes in an

array.
Force_GetForce Function Returns the force for a specified axis.
Force_Sensor Sets the current force sensor for the current task.
Force_Sensor Function Returns the current force sensor for the current task.
Force_SetTrigger Sets the force trigger for the Till command.

DB Commands

CloseDB Close the database that has been opened with the OpenDB
command and releases the file number.

DeleteDB Deletes data from the table in the opened database.

OpenDB Opens a database or Excel workbook.
SelectDB Searches the data in the table in an opened database.
UpdateDB Updates data of the table in the opened database.

PG Commands

PG_FastStop Stops the PG axes immediately.

Summary of SPEL+ Commands

18 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

PG_LSpeed Sets the pulse speed of the time when the PG axis starts
accelerating and finishes decelerating.

PG_Scan Starts the continuous spinning motion of the PG robot axes.
PG_SlowStop Stops slowly the PG axis spinning continuously.

Collision Detection Commands

CollisionDetect Enables or disables the collision detection.
CollisionDetect Function Returns the setting value of CollisionDetect command.

Parts Consumption Commands

HealthCalcPeriod Sets the calculation period of parts consumption control.
HealthCalcPeriod Function Returns the calculation period of parts consumption control.
HealthCtrlAlarmOn Function Returns the status of the parts consumption alarm for the

specified Controller parts.
HealthCtrlInfo Displays the remaining months before the recommended

replacement time for the specified Controller parts.
HealthCtrlInfo Function Returns the remaining months before the recommended

replacement time for the specified Controller parts.
HealthCtrlRateOffset Sets the offset for the consumption rate of the specified

parts.
HealthCtrlReset Clears the consumption rate for the specified Controller

parts.
HealthCtrlWarningEnable Sets enable or disable the parts consumption alarm

notification of the Controller parts.
HealthCtrlWarningEnable Function Returns enable or disable the parts consumption alarm

notification of the controller part.
HealthRateCtrlInfo Function Returns the consumption rate of the specified Controller

parts.
HealthRateRBInfo Function Returns the consumption rate for the specified robot parts.
HealthRBAlarmOn Function Returns the status of the parts consumption alarm for the

specified robot parts.
HealthRBAnalysis Displays the analysis result regarding the parts consumption

(remaining months before the recommended parts
replacement time) for the specified robot parts.

HealthRBAnalysis Function Returns the analysis result regarding the parts consumption
(remaining months before the recommended parts
replacement time) for the specified robot parts.

HealthRBDistance Displays the driving amount of the specified joint.
HealthRBDistance Function Returns the driving amount of the specified joint.
HealthRBInfo Displays the remaining months before the recommended

replacement time for the specified robot parts.
HealthRBInfo Function Returns the remaining months before the recommended

replacement time for the specified robot parts.
HealthRBRateOffset Sets the offset for the consumption rate of the specified

parts.
HealthRBReset Clears the consumption rate for the specified robot parts.
HealthRBSpeed Displays the average speed of the specified joint.

Summary of SPEL+ Commands

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 19

HealthRBSpeed Function Returns the average of the absolute speed of the specified
joint.

HealthRBStart Starts analysis of the parts consumption for the specified
robot parts.

HealthRBStop Stops analysis of the parts consumption for the specified
robot parts.

HealthRBTRQ Displays the torque value of the specified joint.
HealthRBTRQ Function Returns the torque value of the specified joint.
HealthRBWarningEnable Sets enable or disable the parts consumption alarm

notification of the robot parts.
HealthRBWarningEnable Function Returns enable or disable the parts consumption alarm

notification of the robot parts.

Simulator Commands

SimSet Sets the object settings, operations, and robot motions of
simulator.

SimGet Acquires the setting values of simulator object.

Hand Commands (For details, see Hand Function Manual.)

Hand_On Gripper: Execute a gripping of hand.
 Electric screwdriver: Execute a tightening screw of hand.
Hand_On Function Gripper: Returns “True” when hand is gripping state.
 Electric screwdriver: Returns “True” when hand is complete

to tighten screws.
Hand_Off Gripper: Execute releasing hand.
 Electric screwdriver: Execute loosen screw of the hand.
Hand_Off Function Gripper: Returns “True” when hand is releasing state.
 Electric screwdriver: Returns “True” when hand is complete

to loosen screws.
Hand_TW Function Returns “True” when the most recent Hand_On command

and Hand_Off command is time out.
Hand_Def Function Returns “True” when hand is defined.
Hand_Type Function Returns type number of the hand.
Hand_Label$ Function Returns label of the hand.
Hand_Number Function Returns hand number of the hand.

Summary of SPEL+ Commands

20 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Safety Function Commands (For details, see Robot Controller Safety
Function Manual.)

SF_GetParam Function Returns information on the safety function parameters.
SF_GetParam$ Function Returns text information on the safety function parameters.
SF_GetStatus Function Returns the status bit of the safety function.
SF_LimitSpeedS Statement Sets and displays the speed adjustment value for the

function that adjusts the speed at the position set by the Tool
command when SLS is enabled.

SF_LimitSpeedS Function Returns the speed adjustment value of the function that
adjusts the speed at the position set by the Tool command
when SLS is enabled.

SF_LimitSpeedSEnable Statement Sets and displays On/Off for the function that adjusts the
speed of the position set by the Tool command when SLS
is enabled.

SF_LimitSpeedSEnable Function Returns the status of the function that adjusts the speed at
the position set by the Tool command when SLS is enabled.

SF_PeakSpeedS Statement Displays the peak speed value for the speed monitoring
point.

SF_PeakSpeedS Function Returns the peak speed value for the speed monitoring
point.

SF_PeakSpeedSClear Statement Clears and initializes the peak speed value for the speed
monitoring point.

SF_RealSpeedS Statement Displays the current speed of the speed monitoring point.
SF_RealSpeedS Function Returns the current speed of the speed monitoring point.

SPEL+ Language Reference

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 21

SPEL+ Language Reference
This section describes each SPEL+ command as follows:

Syntax

Syntax describes the format used for each command. For some commands, there is more
than one syntax shown, along with a number that is referenced in the command
description. Parameters are shown in italics.

Parameters

Describes each of the parameters for this command.

Return Values

Describes any values that the command returns.

Description

Gives details about how the command works.

Note

Gives additional information that may be important about this command.

See Also

Shows other commands that are related to this command. Refer to the Table of Contents
for the page number of the related commands.

Example

Gives one or more examples of using this command.

Operators

22 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Operators

The following table shows the operators for the SPEL+ language.

Keyword or Symbol Example Description
+ A+B Addition
− A-B Subtraction
* A*B Multiplication
/ A/B Division

** A**B Exponentiation
= A=B Equal
> A>B Greater than
< A<B Less than

>= A>=B Greater than or equal
<= A<=B Less or than equal
<> A<>B Not equal

And A And B Performs logical and bitwise AND operation.

Mod A Mod B Returns the remainder obtained by dividing a numeric
expression by another numeric expression.

Not Not A Performs logical or bitwise negation of the operand.

Or A Or B Performs the bitwise Or operation on the values of the
operands.

Xor A Xor B Performs the bitwise Xor operation on the values of the
operand.

Priority Order of the Operators

The operators are processed in programs in the following order.

Priority level Operator Example Description
1 () (A+B) Brackets
2 ** A**B Exponentiation

3 * A*B Multiplication
/ A/B Division

4 Mod A Mod B Returns the remainder obtained by dividing a numeric
expression by another numeric expression.

5 + A+B Addition
- A-B Subtraction

6

= A=B Equal
<> A<>B Not equal
< A<B Less than
> A>B Greater than

<= A<=B Less or than equal
>= A>=B Greater than or equal

7 Not Not A Performs logical or bitwise negation of the operand.
8 And A And B Performs logical and bitwise AND operation.

9 Or A Or B Performs the bitwise Or operation on the values of the
operands.

10 Xor A Xor B Performs the bitwise Xor operation on the values of
the operand.

!...! Parallel Processing

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 23

!...! Parallel Processing

Processes input/output statements in parallel with motion.

Syntax

motion cmd !statements !

Parameters

motion cmd Any valid motion command included in the following list: Arc, Arc3, Go, Jump,
Jump3, Jump3CP, Move, BGo, BMove, TGo, TMove.

statements Any valid parallel processing I/O statement(s) which can be executed during motion.
(See the table below)

Description

Parallel processing commands are attached to motion commands to allow I/O statements to execute
simultaneously with the beginning of motion travel. This means that I/O can execute while the arm is moving
rather than always waiting for arm travel to stop and then executing I/O. There is even a facility to define
when within the motion that the I/O should begin execution. (See the “Dn” parameter described in the table
below.)

The table below shows all valid parallel processing statements. Each of these statements may be used as
single statements or grouped together to allow multiple I/O statements to execute during one motion
statement.

Dn

Used to specify %travel before the next parallel statement is executed. “n” is a
percentage between 0 and 100 which represents the position within the motion
where the parallel processing statements should begin. Statements which follow
the Dn parameter will begin execution after n% of the motion travel has been
completed.
When used with the Jump, Jump3, and Jump3CP commands, %travel does not
include the depart and approach motion. To execute statements after the depart
motion has completed, include D0 (zero) at the beginning of the statement.
“Dn” may appear a maximum of 16 times in a parallel processing statement.

On / Off n Turn Output bit number “n” on or off.
MemOn / MemOff n Turns memory I/O bit number “n” on or off.
Out p,d
OpBCD p,q
OutW p,d

Outputs data “d” to output port “p”.

MemOut p, d
MemOutW p,d

Outputs data “d” to memory I/O port “p”.

Signal s Generates synchronizing signal.
Wait t Delays for “t” seconds prior to execution of the next parallel processing statement.
WaitSig s Waits for signal “s” before processing next statement.

Wait Sw(n) = j Delays execution of next parallel processing statement until the input bit “n” is
equal to the condition defined by “j”. (On or Off)

Wait MemSw(n) = j Delays execution of the next parallel processing statement until the memory I/O
bit “n” is equal to the condition defined by “j”. (On or Off)

Wait
other conditions

Wait other than the above two patterns are available. Refer to Wait Statement for
details.

Print Prints data to the display device.
Print # Prints data to the specified communications port.
External functions Executes the external functions declared with Declare statement.
Hand_Off n
Hand_Off n

Executes Hand_On/Hand_Off operation of hand number “n”.

!...! Parallel Processing

24 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Notes
When Motion is Completed before All I/O Commands are Complete

If, after completing the motion for a specific motion command, all parallel processing statement execution
has not been completed, subsequent program execution is delayed until all parallel processing statements
execution has been completed. This situation is most likely to occur with short moves with many I/O
commands to execute in parallel.

When the Till statement is used to stop the arm before completing the intended motion
If Till is used to stop the arm at an intermediate travel position, the system considers that the motion is
completed. The next statement execution is delayed until the execution of all parallel processing statements
has been completed.

When the AbortMotion statement or Trap is used to stop the arm before completing the motion
After the arm stops at an intermediate travel position, D statement cannot be executed.

Specifying “n” near 100% can cause path motion to decelerate
If a large value of “n” is used during CP motion, the robot may decelerate to finish the current motion. This
is because the position specified would normally be during deceleration if CP was not being used. To avoid
deceleration, consider placing the processing statement after the motion command. For example, in the
example below, the On 1 statement is moved from parallel processing during the jump to P1 to after the jump.

CP On
Jump P1 !D96; On 1!
Go P2

CP On
Jump P1
On 1
Go P2

The Jump statement and Parallel Processing
It should be noted that execution of parallel processing statements which are used with the Jump statement
begins after the rising motion has completed and ends at the start of falling motion.
It should be noted that execution of parallel processing statements which are used with the Jump3 statement
begins after the depart motion has completed and ends at the start of approach motion.

The Here statement and Parallel Processing
You cannot use both of the Here statement and parallel processing in one motion command like this:

Go Here :Z(0) ! D10; MemOn 1 !
Be sure to change the program like this:

P999 = Here
Go P999 Here :Z(0) ! D10; MemOn 1 !

See Also

Arc, Arc3, Go, Jump, Jump3, Jump3CP, Move, BGo, BMove, TGo, TMove

!...! Parallel Processing Example
The following examples show various ways to use the parallel processing feature with Motion Commands:.

Parallel processing with the Jump command causes output bit 1 to turn on at the end of the Z joint rising
travel and when the 1st, 2nd, and 4th axes begin to move. Then output bit 1 is turned off again after 50% of
the Jump motion travel has completed.

Function test
 Jump P1 !D0; On 1; D50; Off 1!
Fend

Parallel processing with the Move command causes output bit 5 to turn on when the joints have completed
10% of their move to the point P1. Then 0.5 seconds later turn output bit 5 off.

Function test2
 Move P1 !D10; On 5; Wait 0.5; Off 5!
Fend

#define

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 25

#define

Defines identifier to be replaced by specified replacement string.

Syntax

#define identifier [(parameter [, parameter])] string

Parameters

identifier Keyword defined by user which is an abbreviation for the string parameter. Rules for
identifiers are as follows:

- The first character must be alphabetic while the characters which follow may be
alphanumeric or an underscore (_).

- Spaces or tab characters are not allowed as part of the identifier .
parameter Normally used to specify a variable (or multiple variables) which may be used by the

replacement string. This provides for a dynamic define mechanism which can be used like a
macro. A maximum of up to 8 parameters may be used with the #define command. However,
each parameter must be separated by a comma and the parameter list must be enclosed within
parenthesis.

string This is the replacement string which replaces the identifier when the program is compiled.
Rules regarding replacement strings are as follows:

- Spaces or tabs are allowed in replacement strings.
- Identifiers used with other #define statements cannot be used as replacement strings.
- If the comment symbol (') is included, the characters following the comment symbol will

be treated as a comment and will not be included in the replacement string.
- The replacement string may be omitted. In this case the specified identifier is replaced by

"nothing" or the null string. This actually deletes the identifier from the program

Description

The #define instruction causes a replacement to occur within a program for the specified identifier. Each time
the specified identifier is found the identifier is replaced with the replacement string prior to compilation.
However, the source code will remain with the identifier rather than the replacement string. This allows code
to become easier to read in many cases by using meaningful identifier names rather than long difficult to read
strings of code.

The defined identifier can be used for conditional compiling by combining with the #ifdef or #ifndef
commands.

If a parameter is specified, the new identifier can be used like a macro.

Note
Using #define for variable declaration or label substitutions will cause an error:

It should be noted that usage of the #define instruction for variable declaration will cause an error.

See Also

#ifdef, #ifndef

#define

26 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

#define Example

' Uncomment next line for Debug mode.
' #define DEBUG

Input #1, A$
#ifdef DEBUG
 Print "A$ = ", A$
#endif
Print "The End"

#define SHOWVAL(x) Print "var = ", x

Integer a

a = 25

SHOWVAL(a)

#ifdef...#else...#endif

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 27

#ifdef...#else...#endif

Provides conditional compiling capabilities.

Syntax

#ifdef identifier
..put selected source code for conditional compile here.
[#else
...put selected source code for false condition here.]
#endif

Parameters

identifier Keyword defined by the user which when defined allows the source code defined between
#ifdef and #else or #endif to be compiled. Thus the identifier acts as the condition for the
conditional compile.

Description

#ifdef...#else...#endif allows for the conditional compiling of selected source code. The condition as to
whether or not the compile will occur is determined based on the identifier. #ifdef first checks if the specified
identifier is currently defined by #define. The #else statement is optional.

If defined, and the #else statement is not used, the statements between #ifdef and #endif are compiled.
Otherwise, if #else is used, then the statements between #ifdef and #else are compiled.

If not defined, and the #else statement is not used, the statements between #ifdef and #endif are skipped
without being compiled. Otherwise, if #else is used, then the statements between #else and #endif are
compiled.

See Also

#define, #ifndef

#ifdef Example
A section of code from a sample program using #ifdef is shown below. In the example below, the printing
of the value of the variable A$ will be executed depending on the presence or absence of the definition of the
#define DEBUG pseudo instruction. If the #define DEBUG pseudo instruction was used earlier in this source,
the Print A$ line will be compiled and later executed when the program is run. However, the printing of the
string "The End" will occur regardless of the #define DEBUG pseudo instruction.

' Uncomment next line for Debug mode.
' #define DEBUG

Input #1, A$
#ifdef DEBUG
 Print "A$ = ", A$
#endif
Print "The End"

#ifndef...#endif

28 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

#ifndef...#endif

Provides conditional compiling capabilities.

Syntax

#ifndef identifier
..Put selected source code for conditional compile here.
[#else
...put selected source code for true condition here.]
#endif

Parameters
identifier Keyword defined by the user which when not defined allows the source code defined between

#ifndef and #else or #endif to be compiled. Thus the identifier acts as the condition for the
conditional compile.

Description

This instruction is called the "if not defined" instruction. #ifndef...#else...#endif allow for the conditional
compiling of selected source code. The #else statement is optional.

If defined, and the #else statement is not used, the statements between #ifndef and #endif are not compiled.
Otherwise, if #else is used, then the statements between #else and #endif are compiled.

If not defined, and the #else statement is not used, the statements between #ifndef and #endif are compiled.
Otherwise, if #else is used, then the statements between #else and #endif are not compiled.

Note
Difference between #ifdef and #ifndef

The fundamental difference between #ifdef and #ifndef is that the #ifdef instruction compiles the specified
source code if the identifier is defined. The #ifndef instruction compiles the specified source code if the
identifier is not defined.

See Also

#define, #ifdef

#ifndef Example

A section of code from a sample program using #ifndef is shown below. In the example below, the printing
of the value of the variable A$ will be executed depending on the presence or absence of the definition of the
#define NODELAY pseudo instruction. If the #define NODELAY pseudo instruction was used earlier in
this source, the Wait 1 line will NOT be compiled along with the rest of the source for this program when it
is compiled. (i.e. submitted for running.) If the #define NODELAY pseudo instruction was not used (i.e.
NODELAY is not defined) earlier in this source, the Wait 1 line will be compiled and later executed when
the program is run. The printing of the string "The End" will occur regardless of the #define NODELAY
pseudo instruction.

' Comment out next line to force delays.
#define NODELAY 1

Input #1, A$
#ifndef NODELAY
 Wait 1
#endif
Print "The End"

#include

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 29

#include

Includes the specified file into the file where the #include statement is used.

Syntax

#include "fileName.INC"

Parameters

fileName fileName must be the name of an include file in the current project. All include files have the
“.inc” extension. The filename specifies the file which will be included in the current file.

Description

#include inserts the contents of the specified include file with the current file where the #include statement
is used.

Include files are used to contain #define statements and global variable declarations.

The #include statement must be used outside of any function definitions.

An include file may contain a secondary include file. For example, FILE2 may be included within FILE1,
and FILE3 may be included within FILE2. This is called nesting.

See Also

#define, #ifdef, #ifndef

#include Example

Include File (Defs.inc)

#define DEBUG 1
#define MAX_PART_COUNT 20

Program File (main.prg)

#include "defs.inc"

Function main
 Integer i

 Integer Parts(MAX_PART_COUNT)

Fend

#undef

30 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

#undef

Undefines an identifier previously defined with #define.

Syntax

#undef identifier

Parameters

identifier Keyword used in a previous #define statement.

See Also

#define, #ifdef, #ifndef

AbortMotion Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 31

AbortMotion Statement

Aborts a motion command and puts the running task in error status.
This command is for the experienced user and you need to understand the command specification before
use.

Syntax

AbortMotion {robotNumber | All }

Parameters

robotNumber Robot number that you want to stop the motion for.
All Aborts motion for all robots.

Description

Depending on the robot status when AbortMotion is executed, the result is different as follows.
In each case, hook an error and handle the error processing with OnErr to continue the processing.
Error 2999 can use the constant ERROR_DOINGMOTION.
Error 2998 can use the constant ERROR_NOMOTION.

Write a program not to execute AbortMotion more than twice before executing the continuous execution
(Cont).

When the robot is executing the motion command
The robot promptly pauses the arm motion immediately and cancels the remaining motions.
Error 2999 (ERROR_DOINGMOTION) occurs in the task which was running the motion command for the
robot.
For the following motion commands, the robot directly moves to the next position from the point where it
was paused.

When the robot has been paused immediately
When AbortMotion is executed, the remaining motion is canceled.
Error 2999 (ERROR_DOINGMOTION) occurs in the task which was running the motion command for the
robot when specifying the Cont statement.
For the following motion commands, the robot directly moves to the next position from the point where it
was paused.

When the robot is in WaitRecover status (Safeguard Open)
When AbortMotion is executed, the remaining motion is canceled.
The following motions can be selected with the Recover command flags.

When executing “Recover robotNumber, WithMove”, the robot motors turn on and the recovery motion
is executed.
When Cont is executed, error 2999 (ERROR_DOINGMOTION) occurs in the task which was running
the motion command for the robot.
For the following motion commands, the robot directly moves to the next position from the point where
it was paused.

When executing “Recover robotNumber, WithoutMove”, the robot motors turn on.
When Cont is executed, error 2999 (ERROR_DOINGMOTION) occurs in the task which was running
the motion command for the robot.
For the following motion commands, the robot directly moves to the next position from the point where
it was paused, without the recovery motion.

AbortMotion Statement

32 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

When the robot is executing commands other than motion commands
Error 2998 (ERROR_NOMOTION) occurs in the task which was previously running the motion command
for the robot. When the task is waiting with Wait or Input commands, the task is aborted promptly and error
2998 occurs.
When executing a motion command with CP On and a program has no more motion commands, error 2998
occurs even if the robot is running.

When the robot is not running from a program (task)
An error occurs.

Notes
About the Controllers to use

It cannot be used with T/VT series.

See Also

OnErr, Recover, Till

AbortMotion Statement Example
When memory I/O #0 turns on, AbortMotion is executed and the robot goes back to the home position.

Function main
 Motor On
 Xqt sub, NoEmgAbort
 OnErr GoTo errhandle

 Go P0
 Wait Sw(1)
 Go P1

 Quit sub
 Exit Function

errstart:
 Home
 Quit sub
 Exit Function

errhandle:
 Print Err
 If Err = ERROR_DOINGMOTION Then
 Print "Robot is moving" ' Executing Go P0 or Go P1
 EResume errstart
 ElseIf Err = ERROR_NOMOTION Then
 Print " Robot is not moving " ' Executes Wait Sw(1)
 EResume errstart
 EndIf

 Print "Error Stop" ' Other error occurs
 Quit All
Fend

Function sub
 MemOff 0
 Wait MemSw(0)
 AbortMotion 1
 MemOff 0
Fend

Abs Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 33

Abs Function

Returns the absolute value of a number.

Syntax

Abs(number)

Parameters

number Any valid numeric expression.

Return Values

The absolute value of a number.

Description

The absolute value of a number is its unsigned magnitude. For example, Abs(-1) and Abs(1) both return 1.

See Also

Atan, Atan2, Cos, Int, Mod, Not, Sgn, Sin, Sqr, Str$, Tan, Val

Abs Function Example

The following examples are done from the command window using the Print instruction.

> print abs(1)
1
> print abs(-1)
1
> print abs(-3.54)
3.54
>

Accel Statement

34 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Accel Statement

Sets (or displays) the acceleration and deceleration rates for the point to point motion instructions Go, Jump
and Pulse.

Syntax
(1) Accel accel, decel [, departAccel, departDecel, approAccel, approDecel]
(2) Accel

Parameters

accel Integer expression 1 or more representing a percentage of maximum acceleration rate.
decel Integer expression 1 or more representing a percentage of the maximum deceleration rate.
departAccel Depart acceleration for Jump. Valid Entries are 1 or more.

Optional. Available only with Jump command.
departDecel Depart deceleration for Jump. Valid Entries are 1 or more.

Optional. Available only with Jump command.
approAccel Approach acceleration for Jump. Valid Entries are 1 or more.

Optional. Available only with Jump command.
approDecel Approach deceleration for Jump. Valid Entries are 1 or more.

Optional. Available only with Jump command.

Return Values

When parameters are omitted, the current Accel parameters are displayed.

Description
Accel specifies the acceleration and deceleration for all Point to Point type motions. This includes motion
caused by the Go, Jump and Pulse robot motion instructions.

Each acceleration and deceleration parameter defined by the Accel instruction may be an integer value 1 or
more. This number represents a percentage of the maximum acceleration (or deceleration) allowed. Usually,
the maximum value is 100. However, some robots allow setting larger than 100. Use AccelMax function to
get the maximum value available for Accel.

The Accel instruction can be used to set new acceleration and deceleration values or simply to print the
current values. When the Accel instruction is used to set new accel and decel values, the first 2 parameters
(accel and decel) in the Accel instruction are required.

The optional departAccel, departDecel, approAccel, and approDecel parameters are effective for the Jump
instruction only and specify acceleration and deceleration values for the depart motion at the beginning of
Jump and the approach motion at the end of Jump.

The Accel value initializes to the default values (low acceleration) when any one of the following conditions
occurs:

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

Accel Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 35

Notes
Executing the Accel command in Low Power Mode (Power Low)

If Accel is executed when the robot is in low power mode (Power Low), the new values are stored, but the
current values are limited to low values.
The current acceleration values are in effect when Power is set to High, and Teach mode is OFF.

Accel vs. AccelS
It is important to note that the Accel instruction does not set the acceleration and deceleration rates for straight
line and arc motion. The AccelS instruction is used to set the acceleration and deceleration rates for the
straight line and arc type moves.

Accel setting larger than 100
Usually, the maximum value is 100. However, some robots allow setting larger than 100.
In general use, Accel setting 100 is the optimum setting that maintains the balance of acceleration and
vibration when positioning. However, you may require an operation with high acceleration to shorten the
cycle time by decreasing the vibration at positioning. In this case, set the Accel to larger than 100. Except
in some operation conditions, the cycle time may not change by setting Accel to larger than 100.

See Also

AccelR, AccelS, Go, Jump, Jump3, Power, Pulse, Speed, TGo

Accel Statement Example
The following example shows a simple motion program where the acceleration (Accel) and speed (Speed) is
set using predefined variables.

<Example 1>
Function acctest
 Integer slow, accslow, decslow, fast, accfast, decfast

 slow = 20 'set slow speed variable
 fast = 100 'set high speed variable
 accslow = 20 'set slow acceleration variable
 decslow = 20 'set slow deceleration variable
 accfast = 100 'set fast acceleration variable
 decfast = 100 'set fast deceleration variable

 Accel accslow, decslow
 Speed slow
 Jump pick
 On gripper
 Accel accfast, decfast
 Speed fast
 Jump place
 .
 .
 .
Fend

Accel Statement

36 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

<Example 2>
Set the Z joint downward deceleration to be slow to allow a gentle placement of the part when using the Jump
instruction. This means we must set the Zdnd parameter low when setting the Accel values.

>Accel 100,100,100,100,100,35

>Accel
 100 100
 100 100
 100 35
>

Accel Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 37

Accel Function

Returns specified acceleration value.

Syntax

Accel(paramNumber)

Parameters

paramNumber Integer expression which can have the following values:
 1: acceleration specification value
 2: deceleration specification value
 3: depart acceleration specification value for Jump
 4: depart deceleration specification value for Jump
 5: approach acceleration specification value for Jump
 6: approach deceleration specification value for Jump

Return Values

Integer 1% or more

See Also
Accel Statement

Accel Function Example
This example uses the Accel function in a program:

Integer currAccel, currDecel

' Get current accel and decel
currAccel = Accel(1)
currDecel = Accel(2)
Accel 50, 50
SRVJump pick
' Restore previous settings
Accel currAccel, currDecel

AccelMax Function

38 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

AccelMax Function

Returns maximum acceleration value limit available for Accel.

Syntax
AccelMax(maxValueNumber)

Parameters
maxValueNumber Integer expression which can have the following values:
 1: acceleration maximum value
 2: deceleration maximum value
 3: depart acceleration maximum value for Jump
 4: depart deceleration maximum value for Jump
 5: approach acceleration maximum value for Jump
 6: approach deceleration maximum value for Jump

Return Values
Integer 1% or more

See Also
Accel

AccelMax Function Example
This example uses the AccelMax function in a program:

' Get maximum accel and decel
Print AccelMax(1), AccelMax(2)

AccelR Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 39

AccelR Statement

Sets or displays the acceleration and deceleration values for tool rotation control of CP motion.

Syntax
(1) AccelR accel [, decel]
(2) AccelR

Parameters
accel Real expression in degrees / second2 (0.1 to 5000).
decel Real expression in degrees / second2 (0.1 to 5000).

Valid entries range of the parameters

 accel / decel
VT series 0.1 to 1000

C series, N series
T series, G series, GX series

RS series, LS-B series
0.1 to 5000

(deg/sec2)
Return Values

When parameters are omitted, the current AccelR settings are displayed.

Description
AccelR is effective when the ROT modifier is used in the Move, Arc, Arc3, BMove, TMove, and Jump3CP
motion commands.

The AccelR value initializes to the default values when any one of the following conditions occurs:

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

See Also

Arc, Arc3, BMove, Jump3CP, Power, SpeedR, TMove

AccelR Statement Example

AccelR 360, 200

AccelR Function

40 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

AccelR Function

Returns specified tool rotation acceleration value.

Syntax
AccelR(paramNumber)

Parameters
paramNumber Integer expression which can have the following values:
 1: acceleration specification value
 2: deceleration specification value

Return Values
Real value in degrees / second2

See Also

AccelR Statement

AccelR Function Example

Real currAccelR, currDecelR

' Get current accel and decel
currAccelR = AccelR(1)
currDecelR = AccelR(2)

AccelS Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 41

AccelS Statement

Sets the acceleration and deceleration rates for the Straight Line and Continuous Path robot motion
instructions such as Move, Arc, Arc3, Jump3, CVMove, etc.

Syntax
(1) AccelS accel [, decel] [, departAccel, departDecel, approAccel, approDecel]
(2) AccelS

Parameters
accel Real expression represented in mm/sec2 units to define acceleration and deceleration values

for straight line and continuous path motion. If decel is omitted, then accel is used to specify
both the acceleration and deceleration rates.

decel Optional. Real expression represented in mm/sec2 units to define the deceleration value.
departAccel Optional. Real expression for depart acceleration value for Jump3, Jump3CP.
departDecel Optional. Real expression for depart deceleration value for Jump3, Jump3CP.
approAccel Optional. Real expression for approach acceleration value for Jump3, Jump3CP.
approDecel Optional. Real expression for approach deceleration value for Jump3, Jump3CP.

Valid entries range of the parameters (mm/sec2)

 accel / decel
departAccel / departDecel
approAccel / approDecel

N2 0.1 to 5000
LS20-B, T series, VT series 0.1 to 10000

C4-A901** 0.1 to 15000
C4-A601**, C8-A1401**,

G series, GX series, RS series,
LS3-B, LS6-B, LS10-B

C8-A701**W, C8-A901**W, N6, C12

0.1 to 25000

C8-A701**, C8-A701**R,
C8-A901**, C8-A901**R 0.1 to 35000

Return Values

Displays Accel and Decel values when used without parameters
When displays Accel and Decel values, displays adjusted Accel and Decel values according to the currently
configured hand weight, for each accel, decel, departAccel, departDecel, approAccel, approDecel.

Description
AccelS specifies the acceleration and deceleration for all interpolated type motions including linear and
curved interpolations. This includes motion caused by the Move and Arc motion instructions.

The AccelS value initializes to the default values when any one of the following conditions occurs:

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

AccelS Statement

42 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Notes
Executing the AccelS command in Low Power Mode (Power Low):

If AccelS is executed when the robot is in low power mode (Power Low), the new values are stored, but the
current values are limited to low values.

The current acceleration values are in effect when Power is set to High, and Teach mode is OFF.

Accel vs. AccelS:
It is important to note that the AccelS instruction does not set the acceleration and deceleration rates for point
to point type motion. (i.e. motions initiated by the Go, Jump, and Pulse instructions.) The Accel instruction
is used to set the acceleration and deceleration rates for Point to Point type motion.

Upper limit value
The AccelS upper limit value of SCARA robots (including RS series manipulators) varies depending on
Weight setting and the position of the spline unit. For details, refer to the Manipulator manuals (ACCELS
Setting for CP Motions).

The AccelS upper limit value of 6-Axis robots varies depending on Weight setting. For details, refer to the
Manipulator manuals (Specifications).

See Also
Accel, Arc, Arc3, Jump3, Jump3CP, Power, Move, TMove, SpeedS

AccelS Statement Example
The following example shows a simple motion program where the straight line/continuous path acceleration
(AccelS) and straight line/continuous path speed (SpeedS) are set using predefined variables.

Function acctest
 Integer slow, accslow, fast, accfast

 slow = 20 'set slow speed variable
 fast = 100 'set high speed variable
 accslow = 200 'set slow acceleration variable
 accfast = 5000 'set fast acceleration variable
 AccelS accslow
 SpeedS slow
 Move P1
 On 1
 AccelS accfast
 SpeedS fast
 Jump P2
 .
 .
 .
Fend

AccelS Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 43

AccelS Function

Returns acceleration or deceleration for CP motion commands.

Syntax

AccelS(paramNumber)

Parameters
paramNumber Integer expression which can have the following values:
 1: acceleration value
 2: deceleration value
 3: depart acceleration value for Jump3, Jump3CP
 4: depart deceleration value for Jump3, Jump3CP
 5: approach acceleration value for Jump3, Jump3CP
 6: approach deceleration value for Jump3, Jump3CP
 7: acceleration value adjusted by hand weight
 8: deceleration value adjusted by hand weight
 9: depart acceleration value for Jump3, Jump3CP adjusted by hand weight
 10: depart deceleration value for Jump3, Jump3CP adjusted by hand weight
 11: approach acceleration value for Jump3, Jump3CP adjusted by hand weight
 12: approach deceleration value for Jump3, Jump3CP adjusted by hand weight

Return Values
Real value from 0 to 5000 mm/sec/sec

See Also
AccelS Statement, Arc3, SpeedS, Jump3, Jump3CP

AccelS Function Example

Real savAccelS

savAccelS = AccelS(1)

Acos Function

44 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Acos Function

Returns the arccosine of a numeric expression.

Syntax

Acos(number)

Parameters

number Numeric expression representing the cosine of an angle.

Return Values

Real value, in radians, representing the arccosine of the parameter number.

Description

Acos returns the arccosine of the numeric expression. Values range is from -1 to 1. The value returned by
Acos will range from 0 to PI radians. If number is < -1 or > 1, an error occurs.

To convert from radians to degrees, use the RadToDeg function.

See Also

Abs, Asin, Atan, Atan2, Cos, DegToRad, RadToDeg, Sgn, Sin, Tan, Val

Acos Function Example

Function acostest
 Double x

 x = Cos(DegToRad(30))
 Print "Acos of ", x, " is ", Acos(x)
Fend

Agl Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 45

Agl Function

Returns the joint angle for the selected rotational joint, or position for the selected linear joint.

Syntax
Agl(jointNumber)

Parameters
jointNumber Integer expression representing the joint number. Values are from 1 to the number of

joints on the robot. The additional S axis is 8 and T axis is 9.

Return Values
The joint angle for selected rotational joint or position for selected linear joints.

Description
The Agl function is used to get the joint angle for the selected rotational joint or position for the selected
linear joint.

If the selected joint is rotational, Agl returns the current angle, as measured from the selected joint's 0 position,
in degrees. The returned value is a real number.

If the selected joint is a linear joint, Agl returns the current position, as measured from the selected joint's 0
position, in mm. The returned value is a real number.

If an auxiliary arm is selected with the Arm statement, Agl returns the angle (or position) from the standard
arm's 0 pulse position to the selected arm.

See Also
PAgl, Pls, PPls

Agl Function Example
The following examples are done from the command window using the Print instruction.

> print agl(1), agl(2)
 17.234 85.355

AglToPls Function

46 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

AglToPls Function

Converts robot angles to pulses.

Syntax

AglToPls(j1, j2, j3, j4 [, j5, j6] [, j7] [, j8, j9])

Parameters
j1 - j6 Real expressions representing joint angles.
j7 Real expression representing the joint #7 angle. For the Joint type 7-axis robot.
j8 Real expression representing the additional S axis angle.
j9 Real expression representing the additional T axis angle.

Return Values

A robot point whose location is determined by joint angles converted to pulses.

Description
Use AglToPls to create a point from joint angles.

Note
Assignment to point can cause part of the joint position to be lost.

In certain cases, when the result of AglToPls is assigned to a point data variable, the arm moves to a joint
position that is different from the joint position specified by AglToPls.

For example:

P1 = AglToPls(0, 0, 0, 90, 0, 0)
Go P1 ' moves to AglToPls(0, 0, 0, 0, 0, 90) joint position

Similarly, when the AglToPls function is used as a parameter in a CP motion command, the arm may move
to a different joint position from the joint position specified by AglToPls.

Move AglToPls(0, 0, 0, 90, 0, 0) ' moves to AglToPls(0, 0, 0, 0, 0, 90) joint position

When using the AglToPls function as a parameter in a PTP motion command, this problem does not occur.

See Also

Agl, JA, Pls

AglToPls Function Example

Go AglToPls(0, 0, 0, 90, 0, 0)

AIO_In Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 47

AIO_In Function

Reads analog value form optional analog I/O input channel.

Syntax
AIO_In(Channel Number)

Parameters
Channel Number Specify the channel number of the analog I/O.

Return Values
Return the analog input value of the analog I/O channel which specified in channel number in real number.
Return value range differs depending on the input range configuration of the analog I/O board.

Description

InFunction

See Also
AIO_InW Function, AIO_Out, AIO_OutW, AIO_Out Function, AIO_OutW Function, AIO_Set, Wait

AIO_In Function Example

Function main
 Real var1
 var1 = AIO_In(2) 'Acquires input state of analog channel input 2
 If var1 > 5.0 Then
 Go P1
 Go P2
 'Execute other motion command here
 '.
 '.
 Else
 Print "Error in initialization!"
 Print "Sensory Inputs not ready for cycle start"
 Print "Please check analog inputs 2."
 EndIf
Fend

AIO_InW Function

48 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

AIO_InW Function

Reads analog value from optional analog I/O input channel.

Syntax
AIO_InW(Channel Number)

Parameters
Channel Number Specify the channel number of the analog I/O.

Return Values
Returns the input states (long integers from 0 to 65535) of specified analog I/O channel.

The following table shows input voltage (current) and return value of each input channel according to input
range configuration of analog I/O board.

Input Data Input Range Configuration
Hexadecimal Decimal ±10.24(V) ±5.12(V) 0-5.12(V) 0-10.24(V) 0-24(mA)
0xFFFF 65535 10.23969 5.11984 5.12000 10.24000 24.00000

0x8001 32769 0.00031 0.00016 2.56008 5.12016 12.00037
0x8000 32768 0.00000 0.00000 2.56000 5.12000 12.00000

0x0000 0 -10.24000 -5.12000 0.00000 0.00000 0.00000

See Also

AIO_InFunction, AIO_Out, AIO_OutW, AIO_OutFunction, AIO_OutWFunction, AIO_Set, Wait

AIO_In Function Example

Long word0

word0 = AIO_InW(1)

AIO_Out Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 49

AIO_Out Statement

Output analog value from the optional analog I/O output channel.

Syntax
AIO_Out Channel Number, Outputdata [, Forced]

Parameters
Channel Number Specify the channel number of the analog I/O.
Output data Specify the real number of Real type which indicates output voltage [V] or current

value [mA] in formula or value.
Forced Optional. Usually omitted.

Description
Output the Real value indicating specified voltage [V] or current [mA] to analog output port which specified
on channel port. Set the voltage output range of analog output port or selection of voltage and current output
by the switch on the board. If setting a value which out of range of analog I/O port, output the border value
(maximum and minimum value) which is not out of the range.
AIO_Out command becomes an error if outputting the speed information by specified channel. Stop the
speed information output and execute the AIO_Out command.

Note
Forced Flag

Specify the flag if outputting the analog I/O when operating emergency stop or opening the Safety Door by
NoPause task and NoEmgAbort task (special task specified NoPause or NoEmgAbort to start when executing
Xqt).
Need to be careful about the system design since analog I/O output changes when operating emergency stop
or opening the Safety Door.

See Also
AIO_InFunction, AIO_OutW, AIO_OutFunction, AIO_OutWFunction, AIO_Set

AIO_Out Example

Output 7.0 [V] from the analog I/O channel 1.

AIO_Out 1, 7.0

AIO_Out Function

50 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

AIO_Out Function

Returns analog value in real number which is outputting in optional analog I/O output channel.

Syntax
AIO_Out(Channel Number)

Parameters
Channel Number Specify the channel number of the analog I/O.

Return Values
Returns specified analog I/O channel voltage and current output state in real number. Unit of voltage
output is [V] and current output is [mA].
This function is available when outputting the speed information of the robot on specified channel.

See Also
AIO_InFunction, AIO_Out, AIO_OutW, AIO_OutWFunction, AIO_Set, Wait

AIO_Out Function Example

Real rdata01

rdata01 = AIO_Out(1)

AIO_OutW Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 51

AIO_OutW Statement

Output 16 bits analog value from optional analog I/O output channel.

Syntax
AIO_OutW Channel Number, Output data [, Forced]

Parameters
Channel Number Specify the channel number of the analog I/O.
Output data Specify the output data (Integer expression from 0 to 65535) in formula or value.
Forced Optional. Usually omitted.

Description
Output to analog I/O channel specified by channel number.
For the output data, specify integer expression from 0 to 65535 in formula or value.
Output voltage (current) is as follows according to output range configuration which is set by the switch on
the board.

Output Data Output Range Configuration
Hexadecimal Decimal ±10(V) ±5(V) 0-5(V) 0-10(V) 4-20(mA) 0-20(mA)
0xFFFF 65535 9.99970 4.99985 5.00000 10.00000 20.00000 20.00000

0x8001 32769 0.00031 0.00015 2.50008 5.00015 12.00024 10.00031
0x8000 32768 0.00000 0.00000 2.50000 5.00000 12.00000 10.00000

0x0000 0 -10.00000 -5.00000 0.00000 0.00000 4.00000 0.00000

Note
Forced Flag

Specify the flag if outputting the analog I/O when operating emergency stop or opening the Safety Door by
NoPause task, NoEmgAbort task (special task specified NoPause or NoEmgAbort to start when executing
Xqt), and background task.
Need to be careful about the system design since analog I/O output changes when operating emergency stop
or opening the Safety Door.

See Also
AIO_InFunction, AIO_Out, AIO_OutFunction, AIO_OutWFunction, AIO_Set, Wait

AIO_OutW Example

AIO_OutW 1, &H8000

AIO_OutW Function

52 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

AIO_OutW Function

Returns output analog value in Long integers from 0 to 65535 which is output on optional analog I/O
channel.

Syntax
AIO_OutW(Channel Number)

Parameters
Channel Number Specify the channel number of the analog I/O.

Return Values
Returns the output state of specified analog I/O channel in Long integers from 0 to 65535.

The following table shows output voltage (current) and return value of each output channel according to
output range configuration of analog I/O board.

Output Data Output Range Configuration
Hexadecimal Decimal ±10(V) ±5(V) 0-5(V) 0-10(V) 4-20(mA) 0-20(mA)
0xFFFF 65535 9.99970 4.99985 5.00000 10.00000 20.00000 20.00000

0x8001 32769 0.00031 0.00015 2.50008 5.00015 12.00024 10.00031
0x8000 32768 0.00000 0.00000 2.50000 5.00000 12.00000 10.00000

0x0000 0 -10.00000 -5.00000 0.00000 0.00000 4.00000 0.00000

This function is available when outputting the speed information of the robot on specified channel.

See Also
AIO_InFunction, AIO_Out, AIO_OutW, AIO_OutFunction, AIO_Set, Wait

AIO_OutW Function Example

Long word0

word0 = AIO_OutW(1)

AIO_Set Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 53

AIO_Set Statement

Output the speed information of the robot to optional analog I/O output channel.

Syntax
(1) AIO_Set channelNumber, On, {RefTCPSpeed | RealTCPSpeed | RefECPSpeed |

RealECPSpeed }, MaximumOutputSpeed [, MiminumOutputSpeed] [, Cnv, Conveyor
Number]

(2) AIO_Set Channel Number, Off
(3) AIO_Set [Channel Number]

Parameters
Channel Number Specify the channel number of the analog I/O.
On Specify the output data (Integer expression from 0 to 65535) in formula or

value.
Off Finish analog output of the speed information and initializes to output “0”.
RefTCPSpeed Output the commanded speed of TCP which is currently selected.
RealTCPSpeed Output the actual speed of TCP which is currently selected.
RefECPSpeed Output the commanded speed of ECP which is currently selected.
RealECPSpeed Output the actual speed of ECP which is currently selected.
MaximumOutputSpeed Specify the Real type real number (unit [mm/s]) indicating speed when

outputting the maximum value of the output range in formula or value.
MinimumOutputSpeed Specify the Real type real number (unit [mm/s]) indicating speed when

outputting the minimum value of the output range in formula or value. Value
is “0” [0mm/s] when omitting.

Cnv Output the relative speed of TCP with the conveyor. Specify with the conveyor
number.

Conveyor Number Specify the conveyor number used to calculate the relative speed of TCP.

Description
Perform real-time output the speed of TCP (tool center point) or ECP (external control point) by analog
voltage or current to analog I/O channel specified by channel number. Set the selection of analog voltage
or current and output range configuration by a switch and jumper on the analog I/O board.

The robot speed corresponding to minimum and maximum value of the output range is determined by liner
interpolation depending on specified minimum output speed and maximum output speed as shown in the
figure below.

Minimum Output Speed

Maximum Output Speed

Minimum Output Maximum Output Output
[V or mA]

Tip Speed [mm/s]

AIO_Set Statement

54 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

If specifying the commanded speed (RefTCPSpeed or RefECPSpeed), output the ideal speed waveform
based on the applying command value on the robot.
If specifying the actual speed (RealTCPSpeed and RealECPSpeed), output the calculated speed waveform
based on the actual robot move.
If specifying the TCP (RefTCPSpeed or RealTCPSpeed), output the center point speed of currently
selected tool (default: Tool 0).
If specifying the ECP (RefECPSpeed or RealECPSpeed), output the speed of external control point (ECP)
which is currently selected. If ECP is not selected (when ECP = 0), output the minimum output.
ECP and Cnv cannot be specified at the same time.
Only the conveyor number that has been calibrated with the manipulator can be specified.
If only channel number is specified, display the output configuration information of the specified analog
channel I/O. If all argument is omitted, display the output configuration information of all analog channel
I/O.

See Also
AIO_InFunction, AIO_Out, AIO_OutFunction, AIO_Out, AIO_OutWFunction, AIO_Set, Wait

AIO_Set Example

Set actual speed output of TCP of robot 1 and tool 1 to analog output channel.
Perform analog output the robot operating speed and disable the speed output configuration.

Robot 1
Tool 1
Motor On
Power High
SpeedS 2000
AccelS 5000
AIO_Set 1, On, RealTCPSpeed, 2000.0, 0.0
Move P1
AIO_Set 1, Off

AIO_Set Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 55

AIO_Set Function

Returns the configuration information of the robot speed output which is set in optional analog I/O output
channel.

Syntax
AIO_Set(channelNumber, Index)

Parameters
Channel number Specify the channel number of the analog I/O.
Index Specify the index of acquiring configuration information in integer.

Return Values
The following table shows the information that is available from the AIO_Set function:

Index Information
1 On(1) / Off(0)
2 RefTCPSpeed(0)/ RealTCPSpeed(1)/ RefECPSpeed(2)/ RealECPSpeed(3)
3 Maximum output speed [mm/sec]
4 Minimum output speed [mm/sec]
5 Conveyor number is not specified (0)/Conveyor number (1 to 16)

See Also
AIO_InFunction, AIO_Out, AIO_OutW, AIO_OutFunction, AIO_OutWFunction, AIO_Set, Wait

AIO_Set Function Example

Print “Analog Ch#1 speed output is: ”, AIO_Set(1, 1)

AIO_TrackingSet Statement

56 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

AIO_TrackingSet Statement

Sets the distance tracking function.

Syntax
(1) AIO_TrackingSet channelNumber, Conversion coefficient of measured value and distance,

Measured value at 0mm, Lower limit of available range for tracking, Upper
limit of available range for tracking, [, Robot motions out of the available
range for tracking [,Axis to execute the distance tracking function]]

(2) AIO_TrackingSet channelNumber

Parameters
Channel Number Integer expression from 1 to 8 representing the channel number of analog I/O

which the distance sensor to be used is connected.

Conversion coefficient of measured value and distance

Convert the measured value (V, mA) of distance sensor to distance (mm).
Specify the coefficient in read number between −500 to 500 excepting 0.
(Unit: mm/V, mm/mA)

Measured value at 0mm

Specify the voltage or current value when the distance is 0mm (in case of
displacement meter: amount of displacement). (Unit: V, mA)

Set the value within the input range setting of the analog I/O board.

Input range
setting

Minimum
value

Maximum
value

±10.24 V −10.24 V 10.24 V
±5.12 V −5.12 V 5.12 V

0-5.12 V 0 V 5.12 V
0-10.24 V 0 V 10.24 V
0-24 mA 0 mA 24 mA

Lower limit of available range for tracking

Lower limit of the available range for tracking is the same as the lower limit
of the allowable displacement amount when executing the distance tracking
function. Specify the limit between −300 to 300 in real number. (Unit: mm)
Be sure to specify a larger value than the lower limit of the measurable range
of the distance sensor.
For lower limit of the available range for tracking, specify a smaller value
than its upper limit.

Upper limit of available range for tracking

Upper limit of the available range for tracking is the same as the upper limit
of the allowable displacement amount when executing the distance tracking
function. Specify the limit between −300 to 300 in real number. (Unit: mm)
Be sure to specify a smaller value than the upper limit of the measurable
range of the distance sensor.
For upper limit of the available range for tracking, specify a larger value than
its lower limit.

AIO_TrackingSet Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 57

Robot motions out of the available range for tracking
When the robot is out of the available range for tracking (between the upper
and lower limits as described in previous page), specify 0 or 1 to stop
/continue the robot motion.
The value can be omitted. If omitted, “0” is set.
Constants are as follows:

Constant Value Description

AIOTRACK_ERRSTOP 0 Robot stops due to an error outside
of the available range for tracking.

AIOTRACK_CONTINUE 1 Robot continues motion outside of
the available range for tracking.

Axis to execute the distance tracking function

Specify an axis (integer value from 0 to 5) to execute the distance tracking
function. Specify the axis which is matched with the measured direction of
the distance sensor to be used.
The value can be omitted. If omitted, “2” is set.
Constants are as follows:

Constant Value Description
AIOTRACK_TOOL_X 0 Too coordinate X axis
AIOTRACK_TOOL_Y 1 Tool coordinate Y axis
AIOTRACK_TOOL_Z 2 Tool coordinate Z axis
AIOTRACK_ECP_X 3 ECP coordinate X axis
AIOTRACK_ECP_Y 4 ECP coordinate Y axis
AIOTRACK_ECP_Z 5 ECP coordinate Z axis

Values: 3 to 5 can be specified when the external control point (ECP) option
is enabled.

Return Values
Syntax (2) shows the current set value on the console.

The following is a correspondence table of the above mentioned parameter names and parameter names
displayed on the console.

Parameter names Names displayed on
the console

Conversion coefficient of measured value and
distance ScaleFactor

Measured value at 0mm RefVoltage
Lower limit of available range for tracking ThresholdMin
Upper limit of available range for tracking ThresholdMax
Robot motions out of the available range for tracking OutOfRangeMode
Axis to execute the distance tracking function TrackingAxis

Displayed examples are as follows:
Ex 1: When channel #1 is set

Ch1:
ScaleFactor 1.000[V/mm or mA/mm]
RefVoltage 0.000 [V or mA]
ThresholdMin −10.000[mm]
ThresholdMax 10.000[mm]
OutOfRangeMode AIOTRACK_ERRSTOP
TrackingAxis AIOTRACK_TOOL_Z

Ex2: When channel #1 is not set

Ch1: Undefined

AIO_TrackingSet Statement

58 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Description
AIO_TrackingSet sets parameters for the distance tracking function. Parameters to be set are determined by
the distance sensor or the working environment. After booting the controller, AIO_TrackingSet must be
executed before executing AIO_TrackingStart. Set parameters keep values until the robot controller is turned
OFF or rebooted.

Detailed descriptions for parameters are as follows:

Conversion coefficient of measured value and distance:

When the distance sensor indicates displacement: +2mm per +1V, conversion coefficient is 2. At this time,
+2mm is the displacement to direction where the distance becomes longer. Depending on the displacement
meter, the voltage is set to positive to the direction where the distance becomes shorter. In this case, the
conversion coefficient will be negative.

Measured value at 0mm:

For distance sensor, especially the displacement meter, voltage or current value at distance: 0mm differs
depending on the products. Also, some of products can set any value for voltage or current value at
distance: 0mm by user setting. Specify values depending on the using distance sensor. If the output
voltage is of distance sensor is 0V when the distance (or displacement) is 0mm, this parameter is “0”.

Upper/lower limit of available range for tracking:

Set the upper and lower limits depending on the variations allowed by applications.
Set values must be within the measurable range of the distance sensor. The measurable range of the
distance sensor differs depending on each sensor and user settings. Be sure to set the limits before
executing the distance tracking function. If this parameter is set outside the measurable range of the
distance sensor, the distance tracking function cannot work properly and the robot may move
unintentionally.

Robot motions out of the available range for tracking:

The following figures indicates the motion trajectory of the robot when the distance tracking function is
executed to Z direction in Tool (when the “Robot motions out of the available range for tracking”
parameter is set to “0” or “1”).

P1: Start point of the distance tracking function
P2: Target point

The figures indicate an object which will move outside of the measurable range at point A and return
inside the range at point B.
Set the measured value (displacement) in Tool Z direction at P1 (start point of the function) as a
reference value. The distance tracking function controls the robot so that the measured value always
becomes the reference value. Therefore, when the robot moves from P1 to P2, the measured values
between P1 and point A will be constant.
When the robot is arrived at point A, it stops due to an error if the parameter is set to “0”. If the
parameter is set to “1”, the robot keeps moving to P2 from point A. However, the distance tracking
function is disabled while the robot is out of the available range. When the robot moved to point B, the
function is enabled since the robot is within the available range. The robot moves as with the motion
from P1 to point A so that the measured value will be constant.

Tool Z direction

0: Stop the robot motion due to out of
the range

1: Continue the robot motion even out
of the range

Distance Tracking Function

Enabled Disabeled Enabled

Out of the range

AIO_TrackingSet Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 59

When the parameter is set to “1” and the robot moves outside of the range, the robot moves on the
trajectory from the start point (P1) to the target point (P2) with CP motion. As shown in the figures below,
the trajectory between A and B (outside of the available range) will become parallel to its of P1-P2. When
the robot arrived to point B, the robot returned to inside the available range. Therefore, the robot is
controlled based on the measured value and may move suddenly.

Tool Z direction

0: Stop the robot motion due to out of
the range

1: Continue the robot motion even out
of the range

1: Continue the robot motion even out
of the range

0: Stop the robot motion due to out of
the range

CAUTION

■ If each parameter is not set correctly, the robot may move unintentionally when
AIO_TrackingStart is executed.

Be sure to set properly depending on the using device and working environment.

If the robot moves abnormally, immediately hold down the emergency button.

See Also
AIO_TrackingStart, AIO_TrackingEnd, AIO_TrackingOn Function

AIO_TrackingSet Statement

60 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

AIO_TrackingSet Function Example
The following is an example program which moves the robot by using the distance tracking function.
(P1: Start point, P2: End point)

CAUTION

■ The parameters set in the example are reference values.

Please note that the operation may not be successful or the motion may be
vibratory depending on the set parameters and some operating conditions.

If the robot moves abnormally, immediately hold down the emergency button.

Function Main
 Motor On
 Power High
 SpeedS 30
 AccelS 300,300

 Go P1 ‘ Move to P1: start point
 AIO_TrackingSet 1,1,0,-5,5,0,2 ‘ Set the distance tracking function
 AIO_TrackingStart 1,5,5,5 ‘ Start the distance tracking function
 Move P2 ‘ Move to P2 with executing the distance tracking

function
 AIO_TrackingEnd ‘ End the distance tracking function
 Motor Off
Fend

AIO_TrackingStart Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 61

AIO_TrackingStart Statement

Starts the distance tracking function.

Syntax
AIO_TrackingStart channelNumber,ProportionalGain [,IntegralGain [,DifferentialGain]]

Parameters
Channel Number Integer expression from 1 to 8 representing the channel number of analog I/O

which the distance sensor to be used is connected.

ProportionalGain Real value (less than 50 except 0) representing a proportional gain of the

distance tracking function.
Optimum value differs depending on the robot motion speed or workpiece
shape. Therefore, the value needs to be set depending on the using
environment.

IntegralGain Real value (less than 100) representing an integral gain of the distance

tracking function.
Optional. If omitted, “0” is set.
To increase accuracy of the distance tracking, adjust the integral gain.

DifferentialGain Real value (less than 100) representing a differential gain of the distance

tracking function.
Optional. If omitted, “0” is set.
To increase accuracy of the distance tracking, adjust the differential gain.

Description

The distance tracking function controls the robot so that a constant distance can be kept between the robot
and the workpiece using the value measured by distance sensor which is connected to the analog I/O.
Direction of the robot axis to be controlled is specified by the “Axis to execute the distance tracking function”
parameter of AIO_TrackingSet. If the kept distance is set as “reference value”, the measured value by the
distance sensor when executing the command will be the reference value.
Execute AIO_TrackingStart to start the distance tracking function and the function ends by executing
AIO_TrackingEnd. The function is working until AIO_TrackingEnd is executed. If you do not use the
function, execute AIO_TrackingEnd immediately to end the function.
If AIO_TrackingStart is executed before AIO_TrackingSet, an error occurs. Be sure to execute
AIO_TrackingSet before executing AIO_TrackingStart.
The distance tracking function is available for SCARA robots (including RS series manipulators) and 6-Axis
robots (including N series manipulators).
The robot can move while the function is working. However, the robot moves in CP motion only and PTP
motion is not available.
If the robot passes singularity neighborhood while the distance tracking function is working, an error occurs.

AIO_TrackingStart Statement

62 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

The following commands cannot be used while the distance tracking function is executed.

Command to turn OFF the motor Motor off, SFree
PTP motion commands BGo, Go, JTran, Jump, Jump3, Jump3CP, JumpTLZ, Pass, Ptran,

Pulse, TGo
Force control commands FCKeep, Motion commands with FC, FS#.Reset, FS.Reboot
Torque control command TC
Conveyor tracking commands Motion command + Cnv_QueGet
VRT commands VRT, VRT_CPMotion
Setting commands AIO_TrackingSet, Arm, ArmSet, Base, Calib, CalPls, ECP,

ECPSet, Hofs, Inertia, MCal, Power, TLSet, Tool, Weight
(For AIO_TrackingSet, ArmSet, ECPSet, and TLSet, an error
occurs when changing the using number.)

Others Brake, Here, Home, VCal, WaitPos

Settings for ProportionalGain, IntegralGain, and DifferentialGain
In ProportionalGain, the larger value you set, the faster the robot tracks. However, if the set value is too large,
the robot moves too fast and may result in an error.
IntegralGain and DifferentialGain can be omitted. To increase the correction accuracy, the setting is required.
If the setting is not proper, the robot may move fast or vibrate.
For details on each gain setting, refer to the following manual.

EPSON RC+ User’s Guide: 19. Distance Tracking Function

See Also

AIO_TrackingSet, AIO_TrackingEnd, AIO_TrackingOn Function

CAUTION

■ If too large value is set for ProportionalGain, IntegralGain, and DifferentialGain,
the robot may move unintentionally.

Please increase values of each parameter gradually. Changing the value to a
larger one at one time is extremely hazardous and the robot may move
unintentionally.

If the robot moves abnormally, immediately hold down the emergency button.

AIO_TrackingStart Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 63

AIO_TrackingStart Statement Example
The following is an example program which moves the robot by using the distance tracking function.
(P1: Start point, P2: relay point, P3: End point)

Function Main
 Motor On
 Power High
 SpeedS 30
 AccelS 300,300

 Go P1 ‘ Move to P1: start point
 AIO_TrackingSet 1,1,0,-5,5,0,2 ‘ Set the distance tracking function
 AIO_TrackingStart 1,1,0,0 ‘ Start the distance tracking function
 Move P2 ‘ Move to P2 with executing the distance tracking

function
 Move P3 ‘ Move to P3 with executing the distance tracking

function
 AIO_TrackingEnd ‘ End the distance tracking function
 Motor Off
Fend

CAUTION

■ The parameters set in the example are reference values.

Please note that the operation may not be successful or the motion may be
vibratory depending on the set parameters and some operating conditions.

If the robot moves abnormally, immediately hold down the emergency button.

AIO_TrackingEnd Statement

64 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

AIO_TrackingEnd Statement

Ends the distance tracking function.

Syntax
AIO_TrackingEnd

Description

End the distance tracking function started by AIO_TrackingStart.

See Also

AIO_TrackingSet, AIO_TrackingStart, AIO_TrackingOn Function

AIO_TrackingEnd Statement Example
The following is an example program which moves the robot by using the distance tracking function.
(P1: Start point, P2: relay point, P3: End point)

Function Main
 Integer ChNo
 Motor On
 Power High
 SpeedS 30
 AccelS 300,300
 ChNo=1

 Go P1 ‘ Move to P1: start point
 AIO_TrackingSet ChNo,10,0,-3,3,0,2 ‘ Set the distance tracking function
 AIO_TrackingStart ChNo,1,0,0 ‘ Start the distance tracking function
 Move P2 ‘ Move to P2 with executing the distance

tracking function
 Move P3 ‘ Move to P3 with executing the distance

tracking function
 AIO_TrackingEnd ‘ End the distance tracking function
 Motor Off
Fend

CAUTION

■ The parameters set in the example are reference values.

Please note that the operation may not be successful or the motion may be
vibratory depending on the set parameters and some operating conditions.

If the robot moves abnormally, immediately hold down the emergency button.

AIO_TrackingOnFunction

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 65

AIO_TrackingOnFunction

Returns whether the specified robot is executing the distance tracking function or not.

Syntax
AIO_TrackingOn(robotNumber)

Parameters
robotNumber An integer expression representing a robot number which you want to acquire.

Return Values
True (−1) when the distance tracking function is executed, False(0) when it stopped.

See Also
AIO_TrackingSet, AIO_TrackingStart, AIO_TrackingEnd

AIO_TrackingOn Function Example
Function Main
 Integer i
 i = AIO_TrackingOn(1)
 print i
Fend

Example on command window
＞print AIO_TrackingOn(1)
0

Align Function

66 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Align Function

Returns the point data converted to align the robot orientation (U, V, W) at the specified point in the tool
coordinate system with the nearest or specified axis of the specified local coordinate system.

Syntax

(1) Align (Point[, localNumber[, axisNumber]])

Parameters

Point The point data.
localNumber The local coordinate system number to be a reference for the alignment of

orientation.
If omitted, the base coordinate system is used.

axisNumber Specify the axis number to align the robot orientation. If omitted, the robot
orientation will be aligned to the nearest coordinate axis.

Constant Value
COORD_X_PLUS 1: +X axis
COORD_Y_PLUS 2: +Y axis
COORD_Z_PLUS 3: +Z axis
COORD_X_MINUS 4: -X axis
COORD_Y_MINUS 5: -Y axis
COORD_Z_MINUS 6: -Z axis

Description

While operating the 6-axis robot (including N series), the robot orientation may have to be aligned with an
axis of the specified local coordinate system without changing the tool coordinate system position (origin)
defined with the point data.
Align Function converts the orientation data (U, V, W) of the specified point data and aligns with the nearest
or specified axis of the specified local coordinate system.

For robots except for the 6-axis robots (including N series), it returns a specified point.

See Also

AlignECP Function, LJM Function

Align Function Example

Move Align(P0) ROT

P1 = Align(P0, 1)
Move P1 ROT

P2 = Align(P0, 1, 3)
Move P2 ROT

AlignECP Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 67

AlignECP Function

Returns the point data converted to align the robot orientation (U, V, W) at the specified point in the tool
coordinate system with the nearest axis of the specified ECP coordinate system.

Syntax

(1) AlignECP (Point, ECPNumber)

Parameters

Point The point data.
ECPNumber The ECP coordinate system number to be a reference for the alignment of orientation.

Description

While operating the 6-axis robot (including N series), the robot orientation may have to be aligned with an
axis of the specified local coordinate system without changing the tool coordinate system position (origin)
defined with the point data.
AlignECP Function converts the orientation data (U,V,W) of the specified point data and aligns with the
nearest axis of the specified local coordinate system.

For robots except for the 6-axis robots (including N series), it returns a specified point.

See Also

Align Function, LJM Function

AlignECP Function Example

Move AlignECP(P0) ROT

P1 = AlignECP(P0, 1)
Move P1 ROT

And Operator

68 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

And Operator

Operator used to perform a logical or bitwise And of 2 expressions.

Syntax

result = expr1 And expr2

Parameters

expr1, expr2 For logical And, any valid expression which returns a Boolean result. For bitwise And, an
integer expression.

result For logical And, result is a Boolean value. For bitwise And, result is an integer.

Description

A logical And is used to combine the results of 2 or more expressions into 1 single Boolean result. The
following table indicates the possible combinations.

expr1 expr2 result
True True True
True False False
False True False
False False False

A bitwise And performs a bitwise comparison of identically positioned bits in two numeric expressions and
sets the corresponding bit in result according to the following table:

If bit in expr1 is And bit in expr2 is The result is
0 0 0
0 1 0
1 0 0
1 1 1

See Also

LShift, Mask, Not, Or, RShift, Xor

And Operator Example

Function LogicalAnd(x As Integer, y As Integer)

 If x = 1 And y = 2 Then
 Print "The values are correct"
 EndIf
Fend

Function BitWiseAnd()

 If (Stat(0) And &H800000) = &H800000 Then
 Print "The enable switch is open"
 EndIf
Fend

>print 15 and 7
7
>

javascript:hhobj_7.Click()
javascript:hhobj_8.Click()

AOpen Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 69

AOpen Statement

Opens file in the appending mode.

Syntax

AOpen fileName As #fileNumber
 .
 .
Close #fileNumber

Parameters

fileName String expression that specifies valid path and file name. If specifying only a file
name, the file must be in the current directory. See ChDisk for details.

fileNumber Integer expression representing values from 30 to 63.

Description

Opens the specified file and identifies it by the specified file number. This statement is used for appending
data to the specified file. If the specified file is not found, create a new file.
The specified fileNumber identifies the file while it is open and cannot be used to refer to a different file
until the current file is closed. fileNumber is used by other file operations such as Print#, Write, Flush, and
Close.

Use the Close statement to close the file and release the file number.

It is recommended that you use the FreeFile function to obtain the file number so that more than one task
are not using the same number.

Notes
A network path is available.
File write buffering

File writing is buffered. The buffered data can be written with Flush statement. Also, when closing a file
with Close statement, the buffered data can be written.

See Also

Close, Print #, BOpen, ROpen, UOpen, WOpen, FreeFile, Flush

AOpen Statement Example

Integer fileNum, i

FileNum = FreeFile
WOpen "TEST.TXT" As #fileNum
For i = 0 To 100
 Print #fileNum, i
Next I
Close #fileNum
....
....
....
FileNum = FreeFile
AOpen "TEST.TXT" As #FileNum
For i = 101 to 200
 Print #FileNum, i
Next i
Close #FileNum

Arc, Arc3 Statements

70 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Arc, Arc3 Statements

Arc moves the arm to the specified point using circular interpolation in the XY plane.
Arc3 moves the arm to the specified point using circular interpolation in 3 dimensions.
These two commands are available for SCARA robots (including RS series) and 6-axis robots (including N
series).

Syntax

(1) Arc midPoint, endPoint [ROT] [CP] [searchExpr] [!...!] [SYNC]
(2) Arc3 midPoint, endPoint [ROT] [ECP] [CP] [searchExpr] [!...!] [SYNC]

Parameters

midPoint Point expression or XY function. The middle point which the arm travels through on its way
from the current point to endPoint.

endPoint Point expression or XY function. The end point which the arm travels to during the arc type
motion. This is the final position at the end of the circular move.

ROT Optional. :Decides the speed/acceleration/deceleration in favor of tool rotation.
ECP Optional. External control point motion. This parameter is valid when the ECP option is

enabled.
CP Optional. Specifies continuous path motion.
searchExpr Optional. A Till or Find expression.

Till | Find
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

!...! Parallel processing statements may be used with the Arc statement. These are optional. (Please
see the Parallel Processing description for more information.)

SYNC Reserves a motion command. The robot will not move until SyncRobots is executed.

Description

Arc and Arc3 are used to move the arm in a circular type motion from the current position to endPoint by
way of midPoint. The system automatically calculates a curve based on the 3 points (current position,
endPoint, and midPoint) and then moves along that curve until the point defined by endPoint is reached.
Also, for SCARA robots, U coordinate moves to move from current point to end point. However, for 6-Axis
robot, U, V and W coordinates moves with the shortest posture for rotation to move from current point to
end point.
If using this, check the actual movement in advance.

Arc and Arc3 use the SpeedS speed value and AccelS acceleration and deceleration values. Refer to Using
Arc3 with CP below on the relation between the speed/acceleration and the acceleration/deceleration. If,
however, the ROT modifier parameter is used, Arc and Arc3 use the SpeedR speed value and AccelR
acceleration and deceleration values. In this case SpeedS speed value and AccelS acceleration and
deceleration value have no effect.

Usually, when the move distance is 0 and only the tool orientation is changed, an error will occur. However,
by using the ROT parameter and giving priority to the acceleration and the deceleration of the tool rotation,
it is possible to move without an error. When there is not an orientational change with the ROT modifier
parameter and movement distance is not “0”, an error will occur.

Also, when the tool rotation is large as compared to move distance, and when the rotation speed exceeds the
specified speed of the manipulator, an error will occur. In this case, please reduce the speed or append the
ROT modifier parameter to give priority to the rotational speed/acceleration/deceleration.

Arc, Arc3 Statements

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 71

When ECP is used (Arc3 only), the trajectory of the external control point coresponding to the ECP number
specified by ECP instruction moves circular with respect to the tool coordinate system. In this case, the
trajectory of tool center point does not follow a circular line.

ECP

Work

TCP

Setting Speed and Acceleration for Arc Motion
SpeedS and AccelS are used to set speed and acceleration for the Arc and Arc3 instructions. SpeedS and
AccelS allow the user to specify a velocity in mm/sec and acceleration in mm/sec2.

Notes
Arc Instruction works in Horizontal Plane Only

The Arc path is a true arc in the Horizontal plane. The path is interpolated using the values for endPoint as
its basis for Z and U. Use Arc3 for 3 dimensional arcs.

Range Verification for Arc Instruction
The Arc and Arc3 statements cannot compute a range verification of the trajectory prior to the arc motion.
Therefore, even for target positions that are within an allowable range, en route the robot may attempt to
traverse a path which has an invalid range, stopping with a severe shock which may damage the arm. To
prevent this from occurring, be sure to perform range verifications by running the program at low speeds
prior to running at faster speeds.

Suggested Motion to Setup for the Arc Move
Because the arc motion begins from the current position, it may be necessary to use the Go, Jump or other
related motion command to bring the robot to the desired position prior to executing Arc or Arc3.

Using Arc, Arc3 with CP
The CP parameter causes the arm to move to the end point without decelerating or stopping at the point
defined by endPoint. This is done to allow the user to string a series of motion instructions together to cause
the arm to move along a continuous path while maintaining a specified speed throughout all the motion. The
Arc and Arc3 instructions without CP always cause the arm to decelerate to a stop prior to reaching the end
point.

Potential Errors
Changing Hand (arm) Attributes

Pay close attention to the HAND attributes of the points used with the Arc instruction. If the hand orientation
changes (from Right Handed to Left Handed or vice-versa) during the circular interpolation move, an error
will occur. This means the arm attribute (/L Lefty, or /R Righty) values must be the same for the current
position, midPoint and endPoint points.

Attempt to Move Arm Outside Work Envelope
If the specified circular motion attempts to move the arm outside the work envelope of the arm, an error will
occur.

Arc, Arc3 Statements

72 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

See Also
!Parallel Processing!, AccelS, Move, SpeedS

Arc, Arc3 Statements Example

The diagram below shows arc motion which originated at the point P100 and then moves through P101 and
ends up at P102. The following function would generate such an arc:

Function ArcTest
 Go P100
 Arc P101, P102
Fend

P101

P100

P102

Tip

When first trying to use the Arc instruction, it is suggested to try a simple arc with points directly in front of
the robot in about the middle of the work envelope. Try to visualize the arc that would be generated and
make sure that you are not teaching points in such a way that the robot arm would try to move outside the
normal work envelope.

Arch Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 73

Arch Statement

Defines or displays the Arch parameters for use with the Jump, Jump3, Jump3CP instructions.

Syntax

(1) Arch archNumber, departDist, approDist
(2) Arch archNumber
(3) Arch

Parameters

archNumber Integer expression representing the Arch number to define. Valid Arch numbers are from 0
to 6 making a total of 7 entries into the Arch table. (see default Arch Table below)

departDist The vertical distance moved (Z) at the beginning of the Jump move before beginning
horizontal motion. (specified in millimeters)
For Jump3 and Jump3CP, it specifies the depart distance before a span motion. (specified in
millimeters)

approDist The vertical distance required (as measured from the Z position of the point the arm is
moving to) to move in a completely vertical fashion with all horizontal movement
complete. (specified in millimeters)
For Jump3 and Jump3CP, it specifies the approach distance before a span motion.
(specified in millimeters)

Return Values

Displays Arch Table when used without parameters.
The Arch table of the specified Arch number will be displayed when only the Arch number is specified.

Description

The primary purpose of the Arch instruction is to define values in the Arch Table which is required for use
with the Jump motion instruction. The Arch motion is carried out per the parameters corresponding to the
arch number selected in the Jump C modifier. (To completely understand the Arch instruction, the user must
first understand the Jump instruction.)

The Arch definitions allow the user to "round corners" in the Z direction when using the Jump C instruction.
While the Jump instruction specifies the point to move to (including the final Z joint position), the Arch table
entries specify how much distance to move up before beginning horizontal motion (riseDist) and how much
distance up from the final Z joint position to complete all horizontal motion (fallDist). (See the diagram
below)

Depart
Distance

Approach
Distance

Arch Statement

74 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

There are a total of 8 entries in the Arch Definition Table with 7 of them (0-6) being user definable. The 8th
entry (Arch 7) is the default Arch which actually specifies no arch at all which is referred to as Gate Motion.
(See Gate Motion diagram below) The Jump instruction used with the default Arch entry (Entry 8) causes
the arm to do the following:

1) Begin the move with only Z-joint motion until it reaches the Z-Coordinate value specified by the
LimZ command. (The upper Z value)

2) Next move horizontally to the target point position until the final X, Y and U positions are reached.
3) The Jump instruction is then completed by moving the arm down with only Z-joint motion until the

target Z-joint position is reached.

Gate Motion
(Jump with Arch 7)

P0 P1

Arch Table Default Values

Arch

Number
Depart

Distance
Approach
Distance

0 30 30
1 40 40
2 50 50
3 60 60
4 70 70
5 80 80
6 90 90

Notes
Another Cause of Gate Motion

When the specified value of the Rising Distance or Falling Distance is larger than the actual Z-joint distance
which the robot must move to reach the target position, Gate Motion will occur. (i.e. no type Arch motion
will occur.)

Arch values are Maintained
The Arch Table values are permanently saved and are not changed until either the user changes them.

Arch Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 75

Caution for Arch motion
Jump motion trajectory is comprised of vertical motion and horizontal motion. It is not a continuous path
trajectory. The actual Jump trajectory of arch motion is not determined by Arch parameters alone. It also
depends on motion and speed.

In a Jump trajectory, the depart distance increases and the approach distance decreases when the motion
speed is set high. When the fall distance of the trajectory is shorter than the expected, lower the speed and/or
the deceleration, or change the fall distance to be larger.

Always use care when optimizing Jump trajectory in your applications. Execute Jump with the desired
motion and speed to verify the actual trajectory.
When speed is lower, the trajectory will be lower. If Jump is executed with high speed to verify an arch
motion trajectory, the end effector may crash into an obstacle with lower speed.

Even if Jump commands with the same distance and speed are executed, the trajectory is affected by motion
of the robot arms. As a general example, for a SCARA robot the vertical upward distance increases and the
vertical downward distance decreases when the movement of the first arm is large. When the vertical fall
distance decreases and the trajectory is shorter than the expected, lower the speed and/or the deceleration, or
change the fall distance to be larger.

See Also

Jump, Jump3, JumpCP

Arch Statement Example
The following are examples of Arch settings done from the command window.

> arch 0, 15, 15
> arch 1, 25, 50
> jump p1 c1
> arch
 arch0 = 15.000 15.000
 arch1 = 25.000 50.000
 arch2 = 50.000 50.000
 arch3 = 60.000 60.000
 arch4 = 70.000 70.000
 arch5 = 80.000 80.000
 arch6 = 90.000 90.000
>

Arch Function

76 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Arch Function

Returns arch settings.

Syntax

Arch(archNumber, paramNumber)

Parameters

archNumber Integer expression representing arch setting to retrieve parameter from (0 to 6).
paramNumber 1: depart distance
 2: approach distance

Return Values

Real number containing distance.

See Also

Arch Statement

Arch Function Example

Double archValues(6, 1)
Integer i

' Save current arch values
For i = 0 to 6
 archValues(i, 0) = Arch(i, 1)
 archValues(i, 1) = Arch(i, 2)
Next i

AreaCorrection Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 77

AreaCorrection Function

Returns point at which correction was made using correction area

Syntax
AreaCorrection(Point, AreaNum)

Parameters
Point Specifies the point data to be corrected.
AreaNum Specifies the area number (integer from 1 to 8) as an expression or

numerical value.

Description
Points resulting from a correction are returned based on the predefined correction area. These
are coordinates defined in the same local coordinate system as the points before correction. This
function can be used with a motion command (such as Go or Jump command) to move the robot
to a specified position. This command improves the positional accuracy of the specified point. In
the point expression, enter the position on the drawing.
The correction is applied only to the position. No correction is applied for additional axes, UVW
coordinate values, or orientation flags. The input point data values are output as is.
Specifying a correction area that has not been set will result in an error.

Notes
Taught points

Do not apply the AreaCorrection function to taught point data. A correction is made for the
aligned teaching position, resulting in misalignment.

When far from the correction area
When the area is far from the correction area set in AreaCorrectionSet, the effect of the
correction is reduced. Set reference points such that the correction area surrounds the operating
point.
When plane is selected for Kind (the type of correction), the effect of the correction is reduced at
points vertically distant from the plane selected for the correction area. Set the correction area at
an appropriate height or, if reference points can be established, specify space for Kind (the type
of correction).

When different from the orientation flag used to set the correction area
When the orientation flags and reference points set up with AreaCorrectionSet differ, an error
occurs.

When different from the orientation (U, V, W) used to set the correction area
Corrections can be made for SCARA robots (including RS series).
Vertical 6-axis robots (including N series) can be corrected if the tool coordinate system's Z-axis
at the point before correction matches the tool coordinate system's Z-axis at the reference point
of the correction area. If there is no match, the correction is not applicable and an error occurs.
The angle of the tool coordinate system's Z axis can be acquired by specifying COORD_Z_PLUS
as the axis number for the DiffToolOrientation function.

See Also

AreaCorrectionSet, AreaCorrectionClr, AreaCorrectionDef Function, AreaCorrectionInv,
AreaCorrectionOffset Function, DiffToolOrientation Function

AreaCorrection Function

78 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

AreaCorrection Statement Example
Function sample

 ' P(1:4) Reference point
 P1 = XY(-100, 200, -20, 0)
 P2 = XY(100, 200, -20, 0)
 P3 = XY(-100, 400, -20, 0)
 P4 = XY(100, 400, -20, 0)

 ' P(11:14) Actually use the point where P(1:4) was taught
 P11 = XY(-100, 200.5, -20, 0)
 P12 = XY(100.3, 200.1, -20, 0)
 P13 = XY(-100.4, 400.8, -20, 0)
 P14 = XY(100.2, 400.4, -20, 0)

 ' Set correction area
 AreaCorrectionSet 1, P(1:4), P(11:14), MODE_PLANE

 P999 = AreaCorrection(P1, 1) ' P999 is a corrected point
 Print Dist(P11, P999)

 P999 = AreaCorrection(XY(0, 300, -20, 0), 1) ' Correct points in area
 Print P999
Fend

[Output]
0
 X: 0.100 Y: 300.450 Z: -20.000 U: 0.000 /R /0

AreaCorrectionClr Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 79

AreaCorrectionClr Statement

Clears correction area.

Syntax
AreaCorrectionClr AreaNum

Parameters
AreaNum Specifies the area number (integer from 1 to 8) as an expression or

numerical value.

Return Values
Clears the correction area corresponding to the area number.
This instruction cannot be executed while the robot is operating. Use in a stopped state.

See Also
AreaCorrectionSet, AreaCorrectionDef Function, AreaCorrectionInv, AreaCorrectionOffset
Function

AreaCorrectionClr Statement Example
AreaCorrectionClr 1

AreaCorrectionDef Function

80 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

AreaCorrectionDef Function

Returns status as to whether the specified correction area has been set.

Syntax
AreaCorrectionDef(AreaNum)

Parameters
AreaNum Specifies the area number (integer from 1 to 8) as an expression or

numerical value.

Return Values
Returns "True" if correction area has been set and "False" if not.

See Also

AreaCorrectionSet, AreaCorrectionClr, AreaCorrectionInv, AreaCorrectionOffset Function

AreaCorrectionDef Function Example

Function DisplayAreaCorrectionDef(areaNum As Integer)

 If AreaCorrectionDef(areaNum) = False Then
 Print "Area", areaNum, " is not defined"
 Else
 Print "Area Definition:"
 AreaCorrectionSet areaNum
 EndIf
Fend

AreaCorrectionInv Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 81

AreaCorrectionInv Function

Returns corrected points to their original condition

Syntax
AreaCorrectionInv(Point, AreaNum)

Parameters
Point Specifies the point data to be corrected.
AreaNum Specifies the area number (integer from 1 to 8) as an expression or

numerical value.

Description
For points that have been corrected with the AreaCorrection function, returns the point data that
existed before correction.
By applying AreaCorrectionInv to a point that was actually created by teaching or to a point that
has been corrected, you can obtain the point data that existed before correction.
Specifying a correction area that has not been set will result in an error.

See Also

AreaCorrectionSet, AreaCorrectionClr, AreaCorrectionDef Function, AreaCorrectionOffset
Function

AreaCorrectionInv Function Example
Function AreaCorrectionTest

' P(1:4) Reference point
P1 = XY(-100, 200, -20, 0)
P2 = XY(100, 200, -20, 0)
P3 = XY(-100, 400, -20, 0)
P4 = XY(100, 400, -20, 0)

' P(11:14) Actually use the point where P(1:4) was taught
P11 = XY(-100, 200.5, -20, 0)
P12 = XY(100.3, 200.1, -20, 0)
P13 = XY(-100.4, 400.8, -20, 0)
P14 = XY(100.2, 400.4, -20, 0)

' Set correction area
AreaCorrectionSet 1, P(1:4), P(11:14), MODE_PLANE

P888 = AreaCorrection(P1, 1) ' P888 is a corrected point
P999 = AreaCorrectionInv(P888, 1) ' P999 is the point prior to conversion
Print Dist(P11, P888)
Print Dist(P1, P999)

Fend

[Output]
0
0

AreaCorrectionOffset Function

82 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

AreaCorrectionOffset Function

Returns points relatively displaced from corrected points

Syntax
AreaCorrectionOffset(Point, offset, AreaNum[, TOOL])

Parameters
Point Specifies the point data of the position to serve as reference for relative

movement.
offset Specifies the amount of relative movement in point data.
AreaNum Specifies the area number (integer from 1 to 8) as an expression or

numerical value.
TOOL Indicates which coordinate system to use as reference when making relative

movement. If omitted, local coordinate system will be reference.
 When movement is based on a local coordinate system, the coordinates are

relative to a coordinate system in which the point expression is defined.
When movement is based on a tool coordinate system, the coordinates are
relative to a point expression position.
TOOL Constant Value
Local coordinate reference AC_LOCAL 0
Tool coordinate reference AC_TOOL 1

Description

Returns a point that has moved relative to a point corrected by the AreaCorrection function. The
coordinates are defined in the same local coordinate system as the specified point. This function
can be used in conjunction with a motion command (such as Go or Jump command) to move the
robot to a specified position.
When used in conjunction with the Here function, it can perform the same operation as BGo and
TGo. The amount of relative movement is more accurate if it is within the correction area.
Specifying a correction area that has not been set will result in an error.

Notes
When a relative movement in orientation is made

If a relative movement in orientation is performed, the orientation after the relative movement will
not be subject to correction and an error may occur.

See Also

AreaCorrectionSet, AreaCorrectionClr, AreaCorrectionDef Function, AreaCorrectionInv, Here

AreaCorrectionOffset Function Example

' Assume correction area 1 is already defined
' Similar to BGo XY(50, 0, 0, 0)
Go AreaCorrectionOffset(Here, XY(50, 0, 0, 0), 1)

' Similar to TGo XY(50, 0, 0, 0)
Go AreaCorrectionOffset(Here, XY(50, 0, 0, 0), 1, AC_TOOL)

AreaCorrectionSet Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 83

AreaCorrectionSet Statement

Sets and displays the correction area.

Syntax
(1) AreaCorrectionSet AreaNum, refPointList, taughtPointList, Kind
(2) AreaCorrectionSet AreaNum
(3) AreaCorrectionSet

Parameters
AreaNum Specifies the area number (integer from 1 to 8) as an expression or

numerical value.
refPointList Specifies sequential numbers for point data you wish to use as reference

points, where two point numbers for the starting and ending points are joined
by a colon, such as P(1:4).

 To maximize the effect of the correction, select reference points that
surround the point to be corrected.

taughtPointList Specifies taught point data corresponding to a refPointList such as P(1:4),
where two point numbers for the starting and ending points are joined by a
colon. The order of the point data should be set to correspond to the
refPointList.

Kind Integer value indicating the type of correction.
 Plane correction allows you to make corrections to points on a plane

composed of the points you have selected as reference points. If plane
correction is selected, place the refPointList on a plane. A minimum of three
reference points is required.

 Space correction allows you to make corrections to points in three-
dimensional space composed of the points you have selected as reference
points. When selecting 3D correction, make sure that the refPointList
surround the area to be corrected. A minimum of four reference points is
required.
Kind Constant Value
Plane MODE_PLANE 2
Space MODE_SPACE 3

Return Values

When specified in syntax (1), the correction area is set with the specified area number.
When specified in syntax (2), the content of the specified area number is displayed.
When specified in syntax (3), the entire content of the defined correction area is displayed.

Description
Sets the correction area to be used by the area correction function. By setting the correction area
and using the AreaCorrection function, AreaCorrectionInv function, and AreaCorrectionOffset
function, you can improve the positioning accuracy of points within the correction area.
This instruction cannot be executed during operation. Use in a stopped state.
For information on how to select the reference position, see the following manual:

EPSON RC+ User's Guide, 22.3 Area Correction Function

AreaCorrectionSet Statement

84 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Notes
About Correction Area Data

The correction area remains in effect until the controller is turned off. When the controller is
started, the correction area is not defined.

About the Tool
When performing corrections using the AreaCorrection function, use the same tool that was used
when teaching the reference points for the correction area. Using different tools may reduce the
correction effect.

When far from the correction area
When the area is far from the correction area set in AreaCorrectionSet, the effect of the
correction is reduced. Set reference points such that the correction area surrounds the operating
point.
When plane is selected for Kind (the type of correction), the effect of the correction is reduced at
points vertically distant from the plane selected for the correction area. Set the correction area at
an appropriate height or, if a reference point can be established in the height direction, specify
space for Kind (the type of correction).

When different from the orientation flag used to set the correction area
When the orientation flags and reference points set up with AreaCorrectionSet differ, an error
occurs. For the reference point, set the same orientation flag as the point at which the operation
is to be performed.

When different from the orientation (U, V, W) used to set the correction area
Corrections can be made for SCARA robots (including RS series).
Vertical 6-axis robots (including N series) can be corrected if the tool coordinate system's Z-axis
at the point before correction matches the tool coordinate system's Z-axis at the reference point
of the correction area. If there is no match, the correction is not applicable and an error occurs.
The angle of the tool coordinate system's Z axis can be acquired by specifying COORD_Z_PLUS
as the axis number for the DiffToolOrientation function.

See Also

AreaCorrectionClr, AreaCorrectionDef Function, AreaCorrectionInv, AreaCorrectionOffset
Function, DiffToolOrientation Function

AreaCorrectionSet Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 85

AreaCorrectionSet Statement Example
An example of use is shown below. Use the taught points for P11 to P14.
If P1 to P4 are the positions of the reference points on the drawing as shown below, the
correction area will be a square 200 mm wide with P1, P2, P3, and P4 as its vertices.

Function AreaCorrectionTest

' P(1:4) Reference point
P1 = XY(-100, 200, -20, 0)
P2 = XY(100, 200, -20, 0)
P3 = XY(-100, 400, -20, 0)
P4 = XY(100, 400, -20, 0)

' P(11:14) Actually use the point where P(1:4) was taught
P11 = XY(-100, 200.5, -20, 0)
P12 = XY(100.3, 200.1, -20, 0)
P13 = XY(-100.4, 400.8, -20, 0)
P14 = XY(100.2, 400.4, -20, 0)

' Set correction area
AreaCorrectionSet 1, P(1:4), P(11:14), MODE_PLANE

Fend

Arm Statement

86 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Arm Statement

Selects or displays the arm number to use.

Syntax

(1) Arm armNumber
(2) Arm

Parameters

armNumber Optional integer expression. Valid range is from 0 to 15. The user may select up to
16 different arms. Arm 0 is the standard (default) robot arm. Arm 1 to 15 are auxiliary
arms defined by using the ArmSet instruction. When omitted, the current arm number
is displayed.

Return Values

When the Arm instruction is executed without parameters, the system displays the current arm number.

Description

Allows the user to specify which arm to use for robot instructions. Arm allows each auxiliary arm to use
common position data. If no auxiliary arms are installed, the standard arm (arm number 0) operates. Since
at time of delivery the arm number is specified as “0”, it is not necessary to use the Arm instruction to select
an arm. However, if auxiliary arms are used they must first defined with the ArmSet instruction.

The auxiliary arm configuration capability is provided to allow users to configure the proper robot parameters
for their robots when the actual robot configuration is a little different than the standard robot. For example,
if the user mounted a 2nd orientation joint to the 2nd robot link, the user will probably want to define the
proper robot linkages for the new auxiliary arm which is formed. This will allow the auxiliary arm to function
properly under the following conditions:

- Specifying that a single data point be moved through by 2 or more arms.
- Using Pallet
- Using Continuous Path motion
- Using relative position specifications
- Using Local coordinates

For SCARA robots (including RS series) with rotating joints used with a Cartesian coordinate system, joint
angle calculations are based on the parameters defined by the ArmSet parameters. Therefore, this command
is critical if any auxiliary arm or hand definition is required.

Robot parameter data is stored in compact flash in controller. Therefore, writing to command flash occurs
when executing this command. Frequent writing to compact flash affect to lifetime of compact flash. We
recommend to use this command minimally.

Arm Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 87

Notes
Arm 0

Arm 0 cannot be defined or changed by the user through the ArmSet instruction. It is reserved since it is used
to define the standard robot configuration. When the user sets Arm to “0”, this means to use the standard
robot arm parameters.

Using the Arm Length Calibration Option
Applies the arm length calibration value to Arm 0 and automatically switches to Arm 0 when ArmCalib is
turned On. Use Arm 0 to apply the arm length calibration value when moving the robot. The arm length
calibration value will not be applied even if ArmCalib is On when using an arm number other than Arm 0.
To use standard robot arm parameters, use Arm 0 with ArmCalib turned Off.

Arm Number Not Defined
Selecting auxiliary arm numbers that have not been defined by the ArmSet command will result in an error.

See Also

ArmClr, ArmSet, ECPSet, TLSet, ArmCalibSet

Arm Statement Example

The following examples are potential auxiliary arm definitions using the ArmSet and Arm instructions.
ArmSet defines the auxiliary arm and Arm defines which Arm to use as the current arm. (Arm 0 is the default
robot arm and cannot be adjusted by the user.)

From the command window:

> ArmSet 1, 300, -12, -30, 300, 0
> ArmSet
 arm0 250 0 0 300 0
 arm1 300 -12 -30 300 0

> Arm 0
> Jump P1 'Jump to P1 using the Standard Arm Config
> Arm 1
> Jump P1 'Jump to P1 using auxiliary arm 1

Arm Function

88 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Arm Function

Returns the current arm number for the current robot.

Syntax

Arm

Return Values

Integer containing the current arm number.

See Also

Arm Statement

Arm Function Example

Print "The current arm number is: ", Arm

ArmCalib Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 89

ArmCalib Statement

Enables or disables arm length calibration for the robot currently selected.

Syntax
ArmCalib On | Off

Parameters
On | Off Select On to enable arm length calibration. Select Off to disable arm length calibration.

Description
The ArmCalib On instruction enables arm length calibration.
Execute ArmCalib On to set the calibration value specified using ArmCalibSet to Arm 0, and switch the
Arm to 0.

The ArmCalib Off instruction disables arm length calibration.
Execute ArmCalib Off to set the standard parameters to Arm 0. Note that the Arm will not switch
automatically when ArmCalib Off is executed.

Arm length calibration is enabled by default when purchasing the Arm Length Calibration Option.
Even when arm length calibration is enabled, switching to an Arm other than 0 will use the settings
configured for the Arm number set.

Robot parameter data is stored in the compact flash memory in the controller. Therefore, writing to the
compact flash memory occurs when executing this command. Frequent writing to the compact flash
memory affects the lifetime of the compact flash memory. We recommend limiting the use of this
command at a minimum.

Note
This command is only available when the Arm Length Calibration Option is installed.

Do not restore backup files with ArmCalib On on a controller that has the Arm Length
Calibration Option disabled.

Attempting to restore backup files with ArmCalib On on a controller that has the Arm Length Calibration
Option disabled will automatically set ArmCalib Off. Keep this in mind when restoring to a separate
controller.

See Also

ArmCalibClr, ArmCalibSet, ArmCalibDef

ArmCalib Statement Example
The following example is executed from the Command window.

> ArmCalib On

> ArmCalib Off

ArmCalib Function

90 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

ArmCalib Function

Returns the arm length calibration status for the robot currently selected.

Syntax
ArmCalib

Return Values
0 = Arm length calibration disabled
1 = Arm length calibration enabled

See Also
ArmCalib

ArmCalib Function Example

If ArmCalib = Off then
 Print “Arm length calibration disabled.”
Else
 Print “Arm length calibration enabled.”
Endif

ArmCalibClr Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 91

ArmCalibClr Statement

Clears arm length calibration settings.

Syntax
ArmCalibClr

Description
Robot parameter data is stored in the compact flash memory in the controller. Therefore, writing to the
compact flash memory occurs when executing this command. Frequent writing to the compact flash
memory affects the lifetime of the compact flash memory. We recommend limiting the use of this
command at a minimum.

Note
Do not use ArmCalibClr unless absolutely necessary.

ArmCalibClr clears the arm length calibration parameters set using ArmCalibSet. ArmCalibSet contains
factory settings that have been precisely set. (When purchasing the Arm Length Calibration Option)
Accidentally clearing these settings will require precise measurements to be performed by the factory
again. Do not use ArmCalibClr unless absolutely necessary.

See Also

ArmCalib, ArmCalibSet

ArmCalibClr Statement Example

ArmCalibClr

ArmCalibDef Statement

92 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

ArmCalibDef Statement

Returns the arm length calibration configuration status.

Syntax

ArmCalibDef

Return Values

Returns “True” when arm length calibration is set. Returns “False” when arm length calibration is not set.

See Also

ArmCalib, ArmCalibClr, ArmCalibSet

ArmCalibDef Statement Example

Function DisplayArmCalibDef

 Integer i

 If ArmCalibDef = False Then
 Print "ArmCalib is not defined"
 Else
 Print "ArmCalib Definition:"
 For i = 1 to 3
 Print ArmCalibSet(i)
 Next i
 EndIf
Fend

ArmCalibSet Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 93

ArmCalibSet Statement

Configures and displays arm length and joint offset settings.

Syntax

(1) ArmCalibSet setValue1, setValue2, setValue3
(2) ArmCalibSet

Parameters

setValue SCARA robots
1 Horizontal distance from Joint #1 to Joint #2 (mm)

2 Horizontal distance from Joint #2 to orientation center
(mm)

3 Joint #2 angle offset (°)

Return Values

When the ArmCalibSet instruction is executed without all parameters, the system displays arm length
calibration parameters.

Description

ArmCalibSet sets parameters related to the arm length and joint offsets. Distance accuracy can be increased
by using the length and joint offset of each arm that were precisely calculated at the factory and configuring
settings using this command.

Robot parameter data is stored in the compact flash memory in the controller. Therefore, writing to the
compact flash memory occurs when executing this command. Frequent writing to the compact flash
memory affects the lifetime of the compact flash memory. We recommend limiting the use of this
command at a minimum.

Note
Do not use ArmCalibSet unless absolutely necessary.

ArmCalibSet contains factory settings that have been precisely set. (When purchasing the Arm Length
Calibration Option)
Accidentally changing these settings adversely affects distance accuracy and trajectory accuracy. Do not
change ArmCalibSet unless absolutely necessary.

See Also
ArmCalib, ArmCalibClr, ArmCalibDef

ArmCalibSet Statement Example
The following example is executed from the Command window.

> ArmCalibSet 299.989, 250.001, 0.012

ArmCalibSet Function

94 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

ArmCalibSet Function

Returns an arm length calibration setting.

Syntax
ArmCalibSet(paramNumber)

Parameters
paramNumber Specifies the parameter number to be referenced (integer number between 0 and 3) as

an expression or a numerical value.
(See below.)

SCARA robots
paramNumber Return value

1 Horizontal distance from Joint #1 to Joint #2 (mm)
2 Horizontal distance from Joint #2 to orientation center (mm)
3 Joint #2 angle offset (°)

Return Values

Returns the parameter setting specified from one of the above as a real number.

See Also
ArmCalibClr, ArmCalibSet

ArmCalibSet Function Example

Double L1, L2, Angle

L1 = ArmCalibSet(1)
L2 = ArmCalibSet(2)
Angle = ArmCalibSet(3)

ArmClr Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 95

ArmClr Statement

Clears (undefines) an arm definition.

Syntax

ArmClr armNumber

Parameters

armNumber Integer expression representing which of 15 arms to clear (undefine).
(Arm 0 is the default arm and cannot be cleared.)

Description

Robot parameter data is stored in compact flash in controller. Therefore, writing to command flash occurs
when executing this command. Frequent writing to compact flash affect to lifetime of compact flash. We
recommend to use this command minimally.

See Also

Arm, ArmSet, ECPSet, Local, LocalClr, Tool, TLSet

ArmClr Statement Example

ArmClr 1

ArmDef Function

96 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

ArmDef Function

Returns arm definition status.

Syntax

ArmDef (armNumber)

Parameters

armNumber Integer expression representing which arm to return status for.

Return Values

True if the specified arm has been defined, otherwise False.

See Also

Arm, ArmClr, ArmSet, ECPSet, Local, LocalClr, Tool, TLClr, TLSet

ArmDef Function Example

Function DisplayArmDef(armNum As Integer)

 Integer i

 If ArmDef(armNum) = False Then
 Print "Arm ", ArmNum, "is not defined"
 Else
 Print "Arm ", armNum, " Definition:"
 For i = 1 to 5
 Print ArmSet(armNum, i)
 Next i
 EndIf
Fend

ArmSet Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 97

ArmSet Statement

Specifies and returns auxiliary arms.

Syntax

(1) ArmSet armNumber, link2Dist, joint2Offset, zOffset [, link1Dist] [, orientAngOffset]: SCARA
(including RS series)

(2) ArmSet armNumber, link1Dist, link2Dist, link3Dist, link4Dist, link5Dist, link6Dist, joint1Offset,
joint2Offset, joint3Offset, joint4Offset, joint5Offset, joint6Offset: 6-Axis (including N series)

(3) ArmSet armNumber
(4) ArmSet

Parameters

armNumber Integer expression: Valid range from 1 to 15. The user may define up to 15 different
auxiliary arms.

paramNumber SCARA Robots
(including RS series)

6-Axis Robots
(including N series)

1 Horizontal distance from joint #2 to
orientation center (mm)

Vertical distance from base to joint #2
(mm)

2 Joint #2 angle offset (degree) Horizontal distance from joint #1 to
joint #2 (mm)

3 Height offset (mm) Distance from joint #2 to joint #3 (mm)

4 Horizontal distance from joint #1 to joint #2
(mm)

Vertical distance from joint #3 to joint
#5 (mm)

5 Joint #4 angle offset in degrees. Horizontal distance from joint #3 to
joint #5 (mm)

6 - Distance from joint #5 to orientation
center (mm)

7 - Joint #1 angle offset in degrees.
8 - Joint #2 angle offset in degrees.
9 - Joint #3 angle offset in degrees.
10 - Joint #4 angle offset in degrees.
11 - Joint #5 angle offset in degrees.
12 - Joint #6 angle offset in degrees.

Return Values

When the ArmSet instruction is initiated without parameters, the system displays all the auxiliary arm
numbers and parameters.
The specified arm numbers and parameters will be displayed when only the arm number is specified.

Description

Allows the user to specify auxiliary arm parameters to be used in addition to the standard arm configuration.
This is most useful when an auxiliary arm or hand is installed to the robot. When using an auxiliary arm, the
arm is selected by the Arm instruction.

The link1Dist and orientAngOffset parameters are optional. If they are omitted, the default values are the
standard arm values.

The auxiliary arm configuration capability is provided to allow users to configure the proper robot parameters
for their robots when the actual robot configuration is a little different than the standard robot. For example,
if the user mounted a 2nd orientation joint to the 2nd robot link, the user will probably want to define the
proper robot linkages for the new auxiliary arm which is formed. This will allow the auxiliary arm to function
properly under the following conditions:

- Specifying that a single data point be moved through by 2 or more arms.

ArmSet Statement

98 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

- Using Pallet
- Using Continuous Path motion
- Using relative position specifications
- Using Local coordinates

For SCARA robots (including RS series) with rotating joints used with a Cartesian coordinate system, joint
angle calculations are based on the parameters defined by the ArmSet parameters. Therefore, this command
is critical if any auxiliary arm or hand definition is required.

Robot parameter data is stored in compact flash in controller. Therefore, writing to command flash occurs
when executing this command. Frequent writing to compact flash affect to lifetime of compact flash. We
recommend to use this command minimally.

Note
Arm 0

Arm 0 cannot be defined or changed by the user. It is reserved since it is used to define the standard robot
configuration. When the user sets Arm to 0 this means to use the standard robot arm parameters.

Auxiliary Arm

X Axis

Y Axis

Auxiliary Arm

Auxiliary
Arm

Joint #2

Joint #2

Joint #1

Joint #1

SCARA Robot Cartesian Robot

RS Series:
View from this
direction

SCARA Robots (RS Series)

6-Axis Robot
See Also

Arm, ArmClr

ArmSet Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 99

ArmSet Statement Example
The following examples are potential auxiliary arm definitions using the ArmSet and Arm instructions.
ArmSet defines the auxiliary arm and Arm defines which Arm to use as the current arm. (Arm 0 is the default
robot arm and cannot be adjusted by the user.)

From the command window:

> ArmSet 1, 300, -12, -30, 300, 0
> ArmSet
 Arm 0: 125.000, 0.000, 0.000, 225.000, 0.000
 Arm 1: 300.000, -12.000, -30.000, 300.000, 0.000

> Arm 0
> Jump P1 'Jump to P1 using the Standard Arm Config
> Arm 1
> Jump P1 'Jump to P1 using auxiliary arm 1

ArmSet Function

100 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

ArmSet Function

Returns one ArmSet parameter.

Syntax

ArmSet(armNumber, paramNumber)

Parameters

armNumber Integer expression representing the arm number to retrieve values for.
paramNumber Integer expression representing the parameter to retrieve (0 to 5), as described below.

paramNumber SCARA Robots
(including RS series)

6-Axis Robots
(including N series)

1 Horizontal distance from joint #2 to
orientation center (mm)

Vertical distance from base to joint #2
(mm)

2 Joint #2 angle offset (degree) Horizontal distance from joint #1 to joint
#2 (mm)

3 Height offset (mm) Distance from joint #2 to joint #3 (mm)

4 Horizontal distance from joint #1 to joint
#2 (mm)

Vertical distance from joint #3 to joint #5
(mm)

5 Joint #4 angle offset in degrees. Horizontal distance from joint #3 to joint
#5 (mm)

6 - Distance from joint #5 to orientation
center (mm)

7 - Joint #1 angle offset in degrees.
8 - Joint #2 angle offset in degrees.
9 - Joint #3 angle offset in degrees.
10 - Joint #4 angle offset in degrees.
11 - Joint #5 angle offset in degrees.
12 - Joint #6 angle offset in degrees.

Return Values

Real number containing the value of the specified parameter, as described above.

Auxiliary Arm

X Axis

Y Axis

Auxiliary Arm

Auxiliary
Arm

Joint #2

Joint #2

Joint #1

Joint #1

SCARA Robot Cartesian Robot

RS Series:
View from this
direction

SCARA Robots (RS Series)

ArmSet Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 101

6-Axis Robot

See Also

ArmClr, ArmSet Statement

ArmSet Function Example

Real x

x = ArmSet(1, 1)

Asc Function

102 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Asc Function

Returns the ASCII code of the first character in a character string.
(Returns the character code in a decimal number.)

Syntax

Asc(string)

Parameters

string Any valid string expression of at least one character in length.

Return Values

Returns an integer representing the ASCII code of the first character in the string sent to the Asc function.

Description

The Asc function is used to convert a character to its ASCII numeric representation. The character string
send to the ASC function may be a constant or a variable.

Note
Only the First Character ASCII Value is Returned

Although the Asc instruction allows character strings larger than 1 character in length, only the 1st character
is actually used by the Asc instruction. Asc returns the ASCII value of the 1st character only.

See Also

Chr$, InStr, Left$, Len, Mid$, Right$, Space$, Str$, Val

Asc Function Example

This example uses the Asc instruction in a program and from the command window as follows:

Function asctest
 Integer a, b, c
 a = Asc("a")
 b = Asc("b")
 c = Asc("c")
 Print "The ASCII value of a is ", a
 Print "The ASCII value of b is ", b
 Print "The ASCII value of c is ", c
Fend

From the command window:

>print asc("a")
97
>print asc("b")
98
>

Asin Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 103

Asin Function

Returns the arcsine of a numeric expression.

Syntax

Asin(number)

Parameters

number Numeric expression representing the sine of an angle.

Return Values

Real value, in radians, representing the arc sine of the parameter number.

Description

Asin returns the arcsine of the numeric expression. Values range is from -1 to 1. The value returned by Asin
will range from -PI / 2 to PI / 2 radians. If number is < -1 or > 1, an error occurs.

To convert from radians to degrees, use the RadToDeg function.

See Also

Abs, Acos, Atan, Atan2, Cos, DegToRad, RadToDeg, Sgn, Sin, Tan, Val

Asin Function Example

Function asintest
 Double x

 x = Sin(DegToRad(45))
 Print "Asin of ", x, " is ", Asin(x)
Fend

AtHome Function

104 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

AtHome Function

Returns if the current robot is in its Home position or not.

Syntax

AtHome

Return Values

True if the current robot is in its Home position, otherwise False.

Description

The AtHome function returns if the current robot is in its Home position or not. To register the Home position,
use HomeSet command or Robot Manager. To move to the Home position, use the Home command.

See Also

Home, HomeClr, HomeDef, HomeSet, Hordr, MCalComplete

Atan Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 105

Atan Function

Returns the arctangent of a numeric expression.

Syntax

Atan(number)

Parameters

number Numeric expression representing the tangent of an angular value.

Return Values

Real value, in radians, representing the arctangent of the parameter number.

Description

Atan returns the arctangent of the numeric expression. The numeric expression (number) may be any numeric
value. The value returned by Atan will range from -PI to PI radians.

To convert from radians to degrees, use the RadToDeg function.

See Also

Abs, Acos, Asin, Atan2, Cos, DegToRad, RadToDeg, Sgn, Sin, Tan, Val

Atan Function Example

Function atantest
 Real x, y
 x = 0
 y = 1
 Print "Atan of ", x, " is ", Atan(x)
 Print "Atan of ", y, " is ", Atan(y)
Fend

Atan2 Function

106 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Atan2 Function

Returns the angle of the imaginary line connecting points (0,0) and (X, Y) in radians.

Syntax

Atan2(X, Y)

Parameters

X Numeric expression representing the X coordinate.
Y Numeric expression representing the Y coordinate.

Return Values

Numeric value in radians (-PI to +PI).

Description

Atan2(X, Y) returns the angle of the line which connects points (0, 0) and (X, Y). This trigonometric function
returns an arctangent angle in all four quadrants.

See Also

Abs, Acos, Asin, Atan, Cos, DegToRad, RadToDeg, Sgn, Sin, Tan, Val

Atan2 Function Example

Function at2test
 Real x, y
 Print "Please enter a number for the X Coordinate:"
 Input x
 Print "Please enter a number for the Y Coordinate:"
 Input y
 Print "Atan2 of ", x, ", ", y, " is ", Atan2(x, y)
Fend

ATCLR Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 107

ATCLR Statement

Clears and initializes the average torque for one or more joints.

Syntax

ATCLR [j1 [,j2 [, j3 [, j4 [, j5 [, j6 [, j7 [, j8 [, j9]]]]]]]]]

Parameters

j1 – j9 Integer expression representing the joint number. If no parameters are supplied,
then the average torque values are cleared for all joints.
The additional S axis is 8 and T axis is 9. If non-existent joint number is supplied,
an error occurs.

Description

ATCLR clears the average torque values for the specified joints.
You must execute ATCLR before executing ATRQ.

See Also

ATRQ, PTRQ

ATCLR Statement Example
<Example 1>

The following is the example to display the torque values of specified joints after clearing the effective torque
values of all joints.

> atclr
> go p1
> atrq 1
 0.028
> atrq
 0.028 0.008
 0.029 0.009
 0.000 0.000
>

<Example 2>
The following is the example to display the torque values of specified joints after clearing the effective torque
values of J1, J4, and J5 for the vertical multi-axis robots.

> atclr 4, 1, 5
> go p1
> ptrq 1
 0.227
> ptrq 4
 0.083

ATRQ Statement

108 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

ATRQ Statement

Displays the average torque for the specified joint.

Syntax

ATRQ [jointNumber]

Parameters

jointNumber Optional. Integer expression representing the joint number.
The additional S axis is 8 and T axis is 9.

Return Values

Displays current average torque values for all joints.

Description

ATRQ displays the average RMS (root-mean-square) torque of the specified joint. The loading state of the
motor can be obtained by this instruction. The result is a real value from 0 to 1 with 1 being maximum
average torque.

You must execute ATCLR before this command is executed.

This instruction is time restricted. You must execute ATRQ within 60 seconds after ATCLR is executed.
When this time is exceeded, error 4030 occurs.

See Also

ATCLR, ATRQ Function, PTRQ

ATRQ Statement Example

> atclr
> go p1
> atrq 1
 0.028
> atrq
 0.028 0.008
 0.029 0.009
 0.000 0.000
>

ATRQ Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 109

ATRQ Function

Returns the average torque for the specified joint.

Syntax

ATRQ (jointNumber)

Parameters

jointNumber Integer expression representing the joint number.
The additional S axis is 8 and T axis is 9.

Return Values

Real value from 0 to 1.

Description

The ATRQ function returns the average RMS (root-mean-square) torque of the specified joint. The loading
state of the motor can be obtained by this instruction. The result is a real value from 0 to 1 with 1 being
maximum average torque.

You must execute ATCLR before this function is executed.

This instruction is time restricted. You must execute ATRQ within 60 seconds after ATCLR is executed.
When this time is exceeded, error 4030 occurs.

See Also

ATRQ Statement, PTCLR, PTRQ

ATRQ Function Example

This example uses the ATRQ function in a program:

Function CheckAvgTorque
 Integer i

 Go P1
 ATCLR
 Go P2
 Print "Average torques:"
 For i = 1 To 4
 Print "Joint ", i, " = ", ATRQ(i)
 Next i
Fend

AutoLJM Statement

110 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

AutoLJM Statement

Sets the Auto LJM function.

Syntax

AutoLJM { On | Off }

Parameters

On | Off On: Enables the Auto LJM.
Off: Disables the Auto LJM.

Description

AutoLJM is available for following commands.
Arc, Arc3, Go, Jump3, Jump3CP, Move

When AutoLJM is On, the manipulator operates with a least joint motion, just like using the LJM function,
whether the LJM function is applied to the position data to be passed to each command or not. For example,
to get the same effect as Go LJM(P1), you can write a program as follows.

AutoLJM On
Go P1

 AutoLJM Off
Since AutoLJM can enable LJM within a particular section of a program, it is not necessary to edit each
motion command.

When AutoLJM is Off, the LJM function is only enabled when it is applied to the position data to be passed
to each motion command.

In any of the following cases, AutoLJM has the setting specified in the controller settings (factory default:
Off).

Controller startup
Reset
All task stop
Motor On
Switching the Auto / Programming operation mode

Notes
Double application of AutoLJM and LJM function

If LJM function is applied to the point data to be passed to the motion command while AutoLJM is On,
LJM will be doubly applied at the command execution.
For Move LJM(P1, Here) and Move LJM(P1), enabling AutoLJM will not affect the motion. However, if
AutoLJM is enabled for Move LJM(P1, P0), motion completion positions of Move LJM(LJM(P1, P0),
Here), which enabled AutoLJM, and the one of Move LJM(P1, P0), which did not enable AutoLJM, may
be different.
It is recommended to write a program not to duplicate AutoLJM and LJM functions.

AutoLJM Usage Precaution
You can set the AutoLJM function to be enabled at the controller startup by setting the controller
preferences. However, if Auto LJM is enabled at all times by controller preferences or commands, this
function automatically adjusts the posture of the manipulator to reduce the motion distance, even when you
intended to move the joint widely. Therefore, it is recommended to create a program to apply the LJM
function only when necessary by using LJM function or AutoLJM command.

AutoLJM Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 111

See Also
AuoLJM Function, LJM Function

AutoLJM Statement Example

AutoLJM On
Go P1
Go P2
AutoLJM Off

AutoLJM Function

112 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

AutoLJM Function

Returns the state of the AutoLJM.

Syntax

AutoLJM

Return Values

0 = Auto LJM OFF
1 = Auto LJM ON

See Also

AutoLJM

AutoLJM Function Example

If AutoLJM = Off Then
 Print "AutoLJM is off"
EndIf

AutoOrientationFlag Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 113

AutoOrientationFlag Statement

Changes orientation flag of N6-A1000**.

Syntax
AutoOrientationFlag { On | Off }

Parameters
On | Off On: Enables the AutoOrientationFlag.

Off: Disables the AutoOrientationFlag. (Default)
Description

AutoOrientationFlag is available for following commands:
Go, BGo, TGo, Jump3, JumpTLZ

Change the following orientation flag:

Model Parameter
OFF/ON

Orientation flag
Remark

Hand Elbow Wrist

N6-A1000**
OFF - - - Move with the orientation flag which is

selected by user. (Default)

ON - *1
Set “ON” when you cannot select the
orientation flag.

: When setting the AutoOrientationFlag to “ON”, the orientation flag is changed

*1: Wrist orientation flag is changed only when you change the elbow orientation flag. When you change
the wrist orientation flag, it will be the orientation flag which minimizes the movement of Joint #4.

Use AutoOrientationFlag with LJM Function

When you use the command with LJM Function, Wrist Flag, J4Flag, and J6Flag will be the orientation
selected by LJM Function.
For example, when you set orientationFlag of LJM Function to “3”, “Wrist Flag”, “J4Flag”, and “J6Flag”
are selected so that Joint #5 will be the shortest movement. When you do not use LJM Function, “Wrist
Flag”, “J4Flag”, and “J6Flag” are selected so that Joint #4 will be the shortest movement.

AutoOrientationFlag Example
Motor On
Power High
AutoOrientationFlag On

Go P1
Go P2

When setting the AutoOrientationFlag to “ON”:
Flag is changed as follows due to the position of point P
and the red line.

Point P is above the red line: Above
Point P is below the red line: Below

Above

Below

AutoOrientationFlag Function

114 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

AutoOrientationFlag Function

Returns the state of the AutoOrientationFlag

Syntax
AutoOrientationFlag

Return Values
0 = AutoOrientationFlag OFF
1 = AutoOrientationFlag ON

See Also
AutoOrientationFlag

AutoOrientationFlag Function Example
If AutoOrientationFlag = Off Then
 Print " AutoOrientationFlag is off"
EndIf

AvgSpeedClear Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 115

AvgSpeedClear Statement

Clears and initializes the average of the absolute speed values for one or more joints.

Syntax
AvgSpeedClear [j1 [,j2 [, j3 [, j4 [, j5 [, j6 [, j7 [, j8 [, j9]]]]]]]]]

Parameters
j1 – j9 Integer expression representing the joint number. If no parameters are supplied, then the

average values for all joints are cleared.
The additional S axis is 8 and T axis is 9. If non-existent joint number is supplied, an
error occurs.

Description

AvgSpeedClear clears the average of the absolute speed values for the specified joints.
You must execute AvgSpeedClear before executing AvgSpeed.
This command does not support the PG additional axes.

See Also
AvgSpeed, PeakSpeed

AvgSpeedClear Statement Example
<Example 1>

The following is the example to display the average speed values of specified joints after clearing the average
speed values of all joints.

> AvgSpeedClear
> Go P1
> AvgSpeed 1
 0.073
> AvgSpeed
 0.073 0.044
 0.021 0.069
 0.001 0.108
 0.000 0.000
 0.000
>

<Example 2>
The following is the example to display the average speed values of specified joints after clearing the average
speed values of J1, J4, and J5 for the vertical multi-axis robots.

> AvgSpeedClear 4, 1, 5
> Go P1
> AvgSpeed 1
 0.226
> AvgSpeed 4
 0.207

AvgSpeed Statement

116 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

AvgSpeed Statement

Displays the average of the absolute speed values for the specified joints.

Syntax
AvgSpeed [jointNumber]

Parameters
jointNumber Optional. Integer expression representing the joint number.

The additional S axis is 8 and T axis is 9.

Return Values
Displays the average of the absolute values of current speed for the specified joints. If no joint is specified,
the average of the absolute speed values for all joints will be displayed.

Description
AvgSpeed displays the average value of the absolute speed values for the specified joints. The loading state
of the motor can be obtained by this instruction. The result is a real value from 0 to 1 with 1 being the
maximum average speed value.
If the average value is below 0.001, the result will be displayed as 0.

You must execute AvgSpeedClear before this command is executed.

This instruction is time restricted. You must execute AvgSpeed within 60 seconds after AvgSpeedClear is
executed. When this time is exceeded, error 4088 occurs.

When using the virtual controller or conducting dry-run, the average of the absolute speed values is calculated
from the commanded speed instead of the actual speed.
This command does not support the PG additional axes.

See Also
AvgSpeedClear, AvgSpeed Function, PeakSpeed

AvgSpeed Statement Example

> AvgSpeedClear
> Go P1
> AvgSpeed 1
 0.226
> AvgSpeed
 0.226 0.133
 0.064 0.207
 0.003 0.314
 0.000 0.000
 0.000
>

AvgSpeed Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 117

AvgSpeed Function

Returns the average value of the absolute speed values for the specified joints.

Syntax
AvgSpeed (jointNumber)

Parameters
jointNumber Integer expression representing the joint number.

The additional S axis is 8 and T axis is 9.

Return Values
Real value from 0 to 1.

Description
AvgSpeed function returns the average value of the absolute speed values for the specified joints. The
loading state of the motor can be obtained by this function. The result is a real value from 0 to 1 with 1 being
the maximum average speed value.

You must execute AvgSpeedClear before this command is executed.

This instruction is time restricted. You must execute AvgSpeed function within 60 seconds after AvgSpeed
statement is executed. When this time is exceeded, error 4088 occurs.

When using the virtual controller or conducting dry-run, the average of the absolute speed values is calculated
from the commanded speed instead of the actual speed.
This command does not support the PG additional axes.

See Also
AvgSpeed, AvgSpeedClear, PeakSpeed

AvgSpeed Function Example
This example uses the AvgSpeed function in a program:

Function CheckAvgSpeed
 Integer i

 Go P1
 AvgSpeedClear
 Go P2
 Print "Average speeds:"
 For i = 1 To 6
 Print "Joint ", i, " = ", AvgSpeed (i)
 Next i
Fend

AvoidSingularity Statement

118 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

AvoidSingularity Statement

Sets the singularity avoiding function.

Syntax

AvoidSingularity { mode }

Parameters

mode Integer expression representing a singularity avoiding mode to use

Constant Value Mode
SING_NONE 0 Disables the singularity avoiding function.
SING_THRU 1 Enables the singularity avoiding function.

SING_THRUROT 2 Enables the singularity avoiding function in
CP motions with an ROT modifier.

SING_VSD 3 Enables variable speed CP motion function.

SING_AUTO 4
Selects the singularity avoiding function or
variable speed CP motion function
automatically.

SING_AVOID 5 Enables the elbow singularity avoiding
function.

Description

AvoidSingularity is available for following commands.
Move, Arc, Arc3, Jump3, Jump3CP, JumpTLZ

A singularity avoiding function is to prevent acceleration errors when the vertical 6-axis (including N series)
or RS series robot approaches to the singularity in CP motion by passing a different trajectory and returning
to the original trajectory after passing the singularity. Since the singularity avoiding function is usually set
to “1: Enabled” at the controller startup, it is not necessary to change the setting. If you do not want a
singularity avoidance to ensure compatibility with software which does not support the singularity avoiding
function, or to avoid a trajectory gap, disable the function.
A variable speed CP motion function automatically controls speed while keeping the trajectory when the
vertical 6-axis (including N series) or RS series robot approaches to the singularity in order to avoid the
acceleration error and overspeed error, and returns to the normal speed command after leaving the singularity.
To pass the singularity while keeping the trajectory, Joint #1, #2, #4, and #6 may move largely.
If the AvoidSingularity parameter is changed, this function remains enabled until the next controller startup.
At the controller startup, AvoidSingularity has the setting specified in the controller setting (factory default:
1). Also, parameters for SingularityAngle, SingularitySpeed, and SingularityDist are reset to the default
values when AvoidSingularity setting is changed.

SING_AUTO mode is the combination of SING_THRU and SING_VSD modes. SING_THRU or
SING_VSD is selected depending on the motion or speed.

AvoidSingularity Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 119

Notes
Condition setting of singularity neighborhood for vertical 6-axis robot and N series robot

To determine whether the manipulator approaches to the wrist singularity neighborhood, angle of Joint #5
and angular velocity of Joint #4 are used. By default, Joint #5 angle is set to ±10 degree, and Joint #4 angle
is set to ±10 % with respect to the maximum joint velocity. To change these settings, use SingularityAngle
and SingularitySpeed commands.
Also, to determine whether the manipulator approaches to the hand singularity neighborhood, the
coordinates of the point P is used. By default, distance between the point P and Joint #1 rotation axis is set
to 30 mm. To change this setting, use SingularityDist command.

Condition setting of singularity neighborhood for RS series robot
To determine whether the manipulator approaches to the hand singularity neighborhood, the coordinates of
the origin point in the default tool 0 coordinate system is used. By default, distance between the origin
point and Joint #1 rotation axis is set to 30 mm. To change this setting, use SingularityDist command.

Cautions for N series robot
For N2 series, unlike other models, the default setting of singularity avoidance function is “3: Enables
variable speed CP motion function.”
For N6 series, like other models, the default setting of singularity avoidance function is “1: Enables the
singularity avoiding function.”
N series robots have the elbow singularity other than the wrist and hand singularities.
The elbow singularity area is where the Joint #3 is at 0 degree (the Joint #3 and Joint #2 overlap each
other). For details of avoiding motion near the elbow singularity area, refer to the EPSON RC+ User’s
Guide.

Difference between SING_THRU and SING_AVOID

SING_THRU avoids the wrist and shoulder singularities, but not the elbow singularity.
To avoid the elbow singularity, use SING_AVOID. Note, however, that the elbow singularity avoiding
motion changes the trajectory largely than the other singularity avoiding motions.
When SING_AVOID is selected for the manipulator models other than N series, an error 4002 occurs.

See Also

AvoidSingularity Function, SingualrityAngle, SingularitySpeed, SingularityDist

AvoidSingularity Statement Example

AvoidSingularity 0 ‘Disables the singularity avoidance and operate the manipulator
Move P1
Move P2
AvoidSingularity 1

AvoidSingularity Function

120 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

AvoidSingularity Function

Returns the state of AvoidSingularity.

Syntax

AvoidSingularity

Return Values

0 = Singularity avoiding function disabled
1 = Singularity avoiding function enabled
2 = Singularity avoiding function enabled for CP motion commands with an ROT modifier
3 = Variable speed CP motion function enabled
4 = Automatic selection of the singularity avoiding function or the variable speed CP motion function
5 = Elbow singularity avoiding function enabled

See Also

AvoidSingularity

AvoidSingularity Function Example

If AvoidSingularity = Off Then
 Print "AvoidSingularity is off"
EndIf

Base Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 121

Base Statement

Defines and displays the base coordinate system.

Syntax

(1) Base pCoordinateData
(2) Base pOrigin, pXaxis, pYaxis [, { X | Y }]

Parameters

pCoordinateData Point data representing the coordinate data of the origin and direction.
pOrigin Integer expression representing the origin point using robot coordinate system.
pXaxis Integer expression representing a point along the X axis using robot coordinate system

if X alignment is specified.
pYaxis Integer expression representing a point along the Y axis using robot coordinate system

if Y alignment is specified.
X | Y Optional. If X alignment is specified, then pXaxis is on the X axis of the new

coordinate system and only the Z coordinate of pYaxis is used. If Y alignment is
specified, then pYaxis is on the Y axis of the new coordinate system and only the Z
coordinate of pXaxis is used. If omitted, X alignment is assumed.

Description

Defines the robot base coordinate system by specifying base coordinate system origin and rotation angle in
relation to the robot absolute coordinate system.

To reset the Base coordinate system to default, execute the following statement. This will make the base
coordinate system the same as the robot absolute coordinate system.

Base XY(0, 0, 0, 0)

Robot parameter data is stored in compact flash in controller. Therefore, writing to command flash occurs
when executing this command. Frequent writing to compact flash affect to lifetime of compact flash. We
recommend to use this command minimally.

Note
Changing the base coordinate system affects all local definitions

When base coordinates are changed, all local coordinate systems must be re-defined.

See Also

Local

Base Statement Example

Define base coordinate system origin at 100 mm on X axis and 100 mm on Y axis

> Base XY(100, 100, 0, 0)

BClr Function

122 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

BClr Function

Clears one bit in a number and returns the new value

Syntax

BClr (number, bitNum)

Parameters

number Specifies the numeric value to clear the bit by an expression or numeric value.
bitNum Specifies the bit (integer from 0 to 31) to be cleared by an expression or numeric value.

Return Values
Returns the new value of the specified numeric value (integer).

See Also
BClr64, BSet, BSet64, BTst, BTst64

BClr Function Example

flags = BClr(flags, 1)

BClr64 Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 123

BClr64 Function

Clears one bit in a number and returns the new value.

Syntax

BClr64 (number, bitNum)

Parameters

number Specifies the numeric value to clear the bit by an expression or numeric value.
bitNum Specifies the bit (integer from 0 to 63) to be cleared by an expression or numeric value.

Return Values

Returns the new value of the specified numeric value (integer).

See Also

BClr, BSet, BSet64, BTst, BTst64

BClr64 Function Example

flags = BClr64(flags, 1)

BGo Statement

124 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

BGo Statement

Executes Point to Point relative motion, in the selected local coordinate system.

Syntax

BGo destination [CP] [searchExpr] [!...!] [SYNC]

Parameters

destination The target destination of the motion using a point expression.
CP Optional. Specifies continuous path motion.
searchExpr Optional. A Till or Find expression.

Till | Find
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

!...! Optional. Parallel Processing statements can be added to execute I/O and other
commands during motion.

SYNC Reserves a motion command. The robot will not move until SyncRobots is executed.

Description

Executes point to point relative motion, in the selected local coordinate system that is specified in the
destination point expression.

If a local coordinate system is not specified, relative motion will occur in local 0 (base coordinate system).

Arm orientation attributes specified in the destination point expression are ignored. The manipulator keeps
the current arm orientation attributes. However, for a 6-Axis manipulator (including N series), the arm
orientation attributes are automatically changed in such a way that joint travel distance is as small as possible.
This is equivalent to specifying the LJM modifier parameter for Move statement. Therefore, if you want to
change the arm orientation larger than 180 degrees, execute it in several times.

The Till modifier is used to complete BGo by decelerating and stopping the robot at an intermediate travel
position if the current Till condition is satisfied.

The Find modifier is used to store a point in FindPos when the Find condition becomes true during motion.

When parallel processing is used, other processing can be executed in parallel with the motion command.

The CP parameter causes acceleration of the next motion command to start when the deceleration starts for
the current motion command. In this case the robot will not stop at the destination coordinate and will
continue to move to the next point.

See Also
Accel, BMove, Find, !....! Parallel Processing, Point Assignment, Speed, Till, TGo, TMove, Tool

BGo Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 125

BGo Statement Example

> BGo XY(100, 0, 0, 0) 'Move 100 mm in X direction (in the local coordinate system)

Function BGoTest

 Speed 50
 Accel 50, 50
 Power High

 P1 = XY(300, 300, -20, 0)
 P2 = XY(300, 300, -20, 0) /L
 Local 1, XY(0, 0, 0, 45)

 GoP1
 Print Here
 BGo XY(0, 50, 0, 0)
 Print Here

 Go P2
 Print Here
 BGo XY(0, 50, 0, 0)
 Print Here

 BGo XY(0, 50, 0, 0) /1
 Print Here

Fend

[Output]
 X: 300.000 Y: 300.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /R /0
 X: 300.000 Y: 350.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /R /0
 X: 300.000 Y: 300.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /L /0
 X: 300.000 Y: 350.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /L /0
 X: 264.645 Y: 385.355 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /L /0

BMove Statement

126 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

BMove Statement

Executes linear interpolation relative motion, in the selected local coordinate system.

Syntax

BMove destination [ROT] [CP] [searchExpr] [!...!] [SYNC]

Parameters

destination The target destination of the motion using a point expression.
ROT Optional. Decides the speed/acceleration/deceleration in favor of tool rotation.
CP Optional. Specifies continuous path motion.
searchExpr Optional. A Till or Find expression.

Till | Find
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

!...! Optional. Parallel Processing statements can be added to execute I/O and other
commands during motion.

SYNC Reserves a motion command. The robot will not move until SyncRobots is
executed.

Description

Executes linear interpolated relative motion, in the selected local coordinate system that is specified in the
destination point expression.

If a local coordinate system is not specified, relative motion will occur in local 0 (base coordinate system).

Arm orientation attributes specified in the destination point expression are ignored. The manipulator keeps
the current arm orientation attributes. However, for a 6-Axis manipulator (including N series), the arm
orientation attributes are automatically changed in such a way that joint travel distance is as small as possible.
This is equivalent to specifying the LJM modifier parameter for Move statement. Therefore, if you want to
change the arm orientation larger than 180 degrees, execute it in several times.

BMove uses the SpeedS speed value and AccelS acceleration and deceleration values. Refer to Using BMove
with CP below on the relation between the speed/acceleration and the acceleration/deceleration. If, however,
the ROT modifier parameter is used, BMove uses the SpeedR speed value and AccelR acceleration and
deceleration values. In this case SpeedS speed value and AccelS acceleration and deceleration value have
no effect.

Usually, when the move distance is “0” and only the tool orientation is changed, an error will occur. However,
by using the ROT parameter and giving priority to the acceleration and the deceleration of the tool rotation,
it is possible to move without an error. When there is not an orientational change with the ROT modifier
parameter and movement distance is not “0”, an error will occur.

Also, when the tool rotation is large as compared to move distance, and when the rotation speed exceeds the
specified speed of the manipulator, an error will occur. In this case, please reduce the speed or append the
ROT modifier parameter to give priority to the rotational speed/acceleration/deceleration.

The Till modifier is used to complete BMove by decelerating and stopping the robot at an intermediate travel
position if the current Till condition is satisfied.

The Find modifier is used to store a point in FindPos when the Find condition becomes true during motion.

BMove Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 127

When Till is used and the Till condition is satisfied, the manipulator halts immediately and the motion
command is finished. If the Till condition is not satisfied, the manipulator moves to the destination point.

When Find is used and the Find condition is satisfied, the current position is stored. Please refer to Find for
details.

When parallel processing is used, other processing can be executed in parallel with the motion command.

Note
Using BMove with CP

The CP parameter causes the arm to move to destination without decelerating or stopping at the point defined
by destination. This is done to allow the user to string a series of motion instructions together to cause the
arm to move along a continuous path while maintaining a specified speed throughout all the motion. The
BMove instruction without CP always causes the arm to decelerate to a stop prior to reaching the point
destination.

See Also

AccelS, BGo, Find, !....! Parallel Processing, Point Assignment, SpeedS, TGo, Till, TMove, Tool

BMove Statement Example

> BMove XY(100, 0, 0, 0)'Move 100 mm in the X direction (in the local coordinate system)

Function BMoveTest

 Speed 50
 Accel 50, 50
 SpeedS 100
 AccelS 1000, 1000
 Power High

 P1 = XY(300, 300, -20, 0)
 P2 = XY(300, 300, -20, 0) /L
 Local 1, XY(0, 0, 0, 45)

 Go P1
 Print Here
 BMove XY(0, 50, 0, 0)
 Print Here

 Go P2
 Print Here
 BMove XY(0, 50, 0, 0)
 Print Here

 BMove XY(0, 50, 0, 0) /1
 Print Here

Fend

[Output]
 X: 300.000 Y: 300.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /R /0
 X: 300.000 Y: 350.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /R /0
 X: 300.000 Y: 300.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /L /0
 X: 300.000 Y: 350.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /L /0
 X: 264.645 Y: 385.355 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /L /0

Boolean Statement

128 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Boolean Statement

Declares variables of type Boolean. (2 byte whole number).

Syntax

Boolean varName [(subscripts)] [, varName [(subscripts)]...]

Parameters

varName Variable name which the user wants to declare as type Boolean.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared. The

subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 and the available

number of array elements is the upper bound value + 1.
 When specifying the upper bound value, make sure the number of total elements is

within the range shown below:
Local variable 2,000
Global Preserve variable 4,000
Global variable and module variable 100,000

Description

Boolean is used to declare variables as type Boolean. Variables of type Boolean can contain one of two
values, False and True. Local variables should be declared at the top of a function. Global and module
variables must be declared outside of functions.

See Also

Byte, Double, Global, Int32, Int64, Integer, Long, Real, Short, String, UByte, UInt32, UINT64,
UShort

Boolean Statement Example

Boolean partOK
Boolean A(10) 'Single dimension array of boolean
Boolean B(10, 10) 'Two dimension array of boolean
Boolean C(5, 5, 5) 'Three dimension array of boolean

partOK = CheckPart()
If Not partOK Then
 Print "Part check failed"
EndIf

BOpen Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 129

BOpen Statement

Opens file in binary mode.

Syntax

BOpen fileName As #fileNumber
 .
 .
Close #fileNumber

Parameters

fileName String expression that specifies valid path and file name.
If specifying only a file name, the file must be in the current directory.
See ChDisk for the details.

fileNumber Integer expression representing values from 30 to 63.

Description

Opens the specified file and identifies it by the specified file number. This statement is used for accessing
the specified file in binary mode. If the specified file is not found, it will create a new file. If the file
exists, it will read and write the data from the beginning.
Use the ReadBin and WriteBin commands to read and write data in binary mode.

Note
A network path is available.

The specified fileNumber identifies the file while it is open and cannot be used to refer to a different file
until the current file is closed. fileNumber is used by other file operations such as ReadBin, WriteBin,
Seek, Eof, Flush, and Close.

The read/write position (pointer) of the file can be changed using the Seek command. When switching
between read and write access, use Seek to reposition the file pointer.

Use the Close statement to close the file and release the file number.

It is recommended that you use the FreeFile function to obtain the file number so that more than one task
are not using the same number.

See Also

Close, AOpen, FreeFile, ReadBin, ROpen, UOpen, WOpen, WriteBin

BOpen Statement Example

Integer fileNum, i

fileNum = FreeFile
BOpen "TEST.DAT" As #fileNum
For i = 0 To 100
 WriteBin #fileNum, i
Next i

Flush #fileNum
Seek #fileNum, 10
ReadBin #fileNum, i
Print "data = ", i
Close #fileNum

Box Statement

130 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Box Statement

Specifies and displays the approach check area.

Syntax

(1) Box AreaNum [, robotNumber], minX, maxX, mixY, maxY, minZ, maxZ [localNumber]
(2) Box AreaNum, robotNumber, minX, maxX, mixY, maxY, minZ, maxZ, remote OutLogic

[localNumber]
(3) Box AreaNum, robotNumber
(4) Box

Parameters

AreaNum Integer expression representing the area number from 1 to 15.
robotNumber Integer expression that specifies which robot you want to configure.

If robotNumber is omitted in syntax (1), the current robot number is used.
You cannot omit robotNumber in syntax (2) and (3).

minX The minimum X coordinate position which can be set to the approach check area.
maxX The maximum X coordinate position which can be set to the approach check area.
minY The minimum Y coordinate position which can be set to the approach check area.
maxY The maximum Y coordinate position which can be set to the approach check area.
minZ The minimum Z coordinate position which can be set to the approach check area.
maxZ The maximum Z coordinate position which can be set to the approach check area.
Remote OutLogic On | Off

Set the Remote output logic. To set I/O output to On when the Box approaches,
use On. To set I/O output to Off when the Box approaches, use Off. When the
parameter is omitted, On will be used.

localNumber Specify the local coordinate system number from 0 to 15.
Be sure to add “/LOCAL” before the number. When the parameter is omitted, the
local coordinate system number “0” will be used.

Return Values

When Syntax (3) is used, the area setting of the specified area is displayed.
When Syntax (4) is used, the area settings for all area numbers of the current robot are displayed.

Description

Box is used to set the approach check area. The approach check area is for checking approaches of the robot
end effector in the approach check area. The position of the end effector is calculated by the current tool.
The approach check area is set on the base coordinate system of the robot or the local coordinate system
specified by localNumber, and is between the specified maximum and minimum X, Y, and Z of the specified
coordinate system.

When the approach check area is used, the system detects approaches in any motor power status during the
controller is ON.

You can also use GetRobotInsideBox function or InsideBox function to get the result of the approach check.
GetRobotInsideBox function can be used for wait condition of Wait command. You can provide the check
result to the I/O by setting the remote output setting.

Box Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 131

When several robots use one area, you should define the area from each robot coordinate system.

Box1

Lower limit of axes X, Y, Z

Upper limit of axes X, Y, Z

Robot 2 Robot 1

Configure the Box 1 from Robot 1 position

Box 1, 1, 100, 200, 0, 100, 0, 100

Lower limit of axes X, Y, Z is (100, 0, 0) and upper limit is (200, 100, 100)

Configure the Box 1 from Robot 2
Box 1, 2, -200, -100, 0, 100, 0, 100

Lower limit of axes X, Y, Z is (−200, 0, 0) and upper limit is (−100, 100, 100)

Robot parameter data is stored in compact flash in controller. Therefore, writing to command flash occurs
when executing this command. Frequent writing to compact flash affect to lifetime of compact flash. We
recommend to use this command minimally.

Notes
Turning Off Approach Check Area by coordinate axis

You can turn off the approach check area of each coordinate axis. To turn off only the Z axis, define minZ
and maxZ to be 0. For example Box 1, 200, 300, 0, 500, 0, 0.
In this case, it checks if the robot end effector is in the XY dimensional area.

Default values of Approach Check Area
The default values for the Box statement are “0, 0, 0, 0, 0, 0”. (Approach Check Area Checking is turned
off.)

Tool Selection
The approach check is executed for the current tool. When you change the tool, the approach check may
display the tool approach from inside to outside of the area or the other way although the robot is not operating.

Additional axis
For the robot which has the additional ST axis (including the running axis), the approach check plane to set
doesn’t depend on the position of additional axis, but is based on the robot base coordinate system.

Tip
Set Box statement from Robot Manager

EPSON RC+ has a point and click dialog box for defining the approach check area. The simplest method
to set the Box values is by using the Box page on the Robot Manager .

See Also

BoxClr, BoxDef, GetRobotInsideBox, InsideBox, Plane

Box Statement

132 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Box Statement Example
<Example 1>

These are examples to set the approach check area using Box statement.

> Box 1, -200, 300, 0, 500, -100, 0

> Box
Box 1: 1, -200.000, 300.000, 0.000, 500.000, -100.000, 0.000, ON
/LOCAL0

<Example 2>
The following is a simple program to set the Box values by specifying the local coordinate system numbers
1 and 2.

Function SetBox

 Integer i

 Box 1, -200, 300, 0, 500, -100, 0 /LOCAL1

 i = 2
 Box 2, 100, 200, 0, 100, -200, 100 /LOCAL(i)

Fend

Box Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 133

Box Function

Returns the specified approach check area.

Syntax

Box(AreaNum[, robotNumber], limit)

Parameters
AreaNum Integer expression representing the area number.
robotNumber Optional. Integer expression that specifies which robot you want to configure.

If omitted, the current robot number is used.
limit Integer expression that specifies which limit to return.
 1: Lower limit
 2: Upper limit

Return Values

When you select 1 for limit, the point contains the lower limit of the X, Y, Z coordinates.
When you select 2 for limit, the point contains the upper limit of the X, Y, Z coordinates.

See Also

Box, BoxClr, BoxDef, GetRobotInsideBox, InsideBox

Box Function Example

P1 = Box(1,1)
P2 = Box(1,2)

BoxClr Statement

134 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

BoxClr Statement

Clears the definition of approach check area.

Syntax

BoxClr AreaNum[, robotNumber]

Parameters

AreaNum Integer expression representing the area number from 1 to 15.
robotNumber Optional. Integer expression that specifies which robot you want to configure.

If omitted, the current robot number is used.

Description

Robot parameter data is stored in compact flash in controller. Therefore, writing to command flash occurs
when executing this command. Frequent writing to compact flash affect to lifetime of compact flash. We
recommend to use this command minimally.

See Also

Box, BoxDef, GetRobotInsideBox, InsideBox

BoxClr Statement Example

This example uses BoxClr function in a program.

Function ClearBox

 If BoxDef(1) = True Then
 BoxClr 1
 EndIf
Fend

BoxDef Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 135

BoxDef Function

Returns whether Box has been defined or not.

Syntax

BoxDef(AreaNum[, robotNumber])

Parameters

AreaNum Integer expression representing an area number from 1 to 15.
robotNumber Integer expression representing a robot number you want to configure.

If omitted, the current robot will be specified.

Return Values

True if approach check area is defined for the specified area number, otherwise False.

See Also

Box, BoxClr, GetRobotInsideBox, InsideBox

BoxDef Function Example

This example uses BoxDef function in a program.

Function ClearBox

 If BoxDef(1) = True Then
 BoxClr 1
 EndIf
Fend

Brake Statement

136 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Brake Statement

Turns brake on or off for specified joint of the current robot.

Syntax

Brake status, jointNumber

Parameters

status The keyword On is used to turn the brake on. The keyword Off is used to turn the brake off.
jointNumber The joint number from 1 to 6.

Description

The Brake command is used to turn brakes on or off for one joint of the 6-axis robot (including N series). It’s
not available for SCARA Robot (include RS series).
This command is intended for use by maintenance personnel only.

When the Brake statement is executed, the robot control parameter is initialized.
See Motor On for the details.

WARNING

■ Use extreme caution when turning off a brake. Ensure that the joint is properly
supported, otherwise the joint can fall and cause damage to the robot and
personnel.

Note
Before releasing the brake, be ready to use the emergency stop switch

When the controller is in emergency stop status, the motor brakes are locked. Be aware that the robot arm
may fall by its own weight when the brake is turned off with Brake command.

See Also

Motor, Power, Reset, SFree, SLock

Brake Statement Example

> brake on, 1

> brake off, 1

Brake Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 137

Brake Function

Returns brake status for specified joint.

Syntax

Brake (jointNumber)

Parameters

jointNumber Integer expression representing the joint number. Value are from 1 to the number of joints
on the robot.

Return Values

0 = Brake off, 1 = Brake on.

See Also

Brake

Brake Function Example

If brake(1) = Off Then
 Print “Joint 1 brake is off”
EndIf

BSet Function

138 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

BSet Function

Sets a bit in a number and returns the new value.

Syntax

BSet (number, bitNum)

Parameters
number Specifies the value to set the bit with an expression or numeric value.
bitNum Specifies the bit (integer from 0 to 31) to be set by an expression or numeric value.

Return Values

Returns the bit set value of the specified numeric value (integer).

See Also

BClr, BClr64, BSet64, BTst, BTst64

BSet Function Example

flags = BSet(flags, 1)

BSet64 Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 139

BSet64 Function

Sets a bit in a number and returns the new value.

Syntax

BSet64 (number, bitNum)

Parameters

number Specifies the value to set the bit with an expression or numeric value.
bitNum Specifies the bit (integer from 0 to 63) to be set by an expression or numeric value.

Return Values

Returns the bit set value of the specified numeric value (integer).

See Also

BClr, BClr64, BSet, BTst, BTst64

BSet64 Function Example

flags = BSet64(flags, 1)

BTst Function

140 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

BTst Function

Returns the status of 1 bit in a number.

Syntax

BTst (number, bitNum)

Parameters

number Specifies the number for the bit test with an expression or numeric value.
bitNum Specifies the bit (integer from 0 to 31) to be tested.

Return Values

Returns the bit test results (integer 1 or 0) of the specified numeric value.

See Also

BClr, BClr64, BSet, BSet64, BTst64

BTst Function Example

If BTst(flags, 1) Then
 Print "Bit 1 is set"
EndIf

BTst64 Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 141

BTst64 Function

Returns the status of 1 bit in a number.

Syntax

BTst64 (number, bitNum)

Parameters

number Specifies the number for the bit test with an expression or numeric value.
bitNum Specifies the bit (integer from 0 to 63) to be tested.

Return Values

Returns the bit test results (integer 1 or 0) of the specified numeric value.

See Also

BClr, BClr64, BSet, BSet64, BTst

BTst64 Function Example

If BTst64(flags, 1) Then
 Print "Bit 1 is set"
EndIf

Byte Statement

142 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Byte Statement

Declares variables of type Byte. (2 byte whole number).

Syntax

Byte varName [(subscripts)] [, varName [(subscripts)]...]

Parameters

varName Variable name which the user wants to declare as type Byte.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared. The

subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 and the available

number of array elements is the upper bound value + 1.
 When specifying the upper bound value, make sure the number of total elements is

within the range shown below:
Local variable 2,000
Global Preserve variable 4,000
Global variable and module variable 100,000

Description

Byte is used to declare variables as type Byte. Variables of type Byte can contain whole numbers ranging in
value from -128 to +127. Local variables should be declared at the top of a function.
Global and module variables must be declared outside of functions.

See Also

Boolean, Double, Global, Int32, Int64, Integer, Long, Real, Short, String, UByte, UInt32, UInt64,
UShort

Byte Statement Example

The following example declares a variable of type Byte and then assigns a value to it. A bitwise And is then
done to see if the high bit of the value in the variable test_ok is On (1) or Off (0). The result is printed to the
display screen. (Of course in this example the high bit of the variable test_ok will always be set since we
assigned the variable the value of 15.)

Function Test
 Byte A(10) 'Single dimension array of byte
 Byte B(10, 10) 'Two dimension array of byte
 Byte C(5, 5, 5) 'Three dimension array of byte
 Byte test_ok
 test_ok = 15
 Print "Initial Value of test_ok = ", test_ok
 test_ok = (test_ok And 8)
 If test_ok <> 8 Then
 Print "test_ok high bit is ON"
 Else
 Print "test_ok high bit is OFF"
 EndIf
Fend

Calib Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 143

Calib Statement

Replaces the current arm posture pulse values with the current CalPls values.

Syntax

Calib joint1[, joint2][, joint3][, joint4][, joint5][, joint6][, joint7][, joint8][, joint9]

Parameters
joint Integer number from 1 to 9 that specifies the joint number to calibrate. While

normally only one joint may need calibration at a time, up to all nine joints may be
calibrated with the Calib command at the same time.
Additional S axis is 8 and T axis is 9.

Description
Automatically calculates and specifies the offset (Hofs) value. This offset is necessary for matching the origin
for each robot joint motor to the corresponding robot mechanical origin.

The Calib command should be used when the motor pulse value has changed. The most common occurrence
for use is after changing a motor. Normally, the calibration position pulse values would match the CalPls
pulse values. However, after maintenance operations such as changing the motors, these two sets of values
will no longer match, and therefore calibration becomes necessary.

Calibration may be accomplished by moving the arm to a desired calibration position, and then executing the
Calib command. By executing Calib, the calibration position pulse value is changed to the CalPls value, (the
correct pulse value for the calibration position)

In order to perform a proper calibration, Hofs values must be determined. To have Hofs values automatically
calculated, move the arm to the desired calibration position, and execute Calib. The controller automatically
calculates Hofs values based on the calibration pulse values and on the CalPls pulse values.

Note
Use caution when using the Calib command

Calib is intended to be used for maintenance purposes only. Execute Calib only when necessary.

Executing Calib causes the Hofs value to be replaced. Because unintended Hofs value changes can cause
unpredictable robot motion, use caution in executing Calib only when necessary.

For supported robots of joint accuracy offset, when Calib is executed, offset value set in JointAccuracy for
the specified axis becomes “0”.

After executing this command, start the Safety Function Manager (only for the Controller with
Safety Board)

For the Controllers with Safety Board, the Hofs value of the Controller and the Hofs value of the Safety
Board that implements the safety function must match.
If this command executed with these Controllers, a warning occurs because only the Hofs value of the
Controller is changed and there is a difference with the Safety Board setting.
Therefore, after executing this command, start the Safety Function Manager to refresh the Safety board
settings.
For more details, refer to the following manual.

Robot Controller Safety Function Manual

Calib Statement

144 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Potential Error
No Joint Number Specified Error

If the joint number is not specified with the Calib command, an error will occur.

See Also
CalPls, JointAccuracy, HofsJointAccuracy, Hofs

Calib Statement Example

Example from the command window.
> CalPls 'Display current CalPls values
 65523, 43320, -1550, 21351
> Pulse 'Display current Pulse values
PULSE: 1: 65526 pls 2: 49358 pls 3: 1542 pls 4: 21299 pls
> Calib 2 'Execute calibration for joint 2 only
> Pulse 'Display (changed) Pulse values
PULSE: 1: 65526 pls 2: 43320 pls 3: 1542 pls 4: 21299 pls
>

Call Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 145

Call Statement

Calls a user function.

Syntax

Call funcName [(argList)]

Parameters

funcName The name of a Function which is being called.
argList Optional. List of arguments that were specified in the Function declaration.

For the argument, use the following syntax:
[ByRef] varName [()], or numerical expression
ByRef Optional. Specify ByRef when you refer to the variable to be seen by the

calling function. In this case, the argument change in a function can be
reflected to the variable of the calling side. You can change the values
received as a reference.

Description

The Call instruction causes the transfer of program control to a function (defined in Function...Fend). This
means that the Call instruction causes program execution to leave the current function and transfer to the
function specified by Call. Program execution then continues in that function until an Exit Function or Fend
instruction is reached. Control is then passed back to the original calling function at the next statement after
the Call instruction.
You may omit the Call keyword and argument parentheses. For example, here is a call statement used with
or without the Call keyword:

Call MyFunc(1, 2)
MyFunc 1, 2

You can call an external function in a dynamic link library (DLL). For details, refer to Declare Statement.
To execute a subroutine within a function, use GoSub...Return.
You can specify a variable as an argument. Specifying the ByRef parameter, you can reflect the change of
argument in the function to the variable of the calling side.
When specifying the ByRef parameter, you need to specify ByRef as well for the argument list of the function
definition (Function statement) and DLL function definition (Declare statement).
ByRef is necessary when giving an array variable as an argument.

See Also

Function, GoSub

Call Statement Example

<File1: MAIN.PRG>
Function main
 Call InitRobot
Fend

<File2: INIT.PRG>
Function InitRobot

 If Motor = Off Then
 Motor On
 EndIf
 Power High
 Speed 50
 Accel 75, 75
Fend

CalPls Statement

146 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

CalPls Statement

Specifies and displays the position and orientation pulse values for calibration.

Syntax

(1) CalPls j1Pulses, j2Pulses, j3Pulses, j4Pulses[, j5Pulses, j6Pulses] [, j7Pulses] [, j8Pulses,
j9Pulses]

(2) CalPls

Parameters

j1Pulses First joint pulse value. This is a long integer expression.
j2Pulses Second joint pulse value. This is a long integer expression.
j3Pulses Third joint pulse value. This is a long integer expression.
j4Pulses Fourth joint pulse value. This is a long integer expression.
j5Pulses Optional. Fifth joint pulse value. This is a long integer expression.
j6Pulses Optional. Sixth joint pulse value. This is a long integer expression.
j7Pulses Optional. Seventh joint pulse value. This is a long integer expression.
j8Pulses Optional. Eighth joint pulse value. This is a long integer expression.
j9Pulses Optional. Nineth joint pulse value. This is a long integer expression.

Return Values

When parameters are omitted, displays the current CalPls values.

Description

Specifies and maintains the correct position pulse value(s) for calibration.

CalPls is intended to be used for maintenance, such as after changing motors or when motor zero position
needs to be matched to the corresponding arm mechanical zero position. This matching of motor zero
position to corresponding arm mechanical zero position is called calibration.

Normally, the calibration position Pulse values match the CalPls pulse values. However, after performing
maintenance operations such as changing motors, these two sets of values no longer match, and therefore
calibration becomes necessary.

Calibration may be accomplished by moving the arm to a certain calibration position and then executing
Calib. By executing Calib, the calibration position pulse value is changed to the CalPls value (the correct
pulse value for the calibration position.)

Hofs values must be determined to execute calibration. To have Hofs values automatically calculated,
move the arm to the desired calibration position, and execute Calib. The controller automatically calculates
Hofs values based on calibration position pulse values and on the CalPls values.

Note
CalPls Values Cannot be Changed by cycling power

CalPls values are not initialized by turning main power to the controller off and then on again. The only
method to modify the CalPls values is to execute the Calib command.

See Also

Calib, Hofs

CalPls Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 147

CalPls Statement Example
Monitor window operation

> CalPls 'Display current CalPls values
65523, 43320, -1550, 21351
> Pulse
PULSE: 1: 65526 pls 2: 49358 pls 3: -1542 pls 4: 21299 pls
> Calib 4
> Pulse
PULSE: 1: 65526 pls 2: 49358 pls 3: -1542 pls 4: 21351 pls
>

CalPls Function

148 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

CalPls Function

Returns calibration pulse value specified by the CalPls Statement.

Syntax

CalPls(joint)

Parameters

joint Integer expression representing a robot joint number or 0 to return CalPls status.
The additional S axis is 8 and T axis is 9.

Return Values

Integer value containing number of calibration pulses. When joint is 0, returns 1 or 0 depending on if
CalPls has been executed.

See Also
CalPls

CalPls Function Example
This example uses the CalPls function in a program:

Function DisplayCalPlsValues
 Integer i

 Print "CalPls Values:"
 For i = 1 To 4
 Print "Joint ", i, " CalPls = ", CalPls(i)
 Next i
Fend

ChDir Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 149

ChDir Statement

Changes and displays the current directory.

Syntax

(1) ChDir pathName
(2) ChDir

Parameters

pathName String expression representing the name of the new default path.
See ChDisk for the details.

Description

(1) Changes to the specified directory by specifying the parameter.
(2) When the parameter is omitted, the current directory is displayed. This is used to display the current

directory when it is not known.

ChDir is available only with the PC disk.
When executing this command by a program, enclose the name of path with ["].

When the power is ON, the root directory will be the current directory if no project is open, and if a project
is open, the project directory will be the current directory.

If you change the drive with ChDrive, the root directory will be the current directory.

The parameter is stored in compact flash in controller. Therefore, writing to command flash occurs when
executing this command. Frequent writing to compact flash affect to lifetime of compact flash. We
recommend to use this command minimally.

See Also
ChDrive, ChDisk, CurDir$

ChDir Statement Example
The following examples are done from the command window.

> ChDir \ 'Change current directory to the root directory
> ChDir.. 'Change current directory to parent directory

> Cd \TEST\H55 'Change current directory to \H55 in \TEST

> Cd 'Display current directory
A:\TEST\H55\

Program execution example
ChDir "\" 'Change current directory to the root directory
ChDir ".." 'Change current directory to parent directory

ChDisk Statement

150 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

ChDisk Statement

Sets the object disk for file operations.

Syntax

ChDisk PC|USB|RAM

Parameters

PC Folders (such as Hard disk) on the Windows Part
USB USB memory on the Real Part
RAM Memory on the Real Part

Description
Specifies which disk to use for file operations. Default is PC disk.
The Robot Controller supports the following disks as the object of file operations.

PC Folders on the Windows Part
The initial setting is PC and normally you don’t have to change the setting
from PC.
Accesses to the files on the project folders.

USB USB memory connected to the controller memory port
This is useful to exchange files when you don’t use the Windows Part
(RC+).
USB cannot be specified as a parameter for the T/VT series.

RAM Temporary files on the memory
These files are not saves when you turn off the controller.
This is useful to save the data temporary.

Some of the SPEL+ commands change the object of the file operations according to the ChDisk setting. Also,
the ChDisk setting is available only with the PC disk for some commands.

ChDisk
ChDrive
ChDir
don’t affect…

Curve
CVMove
LoadPoints
SavePoints
ImportPoints file name

Object is always the project folders.
File name can be specified.
If path is specified, an error occurs.

ChDisk
don’t affect…

Access, Excel file name of OpenDB
ImportPoints source path
VLoadModel
VSaveImage
VSaveModel

Object is always the Windows folders.
If only file name is specified, it can be affected
by the current drive and folder.
You can also specify a full path.

Executable when
ChDisk is PC

ChDir
FolderExists
MkDir
RenDir
RmDir

If you execute without setting ChDisk to PC, an
error occurs.
If only file name and directory name are
specified, it can be affected by the current drive
and folder.
You can also specify a full path.
USB and RAM have no idea of directory.

ChDisk Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 151

Executable when
ChDisk is USB or
RAM

Copy
Del
FileDataTime
FileExist
FileLen
AOpen, BOpen, ROpen, UOpen,
WOpen
Rename

When ChDisk is PC:
If only file name and directory name are
specified, it can be affected by the current
drive and folder.
You can also specify a full path.

When ChDisk is USB or RAM:
Only file name can be specified and if a path is
specified, an error occurs.

Special Declare See Declare for the details.
Any specified file name can be accepted.
It cannot be affected by the current drive and
folder

How to decide a full path when ChDisk is PC is as follows:

Only file name “abc.txt” Current drive + Current directory + Specified file name

“C:\EpsonRC70\Projects\ProjectName\abc.txt”
Full path without a drive “\abc.txt” Current drive + Specified full path

“C:\abc.txt”
Full path with a drive “d:\abc.txt” Specified full path

“d:\abc.txt”
Drive is a network folder “k:\abc.txt” Specified full path

“k:\abc.txt”
Network path “\\Epson\data\abc.txt” Specified full path

“\\Epson\data\abc.txt”

You can have one ChDisk setting per controller.
If you want to set more than one disk as a system, take an exceptional control to switch the ChDisk setting.

See Also

ChDir, ChDrive, CurDisk$

ChDisk Statement Example

Examples from the Command window.

> ChDisk PC

ChDrive Statement

152 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

ChDrive Statement

Changes the current disk drive for file operations.

Syntax

ChDrive drive

Parameters

drive String expression or literal containing a valid drive letter.

Description
ChDrive is available only with the PC disk.

When the power is turned on, the “C” drive will be the current drive if a project is closed. If a project is
open, the drive of the opened project will be the current drive.

See ChDisk for the details.

The parameter is stored in compact flash in controller. Therefore, writing to command flash occurs when
executing this command. Frequent writing to compact flash affect to lifetime of compact flash. We
recommend to use this command minimally.

See Also

ChDir, ChDisk, CurDrive$

ChDrive Statement Example

The following examples are done from the command window.

> ChDrive d

ChkCom Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 153

ChkCom Function

Returns number of characters in the reception buffer of a communication port.

Syntax

ChkCom (portNumber As Integer)

Parameters

portNumber Integer value that specifies the RS-232C port number
Real Part 1 to 8
Windows Part 1001 to 1008

Return Values

Number of characters received (integer).

If the port cannot receive characters, the following negative values are returned to report the current port
status:

-2 Port is used by another task
-3 Port is not open

See Also

CloseCom, OpenCom, Read, Write

ChkCom Function Example

Integer numChars

numChars = ChkCom(1)

ChkNet Function

154 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

ChkNet Function

Returns number of characters in the reception buffer of a network port.

Syntax

ChkNet (portNumber As Integer)

Parameters

portNumber TCP/IP port number (201 to 216)

Return Values

Number of characters received (integer).

If the port cannot receive characters, the following negative values are returned to report the current port
status:

-1 Port is open but communication has not been established
-2 Port is used by another task
-3 Port is not open

See Also

CloseNet, OpenNet, Read, Write

ChkNet Function Example

Integer numChars

numChars = ChkNet(201)

Chr$ Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 155

Chr$ Function

Returns the character specified by a numeric ASCII value.

Syntax

Chr$(number)

Parameters

number An integer expression between 1 and 255.

Return Values

Returns a character that corresponds with the specified ASCII code specified by the value of number.

Description

Chr$ returns a character string (1 character) having the ASCII value of the parameter number. When the
number specified is outside of the range from 1 to 255, an error will occur.

See Also

Asc, Instr, Left$, Len, Mid$, Right$, Space$, Str$, Val

Chr$ Function Example

The following example declares a variable of type String and then assigns the string "ABC" to it. The
Chr$ instruction is used to convert the numeric ASCII values into the characters "A", "B" and "C". The &H
means the number following is represented in hexadecimal form. (&H41 means Hex 41)

Function Test
 String temp$
 temp$ = Chr$(&H41) + Chr$(&H42) + Chr$(&H43)
 Print "The value of temp = ", temp$
Fend

ClearPoints Statement

156 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

ClearPoints Statement

Erases the robot position data memory.

Syntax

ClearPoints

Description

ClearPoints initializes the robot position data area. Use this instruction to erase point definitions which reside
in memory before teaching new points.

See Also

Plist, LoadPoints, SavePoints

ClearPoints Statement Example

The example below shows simple examples of using the ClearPoints command (from the command window).
Notice that no teach points are shown when initiating the Plist command once the ClearPoints command is
given.

>P1=100,200,-20,0/R
>P2=0,300,0,20/L
>plist
P1=100,200,-20,0/R
P2=0,300,0,20/L
>clearpoints
>plist
>

Close Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 157

Close Statement

Closes a file that has been opened with AOpen, BOpen, ROpen, UOpen, or WOpen.

Syntax

Close #fileNumber

Parameters

fileNumber Integer expression whose value is from 30 to 63.

Description

Closes the file referenced by file handle fileNumber and releases it.

See Also

AOpen, BOpen, Flush, FreeFile, Input #, Print #, ROpen, UOpen, WOpen

Close Statement Example

This example opens a file, writes some data to it, then later opens the same file and reads the data into an
array variable.

Integer fileNumber, i, j

ｆileNumber = FreeFile
WOpen "TEST.DAT" As #fileNum
For i = 0 To 100
 Print #fileNum, i
Next i
Close #fileNum

FileNum = FreeFile
ROpen "TEST.DAT" As #fileNum
For i = 0 to 100
 Input #fileNum, j
 Print j
Next i
Close #fileNum

CloseCom Statement

158 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

CloseCom Statement

Closes the RS-232C port that has been opened with OpenCom.

Syntax

CloseCom #portNumber | All

Parameters

portNumber RS-232C port number to close.
Real Part 1 to 8
Windows Part 1001 to 1008
If All is specified, the task will close all the open RS-232C ports.

See Also

ChkCom, OpenCom

CloseCom Statement Example

CloseCom #1

CloseDB Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 159

CloseDB Statement

Closes the database that has been opened with the OpenDB command and releases the file number.

Syntax
CloseDB #fileNumber

Parameters
fileNumber Database number specified with OpenDB from 501 to 508

Description
CloseDB closes the database and Excel book, and releases the database number.

Note
- Connection of PC with installed RC+ is required.

See Also
OpenDB, SelectDB, UpdateDB, DeleteDB, Input #, Print #

CloseDB Statement Example
Refer to OpenDB use example.

CloseNet Statement

160 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

CloseNet Statement

Closes the TCP/IP port previously opened with OpenNet.

Syntax

CloseNet #portNumber | All

Parameters

portNumber TCP/IP port number to close (201 to 216)
If All is specified, the task will close all the open TCP/IP ports.

See Also

ChkNet, OpenNet

CloseNet Statement Example

CloseNet #201

Cls Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 161

Cls Statement

Clears the EPSON RC+ Run, Operator, or Command window text area. Clears also the TP print panel.

Syntax

(1) Cls #deviceID
(2) Cls

Parameters

deviceID 21 RC+
24 TP (TP1 only)
20 TP3
When deviceID is omitted, the display device is cleared.

Description

Cls clears the current EPSON RC+ Run or Operator window text area, depending on where the program was
started from.

If Cls is executed from a program that was started from the Command window, the command window text
area is cleared.

When deviceID is omitted, the display of the current display device is cleared.

Cls Statement Example

If this example is run from the Run window or Operator window, the text area of the window will be cleared
when Cls executes.

Function main
 Integer i

 Do
 For i = 1 To 10
 Print i
 Next i
 Wait 3
 Cls
 Loop
Fend

Cnv_AbortTrack Statement

162 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Cnv_AbortTrack Statement

Aborts tracking motion to a conveyor queue point.

Syntax

Cnv_AbortTrack [stopZheight]

Parameters

stopZheight Optional. Real expression that specifies the Z position the robot should move to after
aborting the track.

Description

When a motion command to a conveyor queue point is in progress, Cnv_AbortTrack can be executed to
abort it.

If stopZHeight is specified, the robot will move up to this value only if the Z axis position at the time of
abort is below stopZHeight and will then be decelerated to a stop.

If stopZHeight is omitted, the robot is decelerated to a stop without the depart motion in the Z direction.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_RobotConveyor Statement

Cnv_AbortTrack Statement Example

' Task to monitor robot whose part being tracked has gone downstream

Function WatchDownstream

 Robot 1
 Do
 If g_TrackInCycle And Cnv_QueLen(1, CNV_QUELEN_DOWNSTREAM) > 0 Then
 ' Abort tracking for current robot and move robot Z axis to 0
 g_AbortTrackInCycle = TRUE
 Cnv_AbortTrack 0
 g_AbortTrackInCycle = FALSE
 EndIf
 Wait 0.01
 Loop
Fend

Cnv_Accel Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 163

Cnv_Accel Statement

Sets acceleration and deceleration of the tracking motion in the Conveyor Tracking.

Syntax

Cnv_Accel (conveyorNumber) , accel/decel

Parameters

conveyorNumber Integer expression representing the conveyor number (1 to 16)
accel/decel Acceleration and deceleration of tracking motion

Description

Sets acceleration and deceleration of the tracking motion in Conveyor Tracking.
Acceleration and deceleration cannot be set separately.
Change the parameters when acceleration setting error occurs, or when it is required to reduce work picking
time. The default value is 2000[mm/sec2].

Note

This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_Accel Function

Cnv_Accel Statement Example

Cnv_Accel 1,2000

Cnv_Accel Function

164 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Cnv_Accel Function

Returns acceleration and deceleration of tracking motion in Conveyor Tracking.

Syntax

Cnv_Accel (conveyorNumber)

Parameters

conveyorNumber Integer expression representing the conveyor number (1 to 16)

Return Values

Real value in millimeters.

Note

This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_Accel

Cnv_Accel Function Example

Print Cnv_Accel (1)

Cnv_AccelLim Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 165

Cnv_AccelLim Statement

Sets limit of acceleration and deceleration after the conveyor tracked.

Syntax
Cnv_AccelLim conveyorNumber, modeNumber, accel/decel

Parameters
conveyorNumber Integer expression representing the conveyor number (1 to 16)
modeNumber Integer expression representing the tracking mode of the conveyor tracking (0 to 2)
accel/decel Sets real value (unit: mm/sec2) of acceleration limit and deceleration limit after the

conveyor tracked. Setting range is the same as the AccelS statement.

Initial value
Picking quantity-priority mode 500 [mm/sec2]
Picking accuracy-priority mode 2000 [mm/sec2]
Variable speed conveyor mode 6000 [mm/sec2]

Description
Repeating the operation of stopping and starting the conveyor during conveyor tracking causes delay in the
robot's tracking due to the conveyor’s speed changes. Set the limit of acceleration and deceleration when
improve tracking ability.
The acceleration and deceleration cannot be set separately.
If the limit is too high, robot motion gets oscillatory due to variation of the conveyor speed or noise. If it is
lowered too much, the robot will not stop tracking the conveyor even it stops, and it may move out of the
operating area of the robot. In that case, set a tracking abort line or program to stop tracking at the
downstream limit.

Notes
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_AccelLim Function

Cnv_AccelLim Example
Cnv_AccelLim 1,2,7000

Cnv_AccelLim Function

166 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Cnv_AccelLim Function

Returns limit of acceleration and deceleration after the conveyor tracked.

Syntax
Cnv_AccelLim (conveyorNumber, modeNumber)

Parameters
conveyorNumber Integer expression representing the conveyor number (1 to 16)
modeNumber Integer expression representing the tracking mode of the conveyor tracking (0 to 2)

Return Values
Real value in millimeters.

Notes
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_AccelLim

Cnv_AccelLim Example

Print Cnv_AccelLim (1,2)

Cnv_Adjust Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 167

Cnv_Adjust Statement

Sets whether to acquire the follow-up delay offset value for conveyor tracking.

Syntax

Cnv_Adjust conveyorNumber, On | Off

Parameters

conveyorNumber An expression or a number (1 to 16) representing the conveyor number.
On | Off Set to “On” to acquire the follow-up delay offset value for conveyor tracking. Set to

“Off” to stop acquiring.

Description

Sets whether to acquire the follow-up delay offset value for conveyor tracking.
Execute the Cnv_QueGet function with Cnv_Adjust set to “On” to acquire the offset value. When picking
up a workpiece, set Cnv_Adjust to “Off” and execute the Cnv_QueGet function.
If Cnv_Adjust is set to “On”, always turn it “Off” once the offset value has been acquired.
Cnv_Adjust can only be used with linear conveyors. It cannot be used with circular conveyors. For circular
conveyors, the offset value will not be acquired even when turning Cnv_Adjust “On”.
The offset value acquired will be cleared when power to the controller is turned off. When turning power to
the controller back on, the initial value of “0” will be set. Therefore, after acquiring the offset value, use the
print Cnv_AdjustGet statement to return the offset value, and set this offset value using Cnv_AdjustSet
before running Cnv_QueGet in the program.

Note
This command is only available when the Conveyor Tracking option is installed.

See Also

Cnv_AdjustGet function, Cnv_AdjustSet, Cnv_AdjustClear, Cnv_QueGet function

Cnv_Adjust Statement Example

Cnv_Adjust 1, On
Jump Cnv_QueGet(1)
・
・
Cnv_Adjust 1, Off

Cnv_AdjustClear Statement

168 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Cnv_AdjustClear Statement

Clears the follow-up delay offset value for conveyor tracking.

Syntax

Cnv_AdjustClear conveyorNumber

Parameters

conveyorNumber An expression or a number (1 to 16) representing the conveyor number.

Description

Clears the results of actions to acquire the follow-up delay offset value for conveyor tracking, the offset
amount, and offset time, and resets values to “0”.

Note
This command is only available when the Conveyor Tracking option is installed.

See Also

Cnv_Adjust, Cnv_AdjustSet function, Cnv_AdjustGet, Cnv_QueGet function

Cnv_AdjustClear Statement Example

Cnv_AdjustClear 1

Cnv_AdjustGet Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 169

Cnv_AdjustGet Function

Returns the follow-up delay offset value for conveyor tracking.

Syntax

Cnv_AdjustGet(conveyorNumber, modeNumber)

Parameters

conveyorNumber An expression or a number (1 to 16) representing the conveyor number.
modeNumber 0: Offset acquisition result
 1: Offset amount
 2: Offset time

Return Values

modeNumber0: Returns a real number between 0 and 2.
0: Offset value acquisition action not performed
1: Offset value acquired
2: Failed to acquire offset value

modeNumber 1: Returns a real number (unit: mm).
modeNumber 2: Returns a real number (unit: seconds).

Description

If the follow-up delay offset value for conveyor tracking has not been acquired using the Cnv_Adjust
statement and the Cnv_QueGet function, the return value for each mode number (0 to 2) will be “0”.

Note
This command is only available when the Conveyor Tracking option is installed.

See Also

Cnv_Adjust, Cnv_AdjustSet, Cnv_AdjustClear, Cnv_QueGet function

Cnv_AdjustGet Function Example

Print Cnv_AdjustGet(1, 1)

Cnv_AdjustSet Statement

170 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Cnv_AdjustSet Statement

Sets the follow-up delay offset value for conveyor tracking.

Syntax

Cnv_AdjustSet conveyorNumber, offsetAmount, offsetTime

Parameters

conveyorNumber An integer value (1 to 16) representing the conveyor number.
offsetAmount A real number representing the offset amount (unit: mm).
offsetTime A real number representing the offset time (unit: seconds).

Description

If Cnv_AdjustSet is not performed, the previously set offset amount and offset time will be applied.
If the offset value has not been acquired since turning the controller on, the initial value of “0” will be set
for the offset amount and the offset time.
Only when the mode number of Cnv_Mode command is 1(Picking accuracy-priority mode), the setting of
the Cnv_AdjustSet command is applied.
Cnv_AdjustSet statement cannot be used with circular conveyors.

Note
This command is only available when the Conveyor Tracking option is installed.

See Also

Cnv_Adjust, Cnv_AdjustGet, Cnv_AdjustClear, Cnv_QueGet function

Cnv_AdjustSet Statement Example
Cnv_AdjustSet 1, 4.5, 0.1

Cnv_Downstream Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 171

Cnv_Downstream Statement

Sets the downstream limit of the specified conveyor.

Syntax

Cnv_Downstream (conveyorNumber) , lowerLimit

Parameters

conveyorNumber Integer expression representing the conveyor number (1 to 16)
lowerLimit A border on the downstream side of the tracking area

Return Values

By using Cnv_Downstream, you can change the downstream limit which was set in the calibration wizard.
However, if skewed downstream limit is used, you cannot change the value by Cnv_Downstream.

Note

This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_Upstream

Cnv_Downstream Statement Example

Cnv_Downstream 1,500

Cnv_Downstream Function

172 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Cnv_Downstream Function

Returns the downstream limit for the specified conveyor.

Syntax

Cnv_Downstream (conveyorNumber)

Parameters

conveyorNumber Integer expression representing the conveyor number (1 to 16)

Return Values

Linear conveyors: Real value in millimeters.
Circular conveyors: Real value in degrees.

Note

This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_Upstream

Cnv_Downstream Function Example

Print "Downstream limit: ", Cnv_Downstream(1)

Cnv_Fine Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 173

Cnv_Fine Statement

Sets the value of Cnv_Fine for one conveyor.

Syntax

Cnv_Fine conveyorNumber [, fineValue]

Parameters

conveyorNumber Integer expression representing the conveyor number (1 to 16)
fineValue Optional. Real expression that specifies the distance at which tracking is completed

in millimeters. A value of 0 means that Cnv_Fine is not used.
If omitted, the current Cnv_Fine setting is displayed.

Description

After confirming the tracking operation is complete, specify the distance from the part that is acceptable for
the next command. When specifying “0”, the Cnv_Fine setting will not be used and the next command will
be accepted when the motion command is complete.

The default value of “0” mm is automatically set when the following conditions occur:

Conveyor is created.
Controller is started.

Note

This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_Fine Function

Cnv_Fine Statement Example

Cnv_Fine 1, 5

Cnv_Fine Function

174 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Cnv_Fine Function

Returns the current Cnv_Fine setting.

Syntax

Cnv_Fine (conveyorNumber)

Parameters

conveyorNumber Integer expression representing the conveyor number (1 to 16).

Return Values

Real value of Cnv_Fine in millimeters.

Note

This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_Fine Statement

Cnv_Fine Function Example

Real f

f = Cnv_Fine(1)

Cnv_Flag Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 175

Cnv_Flag Function

Returns the tracking state for the tracking abort line.

Syntax

Cnv_Flag (conveyorNumber)

Parameters

conveyorNumber Integer expression representing the conveyor number (1 to 16).

Return Values

0: Tracking is executed properly. (Tracking is not canceled or aborted.)
1: Tracking has been canceled because work piece is expected to cross the tracking abort line.
2: Tracking has been aborted because work piece is crossed the tracking abort line.

Z position is not dropped to the specified height.
3: Tracking has been aborted because work piece is crossed the tracking abort line.

Z position is dropped to the specified height.
4: Tracking has been canceled because work pieces are out of tracking area.

The return values other than “0” are returned only when the tracking abort line is defined.
For details on the tracking abort line, refer to the User’s Guide.

Note

This command will only work if the Conveyor Tracking option is active.

Cnv_Flag Function Example

Print Cnv_Flag (1)

Cnv_LPulse Function

176 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Cnv_LPulse Function

Returns the pulse value latched by the conveyor trigger.

Syntax
Cnv_LPulse (conveyorNumber)

Parameters
ConveyorNumber Integer expression that specifies the conveyor number (1 to 16)

Description
Returns the latest conveyor pulses latched by the hardware trigger wires or Cnv_Trigger.

Return Values
Long value that contains the latched pulses of the specified conveyor.

Note

This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_Trigger, Cnv_Pulse

Cnv_LPulse Function Example

Print "Latched conveyor position: ", Cnv_LPulse(1)

Cnv_Mode Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 177

Cnv_Mode Statement

Sets a tracking mode of Conveyor Tracking.

Syntax
Cnv_Mode (conveyorNumber, modeNumber)

Parameters
conveyorNumber Integer expression that specifies the conveyor number (1 to 16)
modeNumber 0: Picking quantity-priority mode

1: Picking accuracy-priority mode
 2: Variable speed conveyor mode

Description
Sets a tracking mode of Conveyor Tracking.
Cnv_Mode is only available for linear conveyors.
Sets the tracking mode before starting the tracking motion. If the parameters are not set, the picking
quantity priority mode will be set.
Picking quantity-priority mode: Although this mode is inferior in picking accuracy to the picking

Accuracy-priority mode, it takes less time to catch up with the moving
work pieces. Therefore, this mode is suitable for the conveyor systems in
which space between the work pieces is narrow or the fast-speed
conveyor systems.

Picking accuracy-priority mode: Although this mode takes longer time to catch up with the work pieces
compared to the picking quantity-priority mode, this improves the
picking accuracy. Therefore, this mode is suitable for the conveyor
systems for small work pieces.

Variable speed conveyor mode: This mode can be used for conveyor system which stops and moves a
conveyor while contacting with a workpiece.

The mode “0” is only supported by the circular conveyors. When “1” or “2” are specified, the manipulator
moves as same as the mode “0”.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_Mode Function

Cnv_Mode Statement Example

Cnv_Mode 1, 1

Cnv_Mode Function

178 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Cnv_Mode Function

Returns a tracking mode of Conveyor Tracking.

Syntax
Cnv_Mode (conveyorNumber)

Parameters
conveyorNumber Integer expression that specifies the conveyor number (1 to 16)

Return Values
Returns a real value from 0 to 2.
0: Picking quantity-priority mode
1: Picking accuracy-priority mode
2: Variable speed conveyor mode

Note

This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_Mode Statement

Cnv_Mode Function Example

Print Cnv_Mode (1)

Cnv_Name$ Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 179

Cnv_Name$ Function

Returns the name of the specified conveyor.

Syntax

Cnv_Name$ (conveyorNumber)

Parameters

conveyorNumber Integer expression that specifies the conveyor number (1 to 16)

Return Values

A string containing the conveyor name.

Note

This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_Number

Cnv_Name$ Function Example

Print "Conveyor 1 Name: ", Cnv_Name$(1)

Cnv_Number Function

180 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Cnv_Number Function

Returns the number of a conveyor specified by name.

Syntax

Cnv_Number (conveyorName)

Parameters

conveyorName String expression representing the conveyor name.

Return Values

Integer conveyor number.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_Name$

Cnv_Number Function Example

Integer cnvNum

cnvNum = Cnv_Number("Main Conveyor")

Cnv_OffsetAngle Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 181

Cnv_OffsetAngle Statement

Sets the offset value for the conveyor queue data.

Syntax

Cnv_OffsetAngle conveyorNumber [, offsetAngle]

Parameters

conveyorNumber Integer expression that specifies the conveyor number (1 to 16)
offsetAngle Real value representing the offset value for the conveyor queue data (unit: degree).

Optional. If omitted, the current offset is displayed.

Description

Sets the offset value for the conveyor queue data.
Cnv_OffsetAngle is available for the circular conveyor.
Conveyor Tracking may have tracking delay according to the conveyor speed. If the tracking delay is
occurred, the robot handles the parts in the wrong position moved by the tracking delay.
Cnv_OffsetAngle gives the offset value to the queue in order to move the robot back to the correct position.

Note

This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_OffsetAngle Function

Cnv_OffsetAngle Statement Example

Cnv_OffsetAngle 1, 5

Cnv_OffsetAngle Function

182 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Cnv_OffsetAngle Function

Returns the offset value of the conveyor queue data.

Syntax

Cnv_OffsetAngle (conveyorNumber)

Parameters

conveyorNumber Integer expression that specifies the conveyor number (1 to 16)

Return Values

Integer value (unit: degree).

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_OffsetAngle Statement

Cnv_OffsetAngle Function Example

Real offsetAngle

offsetAngle = Cnv_OffsetAngle (1)

Cnv_Point Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 183

Cnv_Point Function

Returns a robot point in the specified conveyor's coordinate system derived from sensor coordinates.

Syntax

Cnv_Point (conveyorNumber, sensorX, sensorY [, sensorU])

Parameters

conveyorNumber Integer expression that specifies the conveyor number (1 to 16)
sensorX Real expression for the sensor X coordinate.
sensorY Real expression for the sensor Y coordinate.
sensorU Optional. Real expression for the sensor U coordinate.

Return Values

Robot point in conveyor coordinate system.

Description

The Cnv_Point function must be used to create points that can be added to a conveyor queue. For vision
conveyors, sensorX and sensorY are the vision coordinates from the camera. For sensor conveyors,
sensorX and sensorY can be 0, since this is the origin of the conveyor's coordinate system.

Note

This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_Speed

Cnv_Point Function Example

Boolean found
Integer i, numFound
Real x, y, u

Cnv_Trigger 1
VRun FindParts
VGet FindParts.Part.NumberFound, numFound
For i = 1 To numFound
 VGet FindParts.Part.CameraXYU(i), found, x, y, u
 Cnv_QueAdd 1, Cnv_Point(1, x, y)
Next i

Cnv_PosErr Function

184 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Cnv_PosErr Function

Returns deviation in current tracking position compared to tracking target.

Syntax

Cnv_PosErr (conveyorNumber)

Parameters

conveyorNumber Integer expression that specifies the conveyor number (1 to 16)

Return Values

Real value in millimeters.

Note

This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_MakePoint

Cnv_PosErr Function Example

Print "Conveyor 1 position error: ", Cnv_PosErr(1)

Cnv_PosErrOffset Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 185

Cnv_PosErrOffset Statement

Sets value to correct the position deviation between the current tracking position and target.

Syntax

Cnv_PosErrOffset conveyorNumber, offsetValue

Parameters

conveyorNumber An integer value (1 to 16) representing the conveyor number.
offsetValue A real number (0 to 255; unit: msec) representing the time at which to predict the

conveyor speed.

Description

Repeating the operation of stopping and starting the conveyor during conveyor tracking worsens the
position deviation between the tracking position and target due to the delay in the robot's tracking of the
conveyor's speed changes.
Conveyor tracking can improve the position deviation by predicting the conveyor speed after a time set by
the offset value.
Cnv_PosErrOffset is available only in variable speed conveyor mode. In picking quantity-priority mode
and picking accuracy-priority mode, the position deviation cannot be improved by setting an offset value.

Notes
This command is only available when the Conveyor Tracking option is installed.

See Also

Cnv_Mode, Cnv_PosErr

Cnv_PosErrOffsetStatement Example

Cnv_Mode 1, 2 ' Variable speed conveyor mode
Cnv_PosErrOffset 1, 10 ' Offset value 10 msec

Cnv_Pulse Function

186 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Cnv_Pulse Function

Returns the current position of a conveyor in pulses.

Syntax

Cnv_Pulse (conveyorNumber)

Parameters

conveyorNumber Integer expression that specifies the conveyor number (1 to 16)

Return Values

Long value of current pulses for specified conveyor.

Note

This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_Trigger, Cnv_LPulse

Cnv_Pulse Function Example

Print "Current conveyor position: ", Cnv_Pulse(1)

Cnv_QueAdd Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 187

Cnv_QueAdd Statement

Adds a robot point to a conveyor queue.

Syntax

Cnv_QueAdd conveyorNumber, pointData [, userData]

Parameters

conveyorNumber Integer expression that specifies the conveyor number (1 to 16)
pointData The robot point to add to the conveyor queue.
userData Optional. Real expression used to store user data along with the point.

Description

pointData is added to the end of the specified conveyor's queue. It is registered together with the currently
latched conveyor pulse position.

If the distance between pointData and the previous point in the queue is at or below that specified by
Cnv_QueReject, the point data will not be added to the queue, and no error will occur.

The maximum queue data value is 1000.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_RobotConveyor

Cnv_QueAdd Statement Example

Boolean found
Integer i, numFound
Real x, y, u

Cnv_Trigger 1
VRun FindParts
VGet FindParts.Part.NumberFound, numFound
For i = 1 To numFound
 VGet FindParts.Part.CameraXYU(i), found, x, y, u
 Cnv_QueAdd 1, Cnv_Point(1, x, y)
Next i

Cnv_QueGet Function

188 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Cnv_QueGet Function

Returns a point from the specified conveyor's queue.

Syntax

Cnv_QueGet (conveyorNumber [, index])

Parameters

conveyorNumber Integer expression that specifies the conveyor number (1 to 16)
index Optional. Integer expression representing the index of the queue data to retrieve.

Return Values

A robot point in the specified conveyor's coordinate system.

Description

Use Cnv_QueGet to retrieve points from the conveyor queue. When queNumber is omitted, the first point
in the queue is returned. Otherwise, the point from the specified queNumber is returned.

Cnv_QueGet does not delete the point from the queue. Instead, you must use Cnv_QueRemove to delete it.

To track a part as the conveyor moves, you must use Cnv_QueGet in a motion command statement.
For example:

 Jump Cnv_QueGet(1) ' this tracks the part

You cannot assign the result from Cnv_QueGet to a point and then track it by moving to the point.

 P1 = Cnv_QueGet(1)
 Jump P1 ' this does not track the part

When you assign the result from Cnv_QueGet to a point, the coordinate values correspond to the position
of the part when the point assignment was executed.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_QueLen, Cnv_QueRemove

Cnv_QueGet Function Example

' Jump to the first part in the queue and track it
Jump Cnv_QueGet(1)
On gripper
Wait .1
Jump place
Off gripper
Wait .1
Cnv_QueRemove 1

Cnv_QueLen Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 189

Cnv_QueLen Function

Returns the number of items in the specified conveyor's queue.

Syntax

Cnv_QueLen (conveyorNumber [, paramNumber])

Parameters

conveyorNumber Integer expression that specifies the conveyor number (1 to 16)
paramNumber Optional. Integer expression that specifies which data to return the length for.

Symbolic constant Value Meaning
CNV_QUELEN_ALL 0 Returns total number of items in queue.
CNV_QUELEN_UPSTREAM 1 Returns number of items upstream.
CNV_QUELEN_PICKUPAREA 2 Returns number of items in pickup area.
CNV_QUELEN_DOWNSTREAM 3 Return number of items downstream.

Return Values

Integer number of items.

Description

Cnv_QueLen is used to find out how many items are available in the queue. Typically, who will want to
know how many items are in the pickup area.

You can also use Cnv_QueLen as an argument to the Wait statement.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_QueGet

Cnv_QueLen Function Example

Do
 Do While Cnv_QueLen(1, CNV_QUELEN_DOWNSTREAM) > 0
 Cnv_QueRemove 1, 0
 Loop
 If Cnv_QueLen(1, CNV_QUELEN_PICKUPAREA) > 0 Then
 Jump Cnv_QueGet(1, 0) C0
 On gripper
 Wait .1
 Cnv_QueRemove 1, 0
 Jump place
 Off gripper
 Jump idlePos
 EndIf
Loop

Cnv_QueList Statement

190 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Cnv_QueList Statement

Displays a list of items in the specified conveyor's queue.

Syntax

Cnv_QueList conveyorNumber[, numOfItems]

Parameters

conveyorNumber Integer expression that specifies the conveyor number (1 to 16)
numOfItems Optional. Integer expression to specify how many items to display. If omitted, all

items are displayed.

Note

This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_QueGet

Cnv_QueList Statement Example

Cnv_QueList 1

Cnv_QueMove Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 191

Cnv_QueMove Statement

Moves data from upstream conveyor queue to downstream conveyor queue.

Syntax

Cnv_QueMove conveyorNumber [, index] [, userData]

Parameters

conveyorNumber Integer expression that specifies the conveyor number (1 to 16)
index Optional. Integer expression that specifies the index of the queue to move.

(The first item in the queue is index #0.)
userData Optional. Real expression used to store user data along with the item.

Description

Cnv_QueMove is used to move one or more items from a conveyor queue to its associated downstream
conveyor queue. If index is specified, the first item (index #0) of the queue is moved.

Note

This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_QueGet

Cnv_QueMove Statement Example

Cnv_QueMove 1

Cnv_QueReject Statement

192 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Cnv_QueReject Statement

Sets and displays the queue reject distance for a conveyor.

Syntax

Cnv_QueReject conveyorNumber [, rejectDistance]

Parameters

conveyorNumber Integer expression that specifies the conveyor number (1 to 16)
rejectDistance Optional. Real expression specifying the minimum distance between parts allowed

in the queue in millimeters. If a negative value is specified, 0 mm will be set. If
omitted, the current rejectDistance is displayed.

Description

Use Cnv_QueReject to specify the minimum distance between parts to prevent double registration in the
queue. As parts are scanned by the vision system, they will be found more than once, but they should only
be registered once. Cnv_QueReject helps the system filter out double registration.

Note

This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_QueReject Function

Cnv_QueReject Statement Example

Cnv_QueReject 1, 20

Cnv_QueReject Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 193

Cnv_QueReject Function

Returns the current part reject distance for a conveyor.

Syntax

Cnv_QueReject (conveyorNumber)

Parameters

conveyorNumber Integer expression that specifies the conveyor number (1 to 16)

Return Values

Real value in millimeters.

Note

This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_QueReject Statement

Cnv_QueReject Function Example

Real rejectDist

RejectDist = Cnv_QueReject(1)

Cnv_QueRemove Statement

194 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Cnv_QueRemove Statement

Removes items from a conveyor queue.

Syntax

Cnv_QueRemove conveyorNumber [, index | All]

Parameters

conveyorNumber Integer expression that specifies the conveyor number (1 to 16)
index Optional. Integer expression specifying the index of the first item to remove or

specify All to remove all.

Description

Use Cnv_QueRemove to remove one or more items from a conveyor queue. Typically, you remove items
from the queue after you are finished with the data.

Note

This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_QueAdd

Cnv_QueRemove Statement Example

Jump Cnv_QueGet(1)
On gripper
Wait .1
Jump place
Off gripper
Wait .1

' Remove the data from the conveyor
Cnv_QueRemove 1

Cnv_QueUserData Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 195

Cnv_QueUserData Statement

Sets and displays user data associated with a queue entry.

Syntax

Cnv_QueUserData conveyorNumber [, index] [, userData]

Parameters

conveyorNumber Integer expression that specifies the conveyor number (1 to 16)
index Optional. Integer expression specifying the index of the item number in the queue.
userData Optional. Real expression specifying user data.

Description

Cnv_QueUserData is used to store your own data with each item in a conveyor queue. User data is
optional. It is not necessary for normal operation.

Note

This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_QueUserData Function

Cnv_QueUserData Statement Example

Cnv_QueUserData 1, 1, angle

Cnv_QueUserData Function

196 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Cnv_QueUserData Function

Returns the user data value associated with an item in a conveyor queue.

Syntax

Cnv_QueUserData (conveyorNumber [, index])

Parameters

conveyorNumber Integer expression that specifies the conveyor number (1 to 16)
index Optional. Integer expression specifying the index of the item number in the queue.

Return Values

Real value.

Note

This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_QueUserData Statement

Cnv_QueUserData Function Example

' Add to queue
Cnv_QueAdd 1, Cnv_Point(1, x, y), angle

' Remove from queue
angle = Cnv_QueUserData(1) ' default to queue index of 0
Jump Cnv_QueGet(1) :U(angle)
Cnv_QueRemove 1

Cnv_RobotConveyor Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 197

Cnv_RobotConveyor Function

Returns the conveyor being tracked by a robot.

Syntax

Cnv_RobotConveyor [(robotNumber)]

Parameters

robotNumber Integer expression representing the robot number.

Return Values

Integer conveyor number. 0 = no conveyor being tracked.

Description

When using multiple robots, you can use Cnv_RobotConveyor to see which conveyor a robot is currently
tracking.

Note

This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_MakePoint Statement

Cnv_RobotConveyor Function Example

Integer cnvNum

cnvNum = Cnv_RobotConveyor(1)

Cnv_Speed Function

198 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Cnv_Speed Function

Returns the current speed of a conveyor.

Syntax

Cnv_Speed (conveyorNumber)

Parameters

conveyorNumber Integer expression that specifies the conveyor number (1 to 16)

Return Values

For straight conveyors, a real value in millimeters per second. For circular conveyors, a real value in
degrees per sec.

Note

This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_Pulse

Cnv_Speed Statement Example

Print "Conveyor speed: ", Cnv_Speed(1)

Cnv_Trigger Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 199

Cnv_Trigger Statement

Latches current conveyor position for the next Cnv_QueAdd statement.

Syntax

Cnv_Trigger conveyorNumber

Parameters

conveyorNumber Integer expression that specifies the conveyor number (1 to 16)

Description

Cnv_Trigger is a software trigger command that must be used if there is no hardware trigger wired to the
PG board for the conveyor encoder.

Note
This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_QueAdd

Cnv_Trigger Statement Example

Boolean found
Integer i, numFound
Real x, y, u

Cnv_Trigger 1
VRun FindParts
VGet FindParts.Part.NumberFound, numFound
For i = 1 To numFound
 VGet FindParts.Part.CameraXYU(i), found, x, y, u
 Cnv_QueAdd 1, Cnv_Point(1, x, y)
Next i

Cnv_Upstream Statement

200 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Cnv_Upstream Statement

Sets the upperstream limit of the specified conveyor.

Syntax

Cnv_Upstream (conveyorNumber), upperLimit

Parameters

conveyorNumber Integer expression representing the conveyor number (1 to 16)
upperLimit A border on the upperstream side of the tracking area

Return Values

By using Cnv_Upstream, you can change the upperstream limit which was set in the calibration wizard.
However, if skewed upperstream limit is used, you cannot change the value by Cnv_Upstream.

Note

This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_Downstream

Cnv_Upstream Statement Example

Cnv_Upstream 1,200

Cnv_Upstream Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 201

Cnv_Upstream Function

Returns the upstream limit for the specified conveyor.

Syntax

Cnv_Upstream (conveyorNumber)

Parameters

conveyorNumber Integer expression that specifies the conveyor number (1 to 16)

Return Values

Linear conveyors: Real value in millimeters.
Circular conveyors: Real value in degrees.

Note

This command will only work if the Conveyor Tracking option is active.

See Also

Cnv_Downstream

Cnv_Upstream Function Example

Print "Upstream limit: ", Cnv_Upstream(1)

CollisionDetect Statement

202 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

CollisionDetect Statement

Enables or disables the collision detection (detection of robot motion error) of the current robot.

Syntax

(1) CollisionDetect status
(2) CollisionDetect status, jointNumber
(3) CollisionDetect

Parameters
status On: Enables the collision detection (detection of robot motion error).
 Off: Disables the collision detection (detection of robot motion error).
jointNumber SCARA robots (including RS series): Specify the joint by a joint number from 1 to 4

Vertical 6-axis robots (including N series): Specify the joint by a joint number from 1 to 6

Result

Returns the current CollisionDetect status when the parameters are omitted.

Description

Detect the robot motion error from differentiation between desired speed and the actual speed (speed
deviation value). Errors can be detected by this function is classified into A and B.

A: Collision or contact of robot arm or hand occurs
B: Robot motion errors other than collision or contact

Also, error B is classified into below according to the power condition.

Error in high power
Torque saturation due to little setting of Weight or Inertia.
Torque saturation due to combined motion of multiple joints and throwing around the long object.
Torque saturation due to supply voltage reduction.
Error motion due to hardware error or software malfunction.

Error in low power
Error motion due to hardware error or software malfunction.
Torque saturation in low power due to holding a hand or long object that exceeds the weight described
in the specifications.

The collision detection is available for the general-purpose robots supported by the EPSON RC+ 7.0 Ver.7.2
or later (vertical 6-axis and SCARA robots). If this command is used while unsupported robot (X5 series,
etc.) is connected, an error occurs.
Execution of this command takes a little time. If cycle time is prioritized, minimize the use of this command
in the program.
This function can be enabled or disabled for each joint or all joints. The default is “all joints on”.
(The default is off if the firmware version is before Ver 7.2.0.x.)
The setting returns to the default when the Controller is turned off. In other cases, the setting does not change
unless otherwise configured by this command explicitly.
Output the following messages and stop the robot when the collision is detected.

Error 5057 “Collision was detected in High power mode” (detection of robot motion error).
Error 5058 “Collision was detected in Low power mode” (detection of robot motion error).

For reducing damage in High power mode, using the command together with the upper limit torque restriction
by LimitTorque is also effective. For reducing damage in Low power mode, using the command together
with the upper limit torque restriction by LimitTorqueLP is also effective.

CollisionDetect Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 203

Also refer to EPSON RC+ 7.0 User’s Guide “6.18.10 Collision Detection Function (detection of robot
motion error)”.

See Also
LimitTorque, LimitTorque Function, LimitTorqueLP, LimitTorqueLP Function

CollisionDetectStatement Example
CollisionDetect On ' Turns On the collision detection for all joints
CollisionDetect Off, 5 ' Turns On the collision detection for only Joint #5
CollisionDetect ' The result will be displayed as “on, on, on, on, off, on”.

CollisionDetect Function

204 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

CollisionDetect Function

Returns the setting value of CollisionDetect command.

Syntax
CollisionDetect(jointNumber)

Parameters
jointNumber Specify the joint by a joint number from 1 to 6.

Return Values
Returns the setting value of CollsionDetect command by an integer.
1 = ON
0 = OFF

See Also
CollisionDetect

CollisionDetect Function Example

Print CollisionDetect(1) 'Displays CollisionDetect value of the Joint #1.

Cont Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 205

Cont Statement

Resumes the controller after a Pause statement has been executed and continues the execution of all tasks.
This command is for the experienced user and you need to understand the command specification
before the use.

Syntax
Cont

Description
To execute the Cont statement from a program, you need to set the [Enable advanced task commands]
checkbox in Setup | System Configuration | Controller | Preferences page of the EPSON RC+. However,
even if this preference is enabled, you cannot execute the Cont statement from a task executed by Trap
SGClose.

The Cont command resumes the controller tasks paused by the Pause statement or safeguard open and
continues all tasks execution. It has the same function as the <Continue> button on the Run Window,
Operator Window, and the Continue Remote input.

If you execute the Cont command during WaitRecover status (waiting for the recover after safeguard open),
it will turn on all the robot motors and execute the recover motion. Then, the program will be resumed.
If you just want to turn on motors and execute recover motion, use the Recover command.

CAUTION

■ When executing Cont command from a program, you must understand the
command specification and confirm that the system has the proper conditions for
the Cont command. Improper use such as continuous execution of a command
within a loop may deteriorate the system safety.

See Also
Pause, Recover

Cont Statement Example

Function main
 Xqt 2, monitor, NoPause
 Do
 Jump P1
 Jump P2
 Loop
Fend

Function monitor
 Do
 If Sw(pswitch) = On then
 Pause
 Wait Sw(pswitch) = Off and Sw(cswitch) = On
 Cont
 EndIf
 Loop
Fend

Copy Statement

206 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Copy Statement

Copies a file to another location.

Syntax

Copy source, destination

Parameters

source Pathname and filename of the source location of the file to copy.
See ChDisk for the details.

destination Pathname and filename of the destination to copy the specified source file to.
See ChDisk for the details.

Description

Copies the specified source filename to the specified destination filename.

The same pathname and filename may not be specified for both source and destination files.
An error occurs if the destination already exists.

Note

A network path is available.

Wildcard characters (*, ?) are not allowed in specified filenames.

When used in the Command window, quotes and comma may be omitted.

See Also

ChDir, MkDir

Copy Command Example

The following example is done from the Command window.

> copy TEST.DAT TEST2.DAT

> Copy TEST.DAT ｃ: 'NG
!! Error: 7203 Access is denied.
> Copy TEST.DAT ｃ:\ 'OK
>

Cos Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 207

Cos Function

Returns the cosine of a numeric expression.

Syntax

Cos (number)

Parameters

number Numeric expression in Radians.

Return Values

Numeric value in radians representing the cosine of the numeric expression number.

Description

Cos returns the cosine of the numeric expression. The numeric expression (number) must be in radian units.
The value returned by the Cos function will range from -1 to 1

To convert from degrees to radians, use the DegToRad function.

See Also

Abs, Atan, Atan2, Int, Mod, Not, Sgn, Sin, Sqr, Str$, Tan, Val

Cos Function Example

The following example shows a simple program which uses Cos.

Function costest
 Real x
 Print "Please enter a value in radians"
 Input x
 Print "COS of ", x, " is ", Cos(x)
Fend

The following examples use Cos from the Command window.

Display the cosine of 0.55:

>print cos(0.55)
 0.852524522059506
>

Display cosine of 30 degrees:

>print cos(DegToRad(30))
 0.866025403784439
>

CP Statement

208 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

CP Statement

Sets CP (Continuous Path) motion mode.

Syntax

CP { On | Off }

Parameters

On | Off The keyword On is used to enable path motion. The keyword Off is used to disable CP mode.

Description

CP (Continuous Path) motion mode can be used for the Arc, Arc3, Go, Jump, Jump3, Jump3CP, JumpTLZ,
and Move robot motion instructions.

When CP mode is On, each motion command executes the next statement as deceleration starts.
Continuous path motion will continue regardless of whether the CP parameter is specified in each motion
command or not.
When CP is Off, this function is active only when the CP parameter is specified in each motion command.

Start deceleration

Start acceleration

Path Motion

0 time

sp
ee

d

Normal Motion

0 time

sp
ee

d

When CP is On, path motion will continue without full deceleration between two CP motions (Arc, Arc3,
Jump3, Jump3CP, JumpTLZ, and Move), or two PTP motions (Go, Jump).
In contrast, full deceleration will occur between a CP motion and a PTP motion.
In addition, in the CP motion which target is wrist singular point in a vertical 6-axis robot (including the N
series), the next motion and the motion trajectory will not be combined and full deceleration will occur.

CP will be set to Off in the following cases

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

See Also
CP Function, Arc, Arc3, Go, Jump, Jump3, Jump3CP, JumpTLZ, Move

CP Statement Example

CP On
Move P1
Move P2
CP Off

CP Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 209

CP Function

Returns status of path motion.

Syntax

CP

Return Values

0 = Path motion off, 1 = Path motion on.

See Also

CP Statement

CP Function Example

If CP = Off Then
 Print "CP is off"
EndIf

CP_Offset Statement

210 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

CP_Offset Statement

Sets the offset time to start the subsequent motion command when executing CP On.

Syntax
(1) CP_Offset [On [, OffsetTime]]
(2) CP_Offset Off

Parameters
On | Off On: Enables the motion command start offset function in CP On. If omitted, current

 setting will be displayed.
Off: Disables the motion command start offset function in CP On.

OffsetTime Specify the offset time to start the subsequent command in CP On by a real value from 10 to
24 (unit: ms). If omitted, the default value (10 ms) will be set.

Description

CP_Offset is available for following commands.
Move, Arc, Arc3, CVMove

If the CP parameter is added to CP On or motion commands, the subsequent command will be executed at
the same time as the prior motion starts decelerating.
As a result, the motions become a path motion as shown below, where deceleration of the first command
and acceleration of the subsequent command overlap.
At this moment, the start of deceleration for the first command and the start of acceleration for the
subsequent command are not strictly simultaneous due to the processing overhead time for starting the
statement. Therefore, the speed declines at the switching point in the path motion, and the motion will not
be constant velocity.
CP_Offset solves this problem by accelerating the starting time of the subsequent motion command.

0

Deceleration start

Acceleration start

Path motion

Time

Sp
ee

d

By setting CP_Offset on, the processing start of the subsequent motion command will be accelerated by the
time specified for the OffsetTime parameter, and deceleration start of the actual robot and acceleration start
of the subsequent command will be synchronized. As a result, the constant velocity can be improved.
The OffsetTime parameter is set by default. Adjust the parameter according to your application.
Especially when the subsequent motion command has “!Parallel Processing!”, the overhead time required
for the motion start gets longer. Therefore, set the OffsetTime parameter higher than the default value,
approximately 16 ms.

To set the OffsetTime parameter for CP_Offset, measure the speed of the tool center point for the target
motion by using TCPSpeed. Setting an appropriate value for the OffsetTime parameter improved the
motion at the switching point to be close to constant.
TCPSpeed increases when OffsetTime is too large, and TCPSpeed decreases when OffsetTime is too small.
Adjustment of CP_Offset must be done in actual system. Appropriate adjustment cannot be done in the
simulator because the processing time to start the command differs from the actual controller.

CP_Offset Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 211

Sample program for measurement using TCPSpeed

Function main
 Motor On
 Power High

 SpeedS 250; AccelS 1500
 Speed 50; Accel 50, 50

 Go XY(300, 500, 500, 90, 0, 180)

 CP_Offset On
 Xqt printTcPSpeed

 Move XY(0, 500, 500, 90, 0, 180) CP
 Move XY(-300, 500, 500, 90, 0, 180)

 Quit printTcPSpeed
 CP_Offset Off
Fend

Function printTcPSpeed
 Do
 Print TCPSpeed
 Loop
Fend

Example of OffsetTime adjustment

TC
PS

pe
ed

 [m
m

/s
ec

]

300

250

200

150

100

50

0

1 12

23

34

45

56

67

78

89

10
0

11
1

12
2

13
3

Appropriate OffsetTime

OffsetTime=0

Too large OffsetTime

This command is not intended for PTP motion. In PTP motion, the motion will be an usual path motion.

CP_Offset is off when any of the following conditions occur:

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or Quit All stops tasks

CP_Offset Statement

212 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

See Also
CP_Offset Function, CP, Move, Arc, Arc3, CVMove

CP_Offset Statement Example

CP_Offset On
Move P1
Move P2
CP_Offset Off

CP_Offset Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 213

CP_Offset Function

Returns the offset time to start the subsequent motion command when executing CP On.

Syntax
CP_Offset

Return Values
Real number representing the offset time to start the motion command.

See Also
CP_Offset Statement

CP_Offset Function Example

If CP_Offset = O Then
 Print "CP_Offset is off"
EndIf

Ctr Function

214 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Ctr Function

Returns the counter value of the specified Hardware Input counter.

Syntax

Ctr(bitNumber)

Parameters

bitNumber Number of the Hardware Input bit set as a counter. Only 16 counters can be active at
the same time.

Return Values

The current count of the specified Hardware Input Counter. (Integer expression from 0-65535)

Description

Ctr works with the CTReset statement to allow Hardware inputs to be used as counters.

Each time a hardware input specified as a counter is switched from the Off to On state that input causes the
counter to increment by 1.

The Ctr function can be used at any time to get the current counter value for any counter input. Any of the
Hardware Inputs can be used as counters. However, only 16 counters can be active at the same time.

Counter Pulse Input Timing Chart

4 msec or longer
4 msec or longer

High (ON)

Low (OFF)

See Also

CTReset

Ctr Function Example

The following example shows a sample of code which could be used to get a hardware input counter value.

CTReset 3 'Reset counter for input 3 to 0
On 0 'Turn an output switch on
Wait Ctr(3) >= 5
Off 0 'When 5 input cycles are counted for Input 3 turn switch off (output 0 off)

CTReset Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 215

CTReset Statement

Resets the counter value of the specified input counter and enables the input to be a counter input.

Syntax

CTReset(bitNumber)

Parameters

bitNumber Number of the input bit set as a counter. This must be an integer expression
representing a valid input bit. Only 16 counters can be active at the same time.

Description

CTReset works with the CTR function to allow inputs to be used as counters. CTReset sets the specified
input bit as a counter and then starts the counter. If the specified input is already used as a counter, it is reset
and started again.

Notes
Turning Off Power and Its Effect on Counters

Turning off main power releases all counters.
Using the Ctr Function

Use the Ctr Function to retrieve current Hardware Input counter values.

See Also

Ctr

CTReset Statement Example

The following example shows a sample of code which could be used to get a hardware input counter value.

CTReset 3 'Reset Counter 3 to 0
On 0 'Turn an output switch on
Wait Ctr(3) >= 5
Off 0 'When 5 input cycles are counted for Input 3 turn switch off (output 0 off)

CtrlDev Function

216 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

CtrlDev Function

Returns the current control device number.

Syntax

CtrlDev

Return Values

21 PC
22 Remote I/O
26 Remote Ethernet
29 Remote RS232C
20 TP3

See Also

CtrlInfo Function

CtrlDev Function Example

Print "The current control device is: ", CtrlDev

CtrlInfo Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 217

CtrlInfo Function

Returns controller information.

Syntax

CtrlInfo (index)

Parameters

index Integer expression that represents the index of the information to retrieve.

Description

The following table shows the information that is available from the CtrlInfo function:
Index Bit Value Description

0 N/A Obtained for compatibility.
Use index 9 to get the firmware version of the controller.

1

Controller status
0 &H1 Ready state
1 &H2 Start state
2 &H4 Pause state

3-7 Undefined
8 &H100 Estop state
9 &H200 Safeguard open
10 &H400 Error state
11 &H800 Critical error state
12 &H1000 Warning
13 &H2000 WaitRecover state (Waiting for recover from safeguard open)
14 &H4000 Recover state (Recovering from the safeguard open)

15-31 Undefined

2 0 &H1 Enable switch is on
1-31 Undefined

3

0 &H1 Teach mode circuit problem detected
1 &H2 Safeguard circuit problem detected
2 &H4 Estop circuit problem detected

3-31 Undefined

4 N/A 0 – Normal mode
1 – Dry run mode

5 N/A

 Control device:
21 – RC+
22 – Remote
26 – Remote Ethernet
29 – Remote RS232C
20 – TP3

6 N/A Number of defined robots

7 N/A
 Operation mode:

0 – Program mode
1 – Auto mode

8 N/A Undefined

9 N/A
 Firmware version of the Controller

Major No.*1000000 + Minor No.*10000 + Rev No.*100 + Build No.
(Example) Version 1.6.2.4 is 1060204

CtrlInfo Function

218 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Index Bit Value Description

10 N/A

 SMART status of hard disk
0 : SMART status is normal
1 : SMART status is not normal

If SMART status is not normal, the hard disk can be broken. You need
to back up the data promptly and replace the hard disk with new one.
When using the RAID option, you cannot use the SMART status, it
always returns that it is normal.

15 N/A

 Input DC Voltage
The program returns the value 100 times greater than the input value.
For example, when the input value is 48.01V, it returns 4801.
Note that an error occurs if Controller does not support DC power
supply.

16 N/A
 PLC vender type

0: None
1: Allen Bradley

Return Values

Long value of the desired data

See Also

RobotInfo, TaskInfo

CtrlInfo Function Example

Print "The controller version: ", CtrlInfo(6)

CurDir$ Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 219

CurDir$ Function

Returns a string representing the current directory.

Syntax

CurDir$

Return Values

A string that includes the current drive and path.

See Also

ChDir, CurDrive$, CurDisk$

CurDir$ Function Example

Print "The current directory is: ", CurDir$

CurDisk$ Function

220 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

CurDisk$ Function

Returns a string representing the current disk.

Syntax

CurDisk$

Return Values

A string that contains the current disk letter.

See Also

ChDisk, CurDir$, CurDrive$

CurDisk$ Function Example

Print "The current disk is: ", CurDisk$

CurDrive$ Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 221

CurDrive$ Function

Returns a string representing the current drive.

Syntax

CurDrive$

Return Values

A string that contains the current drive letter.

See Also

ChDrive, CurDir$, CurDisk$

CurDrive$ Function Example

Print "The current drive is: ", CurDrive$

CurPos Function

222 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

CurPos Function

Returns the current target position of the specified robot.

Syntax

CurPos

Return Values

A robot point representing the current target position of the specified robot.

See Also

InPos, FindPos, RealPos

CurPos Function Example

Function main

 Xqt showPosition
 Do
 Jump P0
 Jump P1
 Loop
Fend

Function showPosition

 Do
 P99 = CurPos
 Print CX(P99), CY(P99)
 Loop
Fend

Curve Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 223

Curve Statement

Defines the data and points required to move the arm along a curved path. Many data points can be defined
in the path to improve precision of the path.

Syntax

Curve fileName, closure, mode, numAxes, pointList

Parameters

fileName A string expression for the name of the file in which the point data is stored. The specified
fileName will have the extension .CVT appended to the end so no extension is to be specified
by the user. When the Curve instruction is executed, file will be created.

 You cannot specify a file path and fileName doesn’t have any effect from ChDisk.
See ChDisk for the details.

closure Specifies whether or not the defined Curve is Closed or left Open at the end of the curved
motion. This parameter must be set to one of two possible values, as shown below.

 C - Closed Curve
 O - Open Curve
 When specifying the open curve, the Curve instruction creates the data to stop the arm at the

last point of the specified point series. When specifying the closed curve, the Curve instruction
creates the data required to continue motion through the final specified point and then stopping
motion after returning the arm to the starting point of the specified point series for the Curve
instruction.

mode Specifies whether or not the arm is automatically interpolated in the tangential direction of the
U-Axis. It can also specify the ECP number in the upper four bits.

Mode Setting Tangential

Correction
ECP

Number Hexadecimal Decimal
&H00 0

No

0
&H10 16 1
&H20 32 2

… … …
&HA0 160 10
&HB0 176 11
&HC0 192 12
&HD0 208 13
&HE0 224 14
&HF0 240 15
&H02 2

Yes

0
&H12 18 1
&H22 34 2

… … …
&HA2 162 10
&HB2 178 11
&HC2 194 12
&HD2 210 13
&HE2 226 14
&HF2 242 15

Curve Statement

224 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

When specifying tangential correction, Curve uses only the U-Axis coordinate of the starting
point of the point series. Tangential correction continuously maintains tool alignment tangent
to the curve in the XY plane. It is specified when installing tools such as cutters that require
continuous tangential alignment. When specifying a closed curve (using the closure parameter)
with Automatic Interpolation in the tangential direction of the U-Axis, the U-Axis rotates 360
degrees from the start point. Therefore, before executing the CVMove instruction, set the U-
Axis movement range using the Range instruction so the 360 degree rotation of the U-Axis
does not cause an error.
When using ECP, specify the ECP number in the upper four bits.
When generating a curve considering the additional axis position included in the point data,
specify the ninth bit as 1. For example, when using no orientation offset or ECP and generating
a curve considering the additional axis position, specify &H100.
When generating a curve for the additional axis, join the continuous point data of S axis and T
axis separately from the robot coordinate system.
However if the additional axis is consisted of the PG axis, it doesn’t generate a curve with the
continuous point but creates the data to move to the final point.

numAxes Integer number 2, 3, 4, or 6 which specifies the number of axes controlled during the curve
motion as follows:

2 - Generate a curve in the XY plane with no Z Axis movement or U Axis rotation.
(except for 6-Axis robots (including N series))

3 - Generate a curve in the XYZ space with no U axis rotation.
(except for 6-Axis robots (including N series))

4 - Generate a curve in the XYZ space with U-Axis rotation.
(except for 6-Axis robots (including N series))

6 - Generate a curve in the XYZ space with U, V, and W axes rotation (6-Axis robots
(including N series) only).

The axes not selected to be controlled during the Curve motion maintain their previous encoder
pulse positions and do not move during Curve motion.

pointList { point expression | P(start:finish) } [, output command] ...
This parameter is actually a series of Point Numbers and optional output statements either
separated by commas or an ascended range of points separated by a colon. Normally the
series of points are separated by commas as shown below:
 Curve "MyFile", O, 0, 4, P1, P2, P3, P4

 Sometimes the user defines a series of points using an ascending range of points as shown
below:
 Curve "MyFile", O, 0, 4, P(1:4)

 In the case shown above the user defined a curve using points P1, P2, P3, and P4.
output command is optional and is used to control output operation during curve motion. The
command can be On or Off for digital outputs or memory outputs. Entering an output command
following any point number in the point series causes execution of the output command when
the arm reaches the point just before the output command. A maximum of 16 output commands
may be included in one Curve statement. In the example below, the "On 2" command is
executed just as the arm reaches the point P2, then the arm continues to all points between and
including P3 and P10.
 Curve "MyFile", C, 0, 4, P1, P2, ON 2, P(3:10)

Curve Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 225

Description
Curve creates data that moves the manipulator arm along the curve defined by the point series pointList and
stores the data in a file on the controller. The CVMove instruction uses the data in the file created by Curve
to move the manipulator in a continuous path type fashion.

The curve file is stored in the Compact Flash inside of the controller. Therefore, Curve starts writing into
the Compact Flash. Frequent writing into the Compact Flash will shorten the Compact Flash lifetime. We
recommend using Curve only for saving the point data.

Curve calculates independent X, Y, Z, U, V, W coordinate values for each point using a cubic spline function
to create the trajectory. Therefore, if points are far apart from each other or the orientation of the robot is
changed suddenly from point to point, the desired trajectory may not to be realized.

It is not necessary to specify speeds or accelerations prior to executing the Curve instruction. Arm speed and
acceleration parameters can be changed any time prior to executing CVMove by using the SpeedS or AccelS
instructions.

Points defined in a local coordinate system may be used in the series to locate the curve at the desired position.
By defining all of the specified points in the point series for the Curve instruction as points with local
attributes, the points may be changed as points on the local coordinate system by the Local instruction
following the Curve instruction.

Notes
Use tangential correction when possible

It is recommended that you use tangential correction whenever possible, especially when using CVMove in
a continuous loop through the same points. If you do not use tangential correction, the robot may not follow
the correct path at higher speeds.

Open Curve Min and Max Number of Points Allowed
Open Curves may be specified by using from 3 to 1000 points.

Closed Curve Min and Max Number of Points Allowed
For the controller of RC700 series and RC90 series, Closed Curves may be specified by using from 3 to 1000
points.
For the T/VT series controller, Closed Curves may be specified by using from 3 to 300 points. (If using T/VT
controller in the simulator, it can be specified from 3 to 1000 points, but with the actual controller, it is up to
300.)

The Processing Time Gets Longer If the Number of Point Is Large
If the Curve command executed with max points, it takes several seconds for Closed Curves, several tens of
seconds for Open Curve.
Especially, Closed Curves takes lots of time to process so using Open Curve is recommended when the
number of points is large.
Example of creating trajectory similar to Closed Curve with using Open Curve is described in the Curve
Statement Example 2.
However, if you generate a curved path file once with the Curve command and perform CVMove motion
multiple times on the same file, the above time will be taken only once when the Curve command is executed.

Compatibility of file
Files created after firmware Ver.7.5.1 are not available for earlier versions of firmware. Also, files created
firmware Ver.7.5.1 or earlier can be used with firmware Ver.7.5.1 or later.

Potential Error
Attempt to Move Arm Outside Work Envelope

The Curve instruction cannot check the movement range for the defined curve path. This means that a user
defined path may cause the robot arm to move outside the normal work envelope. In this case an "out of
range" error will occur.

See Also

AccelS Function, Arc, CVMove, ECP, Move, SpeedS

Curve Statement

226 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Curve Statement Example 1
The following example designates the free curve data file name as MYCURVE.CVT, creates a curve tracing
P1-P7, switches ON output port 2 at P2, and decelerates the arm at P7.

Set up curve

> curve "mycurve", O, 0, 4, P1, P2, On 2, P(3:7)

Move the arm to P1 in a straight line

> jump P1

Move the arm according to the curve definition called “mycurve”

> cvmove "mycurve"

Curve Statement Example 2
Shown below is an example for motion that similar to Closed Curve by using (1) Open Curve, (2) Closed
Curve, and (3) Open Curve.
Reference points are as shown below.

P0 = XY(0, 300, -50, 0) 'Start/End
P1 = XY(300, 200, -50, 0)
P2 = XY(300, 400, -50, 0)
P3 = XY(-300, 400, -50, 0)
P4 = XY(-300, 200, -50, 0)
P10 = XY(10, 299.7, -50, 0) 'Right after start
P11 = XY(-10, 299.7, -50, 0) 'Right before end

(1) Open Curve

Specifying a curve of Open Curve
> Curve "mycurve_O", O, 0, 2, P(0:4), P0

Moving the arm in a straight line to P0
> jump P0

Move the arm with the specified Open Curve “mycurve_O”
> CVMove "mycurve_O"

Because it is an Open Curve, the start point and end point are the same but they do not connect
smoothly.

Curve Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 227

(2) Closed Curve
Specifying a curve of Closed Curve
> Curve "mycurve_C", O, 0, 2, P(0:4)

Moving the arm in a straight line to P0
> jump P0

Move the arm with the specified Closed Curve “mycurve_C”
> CVMove "mycurve_C"

Because it is Closed Curve, the start point and end point connect smoothly.

(3) OpenCurve similar to the Closed Curve
Specifying a curve of Open Curve. Set the points right after the start point and right before the
end point.
> Curve "mycurve_O_mod", O, 0, 2, P0, P10, P(1:4), P11, P0

Moving the arm in a straight line to P0
> jump P0

Move the arm with the specified Open Curve “mycurve_O_mod”
> CVMove "mycurve_O_mod"

It is Open Curve but the start point and end point connect smoothly by going through P10 and
P11.

CVMove Statement

228 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

CVMove Statement

Performs the continuous spline path motion defined by the Curve instruction.

Syntax

CVMove fileName [CP] [searchExpr] [SYNC]

Parameters

fileName String expression for the file name. This file must be previously created by the Curve
instruction and stored on a PC hard disk.

 You cannot specify a file path and fileName doesn’t have any effect from ChDisk.
See ChDisk for the details.

CP Optional. Specifies continuous path motion after the last point.
searchExpr Optional. A Till or Find expression.

Till | Find
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

SYNC Reserves a motion command. A robot will not move until the SyncRobots gives instructions.

Description

CVMove performs the continuous spline path motion defined by the data in the file fileName, which is located
in the controller memory. The file must be previously created with the Curve command.
Multiple files may exist at the same time on the system. If the file name does not have an extension, .CVT
is added automatically.
The user can change the speed and acceleration for the continuous path motion for CVMove by using the
SpeedS and AccelS instructions.
When the Curve instruction has been previously executed using points with Local definitions, you can change
the operating position by using the Local instruction.
When executing CVMove, be careful that the robot doesn’t collide with peripheral equipment. When you
attempt to change the hand orientation of the 6-axis robot (including N series) between adjacent points
suddenly, due to the nature of cubic spline function, the 6-axis robot may start changing its orientation from
the previous and following points and move in an unexpected trajectory. Verify the trajectory thoroughly
prior to a CVMove execution and be careful that the robot doesn’t collide with peripheral equipment.
Specify points closely each other and at equal interval. Do not change the hand (arm) orientation between
adjacent points suddenly.
The CP parameter causes acceleration of the next motion command to start when the deceleration starts for
the current motion command. In this case the robot will not stop at the destination coordinate and will
continue to move to the next point.

See Also

AccelS Function, Arc, Curve, Move, SpeedS, Till, TillOn

CVMove Statement Example

The following example designates the free curve data file name as MYCURVE.CVT, creates a curve tracing
P1-P7, switches ON output port 2 at P2, and decelerates the arm at P7.

Set up curve
> curve "mycurve", O, 0, 4, P1, P2, On 2, P(3:7)

Move the arm to P1 in a straight line
> jump P1

Move the arm according to the curve definition called mycurve
> cvmove "mycurve"

CX, CY, CZ, CU, CV, CW, CR, CS, CT Statements

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 229

CX, CY, CZ, CU, CV, CW, CR, CS, CT Statements

Sets the coordinate value of a point data.
CV, CW are for only 6-axis robots (including N series).
CR is only for Joint type robots.
CS, CT are only for robots with additional axes.

Syntax

CX(point) = value
CY(point) = value
CZ(point) = value
CU(point) = value
CV(point) = value
CW(point) = value
CR(point) = value
CS(point) = value
CT(point) = value

Parameters

point Pnumber or P(expr) or point label.
value Real expression representing the new coordinate value in millimeters.

See Also

CX, CY, CZ, CU, CV, CW, CR, CS, CT Functions

CX, CY, CZ, CU, CV, CW, CR, CS, CT Statements Example

CX(pick) = 25.34

CX, CY, CZ, CU, CV, CW, CR, CS, CT Functions

230 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

CX, CY, CZ, CU, CV, CW, CR, CS, CT Functions

Retrieves a coordinate value from a point
CV, CW functions are only for 6-axis robots (including N series).
CS, CT are only for robots with additional axes.

Syntax

CX (point)
CY (point)
CZ (point)
CU (point)
CV (point)
CW (point)
CR (point)
CS (point)
CT (point)

Parameters

point Point expression.

Return Values

Returns the specified coordinate value. The return values for CX, CY, CZ are real numbers in millimeters.
The return values for CU, CV, CW are real numbers in degrees.
Return values of CS, CT functions: Real values in mm or deg. It depends on the additional axis setting.

Description

Used to retrieve an individual coordinate value from a point.

To obtain the coordinate from the current robot position, use Here for the point parameter.

See Also

CX, CY, CZ, CU, CV, CW, CR, CS, CT Statements

CX, CY, CZ, CU, CV, CW, CR, CS, CT Functions Example

The following example extracts the X axis coordinate value from point “pick” and puts the coordinate value
in the variable x.

Function cxtest
 Real x
 x = CX(pick)
 Print "The X Axis Coordinate of point 'pick' is", x
Fend

Date Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 231

Date Statement

Displays the date.

Syntax

Date

Return Values

The current date is displayed.

See Also

Time, Date$

Date Statement Example

Example from the command window.

> Date
2009/08/01

Date$ Function

232 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Date$ Function

Returns the system date.

Syntax

Date$

Return Values

A string containing the date in the format yyyy/mm/dd.

See Also

Date, Time, Time$

Date$ Function Example

Print "Today's date: ", Date$

Declare Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 233

Declare Statement

Declares an external function in a dynamic link library (DLL).

Syntax

Declare funcName, “dllFile”, “alias” [, (argList)] As type

Parameters

funcName The name of the function as it will be called from your program.
dllFile The path and name of the library file. This must be a literal string (characters

delimited by quotation marks). You may also use a macro defined by #define. If
there is no path specified, then RC+ will look for the file in the current project
directory. If not found, then it is assumed that the file is in the Windows system32
directory. The file extension can be omitted, but is always assumed to be .DLL.

alias Optional. The actual name of the function in the DLL or the function index. The
name is case sensitive. The alias must be a literal string (characters delimited by
quotation marks). If you use an index, you must use a # character before the index.
If omitted, a function name specified by funcName can be used as a name of function
in DLL.

arglist Optional. List of the DLL arguments. See syntax below.
[{ByRef | ByVal}] varName [()] As varType
ByRef Optional. Specify ByRef when you refer to the variable to be seen by the

calling function. In this case, the argument change in a function can be
reflected to the variable of the calling side. You can change the values
received as a reference.

ByVal Optional. Specify ByVal when you do not want any changes in the value
of the variable to be seen by the calling function. This is the default.

varName Required. Name of the variable representing the argument; follows
standard variable naming conventions. If you use an array variable as
argument, you must specify ByRef.

varType Required. You must declare the type of argument.
type Required. You must declare the type.

Description

Use Declare to call DLL functions from the current program. Declare must be used outside of functions.

The Declare statement checks that the DLL file and function exist at compile time.

Passing Numeric Variables ByVal
SPEL: Declare MyDLLFunc, "mystuff.dll", "MyDLLFunc", (a As Long) As Long
VC++ long _stdcall MyDllFunc(long a);

Passing String Variables ByVal
SPEL: Declare MyDLLFunc, "mystuff.dll", "MyDLLFunc", (a$ As String) As
Long
VC++ long _stdcall MyDllFunc(char *a);

Declare Statement

234 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Passing Numeric Variables ByRef
SPEL: Declare MyDLLFunc, "mystuff.dll", "MyDLLFunc", (ByRef a As Long) As
Long
VC++ long _stdcall MyDllFunc(long *a);

Passing String Variables ByRef
SPEL: Declare MyDLLFunc, "mystuff.dll", "MyDLLFunc", (ByRef a$ As String)
As Long
VC++ long _stdcall MyDllFunc(char *a);

When you pass a string using ByRef, you can change the string in the DLL. Maximum string length is 255
characters. You must ensure that you do not exceed the maximum length.

Passing Numeric Arrays ByRef
SPEL: Declare MyDLLFunc, "mystuff.dll", "MyDLLFunc", (ByRef a() As Long)
As Long
VC++ long _stdcall MyDllFunc(long *a);

Returning Values from DLL Function

The DLL function can return a returning value for any data type, except String. When it is needed to return
string, refer to “Passing String Variables ByRef” described above and specify string variables as an
argument.
If string variables are specified to a returning value, error 3614 “You cannot specify a String for Declare
return data type.” will occur.

VarType

Following shows table of data type of EPSON RC+ 7.0 and variable type of C/C++.
Since there is no data for EPSON RC+ 7.0, byte type of C/C++ and structure cannot be used.

Table of data type for EPSON RC+ 7.0 and C/C++
EPSON RC+ 7.0 C/C++

Boolean short
Byte short
Short short
Integer short
Long int
Real float
Double double
String char [256] * includes Null

For example:

Declare ReturnLong, "mystuff.dll", "ReturnLong", As Long

Function main

 Print "ReturnLong = ", ReturnLong
Fend

See Also

Function...Fend

Declare Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 235

Declare Statement Example

' Declare a DLL function. Since there is no path specified, the file can be in the current project
' directory or in the Windows system32 directory

Declare MyDLLTest, "mystuff.dll", "MyDLLTest" As Long

Function main
 Print MyDLLTest
Fend

' Declare a DLL function with two integer arguments and use a #define to define the DLL file name

#define MYSTUFF "mystuff.dll"

Declare MyDLLCall, MYSTUFF, "MyTestFunc", (var1 As Integer, var2 As
Integer) As Integer

' Declare a DLL function using a path and index.
Declare MyDLLTest, "c:\mydlls\mystuff.dll", "#1" As Long

DegToRad Function

236 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

DegToRad Function

Converts degrees to radians.

Syntax

DegToRad(degrees)

Parameters

degrees Real expression representing the degrees to convert to radians.

Return Values

A double value containing the number of radians.

See Also

ATan, ATan2, RadToDeg Function

DegToRad Function Example

s = Cos(DegToRad(x))

Del Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 237

Del Statement

Deletes one or more files.

Syntax

Del fileName

Parameters

fileName The path and name of the file(s) to delete. The filename should be specified with an extension.
See ChDisk for the details.

Description

Deletes the specified file(s).

Del Statement Example
Example from the command window.

> Del TEST.PTS ' Deletes the point file from the current directory.

> Del ｃ：TEST.PTS ' NG
!! Error: 7213 The file specified by path does not exist.
> Del ｃ：\TEST.PTS ' OK

DeleteDB Statement

238 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

DeleteDB Statement

Deletes data from the table in the opened database.

Syntax

DeleteDB #databaseNum,tableNumber [, condition]

Parameters

databaseNum Specify the database number (integer from 501 to 508) specified in OpenDB.
tableNumber Specify the table name whose data will be deleted.
condition Specify the condition to delete the data.

Compound condition can be specified by using AND and OR.
If the condition is not specified, all data in the table will be deleted.

Description

Deletes the data matched to the delete condition from the specified table in the opened database.
If the database is an Excel book, this command cannot be executed.

Note
- Connection of PC with installed RC+ is required.

See Also
OpenDB, CloseDB, SelectDB, UpdateDB

DiffPoint Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 239

DiffPoint Function

Returns the difference between two specified points.

Syntax
DiffPoint (pointData1, pointData2)

Parameters
pointData1 Specifies the first point data.
pointData2 Specifies the second point data.

Return Values

Returns the position and orientation of pointData2 as seen from pointData1.

Description

Returns the position and orientation of pointData2 in a coordinate system with pointData1 as the origin.
This function uses default values as returned the local number of the point data, and flag information such
as Hand.
If point data is left undefined for either point data, the undefined values will be calculated as “0”.
For example, if pointData1 is specified as “XY (10,0,0,0,0,0): ST (10, 10)”, and pointData2 is specified as
“XY (10,0,0,0,0,0)”, the S and T values are undefined for pointData2 while the values are defined for
pointData1, and thus the values calculated with the S and T values for pointData2 as “0” will be returned.

Notes
About the Controllers to use

It cannot be used with T/VT series.

DiffPoint Function Example

'Display the position and orientation of P2 as seen from P1.

Print DiffPoint(P1, P2)

'Display the position and orientation of P1 as seen from the current position (Here).

Print DiffPoint(Here, P1)

DiffToolOrientation Function

240 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

DiffToolOrientation Function

Returns the angle between the coordinate axes of Tool coordinate systems in order to show difference
between Tool orientations of two specified points.

Syntax

DiffToolOrientation (pointData1, pointData2 , axisNumber)

Parameters
pointData1 Specify the first point data.
pointData2 Specify the second point data.
axisNumber Specify the coordinate axis of Tool coordinate system.

Constant Value
COORD_X_PLUS 1: +X axis
COORD_Y_PLUS 2: +Y axis
COORD_Z_PLUS 3: +Z axis
COORD_ALL 4: Airbitrary axis

Return Values

Angle (real value, from 0 to 180 degrees)

Description
Returns the angle (real value, from 0 to 180 degrees) between the specified coordinate axes of the Tool
coordinate systems which indicates the difference between Tool orientations of two specified points. The
results are not affected by the order of parameters, pointData1 and pointData2. The results are also not
affected by positional relation (coordinate values of X, Y, and Z) between the origin points of the two
points.
Returns a rotation amount around an arbitrary axis when COORD_ALL is specified. An arbitrary axis
refers to a hypothetical axis (a straight line) around which the robot can move in a single rotation when two
orientations are provided (U, V, W). This function is used to find the overall angle of rotation without
limiting rotation to each axis.

Notes
About the Controllers to use

COORD_ALL cannot be specified as the axis number for T/VT series.

DiffToolOrientation Function Example

'Displays the angle between Tool coordinate Z axes of Point 1 and 2.

Print DiffToolOrientation(P1, P2, COORD_Z_PLUS)

DispDev Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 241

DispDev Statement

Sets the current display device.

Syntax

DispDev (deviceID)

Parameters

deviceID The device ID for the desired display device.
 21 RC+

24 TP (TP1 only)
20 TP3

 The following parameters are also available.
 21 DEVID_SELF

24 DEVID_TP
20 DEVID_TP3

See Also

DispDev Function

DispDev Statement Example

DispDev DEVID_TP

DispDev Function

242 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

DispDev Function

Returns the current display device.

Syntax

DispDev

Return Values

Integer value containing the deviceID.
21 RC+
24 TP (TP1 only)
20 TP3

See Also

DispDev Statement

DispDev Function Example

Print "The current display device is ", DispDev

Dist Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 243

Dist Function

Returns the distance between two robot points.

Syntax

Dist (point1, point2)

Parameters

point1, point2 Specifies two robot point expressions.

Return Values

Returns the distance between both points (real value in mm).

Description

Even if you are using the additional axis, only the robot travel distance is returned.
It doesn’t include the travel distance of additional axis while you use the additional axis as running axis.
For the Joint type robot, the return value of this function means nothing.

See Also

CU, CV, CW, CX, CY, CZ

Dist Function Example

Real distance

distance = Dist(P1, P2)

Do...Loop Statement

244 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Do...Loop Statement

Repeats a block of statements while a condition is True or until a condition becomes True.

Syntax

Do [{ While | Until } condition]
[statements]

[Exit Do]
[statements]

Loop

Or, you can use this syntax:

Do

[statements]
[Exit Do]

[statements]
Loop [{ While | Until } condition]

The Do Loop statement syntax has these parts:

Part Description
condition Optional. Numeric expression or string expression that is True or False. If condition is Null,

condition is treated as False.
statements One or more statements that are repeated while, or until, condition is True.

Description

Any number of Exit Do statements may be placed anywhere in the Do...Loop as an alternate way to exit a
Do...Loop. Exit Do is often used after evaluating some condition, for example, If...Then, in which case the
Exit Do statement transfers control to the statement immediately following the Loop.

When used within nested Do...Loop statements, Exit Do transfers control to the loop that is one nested level
above the loop where Exit Do occurs.

Note
DO NOT use XQT command repeatedly in Loop statements.

Do not use XQT command repeatedly in Loop statements such as Do…Loop.
The controller may freeze up. If you use Loop statements repeatedly, make sure to add Wait command
(Wait 0.1).

Avoid endless execution of empty Loop Statements and similar to them, use them with the
Wait command instead

Do not use empty Do…Loop statements and similar commands to avoid effect on the system. The
Controllers are detecting endless loop tasks. If the controller determines that the system will be affected, it
will stop the program with error 2556 (An excessive loop was detected). When performing operations that
require a loop or waiting for I/O, execute a Wait command (Wait 0.1) and more within the loop to avoid
occupying the CPU.

When you exit the loop from the nested structure without using Exit Do
Error 2020 will occur when you repeatedly execute the program which exits the loop by the command other
than the Exit For command (such as GoSub statement, Goto statement, and Call statement.) Be sure to use
Exit Do command to exit the loop.

Do...Loop Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 245

See Also
For...Next, Select...Send

Do...Loop Statement Example

Do While Not Lof(1)
 Line Input #1, tLine$
 Print tLine$
Loop

Double Statement

246 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Double Statement

Declares variables of type Double. (8 byte double precision number).

Syntax

Double varName [(subscripts)] [, varName [(subscripts)]...]

Parameters

varName Variable name which the user wants to declare as type Double.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared. The

subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 and the available

number of array elements is the upper bound value + 1.
 When specifying the upper bound value, make sure the number of total elements is

within the range shown below:
Local variable 2,000
Global Preserve variable 4,000
Global variable and module variable 100,000

Description

Double is used to declare variables as type Double. Local variables should be declared at the top of a function.
Global and module variables must be declared outside of functions.
Valid number of digits for Double is 14.

See Also

Boolean, Byte, Global, Int32, Int64, Integer, Long, Real, Short, String, UByte, UInt32, UInt64,
UShort

Double Statement Example

The following example shows a simple program which declares some variables using Double.

Function doubletest
 Double var1
 Double A(10) 'Single dimension array of double
 Double B(10, 10) 'Two dimension array of double
 Double C(5, 5, 5) 'Three dimension array of double
 Double arrayvar(10)
 Integer i
 Print "Please enter a Number:"
 Input var1
 Print "The variable var1 = ", var1
 For i = 1 To 5
 Print "Please enter a Number:"
 Input arrayvar(i)
 Print "Value Entered was ", arrayvar(i)
 Next i
Fend

ECP Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 247

ECP Statement

Selects or displays the current ECP (external control point).

Syntax

(1) ECP ECPNumber
(2) ECP

Parameters

ECPNumber Optional. Integer expression from 0 to 15 representing which of 16 ECP definitions
to use with subsequent motion instructions. ECP 0 makes the ECP selection invalid.

Return Values

Displays current ECP when used without parameters.

Description

ECP selects the external control point specified by the ECPnumber (ECPNumber).

Note
This command will only work if the External Control Point option is active.
Power Off and Its Effect on the ECP Selection

Turning main power off clears the ECP selection.

See Also

ECPSet

ECP Statement Example

>ecpset 1, 100, 200, 0, 0
>ecp 1

ECP Function

248 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

ECP Function

Returns the current ECP (external control point) number.

Syntax

ECP

Return Values

Integer containing the current ECP number.

Note

This command will only work if the External Control Point option is active.

See Also

ECP Statement

ECP Function Example

Integer savECP

savECP = ECP
ECP 2
Call Dispense
ECP savECP

ECPClr Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 249

ECPClr Statement

Clears (undefines) an external control point.

Syntax

ECPClr ECPNumber

Parameters

ECPNumber Integer expression representing which of the 15 external control points to clear
(undefine). (ECP0 is the default and cannot be cleared.)

Description
Robot parameter data is stored in compact flash in controller. Therefore, writing to command flash occurs
when executing this command. Frequent writing to compact flash affect to lifetime of compact flash. We
recommend to use this command minimally.

Note

This command will only work if the External Control Point option is active.

See Also

Arm, ArmClr, ArmSet, ECPSet, Local, LocalClr, Tool, TLSet

ECPClr Statement Example

ECPClr 1

ECPDef Function

250 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

ECPDef Function

Returns ECP definition status.

Syntax

ECPDef (ECPNumber)

Parameters

ECPNumber Integer expression representing which ECP to return status for.

Return Values

True if the specified ECP has been defined, otherwise False.

See Also

Arm, ArmClr, ArmSet, ECPSet, Local, LocalClr, Tool, TLClr, TLSet

ECPDef Statement Example

Function DisplayECPDef(ecpNum As Integer)

 If ECPDef(ecpNum) = False Then
 Print "ECP ", ecpNum, "is not defined"
 Else
 Print "ECP ", ecpNum, ": ",
 Print ECPSet(ecpNum)
 EndIf
Fend

ECPSet Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 251

ECPSet Statement

Defines or displays an external control point.

Syntax

(1) ECPSet ECPNum, ECPPoint
(2) ECPSet ECPNum
(3) ECPSet

Parameters

ECPNum Integer number from 1 to 15 representing which of 15 external control points to define.
ECPPoint Pnumber or P(expr) or point label or point expression.

Return Values

When parameters are omitted, displays the current ECPSet definitions.
When only the ECP number is specified, displays the specified ECPSet definitions.

Description

Defines an external control point.
Robot parameter data is stored in compact flash in controller. Therefore, writing to command flash occurs
when executing this command. Frequent writing to compact flash affect to lifetime of compact flash. We
recommend to use this command minimally.

Note
This command will only work if the External Control Point option is active.

ECPSet Statement Example

ECPSet 1, P1
ECPSet 2, 100, 200, 0, 0

ECPSet Function

252 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

ECPSet Function

Returns a point containing the external control point definition for the specified ECP.

Syntax

ECPSet(ECPNumber)

Parameters

ECPNumber Integer expression representing the number of the ECP to retrieve.

Return Values

A point containing the ECP definition.

Note

This command will only work if the External Control Point option is active.

See Also

ECPSet Statement

ECPSet Function Example

P1 = ECPSet(1)

ElapsedTime Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 253

ElapsedTime Function

Returns the elapsed time since the takt time measurement timer starts in seconds.

Syntax

ElapsedTime

Return Values

An actual value representing an elapsed time of a takt time measurement timer. (Unit: second)
Valid range is from 0 to approx. 1.7E+31. Timer resolution is 0.001 seconds.

Description

Returns an elapsed time since the takt time measurement timer starts. Unlike the Tmr function, the
ElapsedTime function does not count the time while the program is in pause state.

The takt time measurement timer can be reset by using ResetElapsedTime statement.

Real overhead

ResetElapsedTime
overHead = ElapsedTime

See Also

ResetElapsedTime, Tmr Function

ElapsedTime Function Example

ResetElapsedTime 'Resets the takt time measurement timer
For i = 1 To 10 'Executes 10 times
 GoSub Cycle
Next
Print ElapsedTime / 10 'Measures a takt time and displays it

Elbow Statement

254 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Elbow Statement

Sets the elbow orientation of a point.

Syntax

(1) Elbow point [, value]
(2) Elbow

Parameters

point Pnumber or P(expr) or point label.
value Integer expression.

1 = Above (/A)
 2 = Below (/B)

Return Values

When both parameters are omitted, the elbow orientation is displayed for the current robot position.
If value is omitted, the elbow orientation for the specified point is displayed.

See Also

Elbow Function, Hand, J4Flag, J6Flag, Wrist

Elbow Statement Example

Elbow P0, Below
Elbow pick, Above
Elbow P(myPoint), myElbow

P1 = 0.000, 490.000, 515.000, 90.000, -40.000, 180.000

Elbow P1, Below
Go P1

Elbow P1, Above
Go P1

Elbow Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 255

Elbow Function

Returns the elbow orientation of a point.

Syntax

Elbow [(point)]

Parameters

point Optional. Point expression. If point is omitted, then the elbow orientation of the current robot
position is returned.

Return Values

1 Above (/A)
2 Below (/B)

See Also

Elbow Statement, Hand, Wrist, J4Flag, J6Flag

Elbow Function Example

Print Elbow(pick)
Print Elbow(P1)
Print Elbow
Print Elbow(P1 + P2)

Eof Function

256 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Eof Function

Returns end of file status.

Syntax

Eof (fileNumber)

Parameters

fileNumber Integer number from 30 to 60 or expression representing the file number to check.

Return Values

True if file pointer is at end of file, otherwise False.

Description

Eof is functional only if the file is opened for reading mode.
An error occurs if the file was opened with the AOpen or WOpen statements.

See Also

Lof

Eof Function Example

Integer fileNum
String data$

fileNum = FreeFile
UOpen "TEST.DAT" As #fileNum
Do While Not Eof(fileNum)
 Line Input #fileNum, data$
 Print "data = ", data$
Loop
Close #fileNum

Era Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 257

Era Function

Returns the joint number for which an error occurred.

Syntax

Era[(taskNum)]

Parameters

taskNum Integer expression representing a task number from 0 to 32.
Task number omission or “0” specifies the current task.

Return Values

The joint number that caused the error in the range 0 to 9 as described below:

0 - The current error was not caused by a servo axis.
1 - The error was caused by joint number 1
2 - The error was caused by joint number 2
3 - The error was caused by joint number 3
4 - The error was caused by joint number 4
5 - The error was caused by joint number 5
6 - The error was caused by joint number 6
7 - The error was caused by joint number 7
8 - The error was caused by joint number 8 (additional S axis)
9 - The error was caused by joint number 9 (additional T axis)

Description
Era is used when an error occurs to determine if the error was caused by one of the robot joints and to return
the number of the joint which caused the error. If the current error was not caused by any joint, Era returns
“0”.
When the event “Error during Auto Mode” occurs, normal task and NoPause task in AUTO mode stop
execution and end the task.
If the target task has already ended when using this function for NoEmgAbort task or background task,
“Error 2261” is occurred. Use OnErr to acquire information before the task ends.

See Also

Erl, Err, ErrMsg$, Ert, OnErr, Trap

Era Function Example

Function main
 OnErr Goto eHandler
 Do
 Call PickPlace
 Loop
 Exit Function
eHandler:
 Print "The Error code is ", Err
 Print "The Error Message is ", ErrMsg$(Err)
 errTask = Ert
 If errTask > 0 Then
 Print "Task number in which error occurred is ", errTask
 Print "The line where the error occurred is Line ", Erl(errTask)
 If Era(errTask) > 0 Then
 Print "Joint which caused the error is ", Era(errTask)
 EndIf
 EndIf
Fend

EResume Statement

258 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

EResume Statement

Resumes execution after an error-handling routine is finished.

Syntax

EResume [{ label | Next }]

Description

EResume
If the error occurred in the same procedure as the error handler, execution resumes with the statement that
caused the error. If the error occurred in a called procedure, execution resumes at the Call statement in the
procedure containing the error handler.

EResume Next
If the error occurred in the same procedure as the error handler, execution resumes with the statement
immediately following the statement that caused the error. If the error occurred in a called procedure,
execution resumes with the statement immediately following the Call statement that last in the procedure
containing the error handler.

EResume { label }
If the error occurred in the same procedure as the error handler, execution resumes at the statement containing
the label.

See Also

OnErr

EResume Statement Example

Function main
 Integer retry

 OnErr GoTo eHandler
 Do
 RunCycle
 Loop
 Exit Function

eHandler:
 Select Err
 Case MyError
 retry = retry + 1
 If retry < 3 Then
 EResume ' try again
 Else
 Print "MyError has occurred ", retry, " times
 EndIf
 Send
Fend

Erf$ Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 259

Erf$ Function

Returns the name of the function in which the error occurred.

Syntax

Erf$[(taskNumber)]

Parameters

taskNumber Integer expression representing a task number from 0 to 32.
Task number omission or “0” specifies the current task.

Return Values

The name of the function where the last error occurred.

Description

Erf$ is used with OnErr. Erf$ returns the function name in which the error occurred. Using Erf$ combined
with Err, Ert, Erl and Era the user can determine much more about the error which occurred.
When the event “Error during Auto Mode” occurs, normal task and NoPause task in AUTO mode stop
execution and end the task.
If the target task has already ended when using this function for NoEmgAbort task or background task,
“Error 2261” is occurred. Use OnErr to acquire information before the task ends.

See Also

Era, Erl, Err, ErrMsg$, Ert, OnErr

Erf$ Function Example

The Following items are returned in the program example below.
In which task the error occurred (Ert function)
In which function the error occurred (Erf$ function)
Where the error occurred (Erl function)
On which joint the error occurred (Era function)

Function main
 OnErr Goto eHandler
 Do
 Call PickPlace
 Loop
 Exit Function
eHandler:
 Print "The Error code is ", Err
 Print "The Error Message is ", ErrMsg$(Err)
 errTask = Ert
 If errTask > 0 Then
 Print "Task number in which error occurred is ", errTask
 Print "Function at which error occurred is ", Erf$(errTask)
 Print "The line where the error occurred is Line ", Erl(errTask)
 If Era(errTask) > 0 Then
 Print "Joint which caused the error is ", Era(errTask)
 EndIf
 EndIf
Fend

Erl Function

260 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Erl Function

Returns the line number in which the error occurred.

Syntax

Erl[(taskNumber)]

Parameters

taskNumber Integer expression representing a task number from 0 to 32.
Task number omission or “0” specifies the current task.

Return Values

The line number where the last error occurred.

Description

Erl is used with OnErr. Erl returns the line number in which the error occurred. Using Erl combined with
Err, Ert and Era the user can determine much more about the error which occurred.
When the event “Error during Auto Mode” occurs, normal task and NoPause task in AUTO mode stop
execution and end the task.
If the target task has already ended when using this function for NoEmgAbort task or background task,
“Error 2261” is occurred. Use OnErr to acquire information before the task ends.

See Also

Era, Erf$, Err, ErrMsg$, Ert, OnErr

Erl Function Example

The Following items are returned in the program example below.
In which task the error occurred (Ert function)
Where the error occurred (Erl function)
What error occurred (Err function)
On which joint the error occurred (Era function)

Function main
 OnErr Goto eHandler
 Do
 Call PickPlace
 Loop
 Exit Function
eHandler:
 Print "The Error code is ", Err
 Print "The Error Message is ", ErrMsg$(Err)
 errTask = Ert
 If errTask > 0 Then
 Print "Task number in which error occurred is ", errTask
 Print "The line where the error occurred is Line ", Erl(errTask)
 If Era(errTask) > 0 Then
 Print "Joint which caused the error is ", Era(errTask)
 EndIf
 EndIf
Fend

Err Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 261

Err Function

Returns the most recent error status.

Syntax

Err [(taskNumber)]

Parameters

taskNumber Optional. Integer expression representing a task number from 0 to 32.
“0” specifies the current task.

Return Values

Returns a numeric error code in integer form.

Description

Err allows the user to read the current error code. This along with the SPEL+ Error Handling capabilities
allows the user to determine which error occurred and react accordingly. Err is used with OnErr.
To get the controller error, use SysErr function.
When the event “Error during Auto Mode” occurs, normal task and NoPause task in AUTO mode stop
execution and end the task.
If the target task has already ended when using this function for NoEmgAbort task or background task,
“Error 2261” is occurred. Use OnErr to acquire information before the task ends.

See Also
Era, Erf$, Erl, ErrMsg$, EResume, Ert, OnErr, Return, SysErr

Err Function Example

The following example shows a simple utility program which checks whether points P0-P399 exist. If the
point does not exist, then a message is printed on the screen to let the user know this point does not exist.
The program uses the CX instruction to test each point for whether or not it has been defined. When a point
is not defined control is transferred to the error handler and a message is printed on the screen to tell the user
which point was undefined.

Function errtest
 Integer i, errnum
 Real x

 OnErr GoTo eHandle
 For i = 0 To 399
 x = CX(P(i))
 Next i
 Exit Function
'
'
'***
'* Error Handler *
'***
eHandle:
 errnum = Err
 ' Check if using undefined point
 If errnum = 78 Then
 Print "Point number P", i, " is undefined!"
 Else
 Print "ERROR: Error number ", errnum, " Occurred."
 EndIf
 EResume Next
Fend

Errb Function

262 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Errb Function

Returns the robot number which the error occurred.

Syntax
Errb

Return Values

Returns the robot number which the error occurred.

Description
Errb finds and returns the robot number where the error occurred. If the robot is not the cause of the error,
“0” will be returned.

See Also
Era, Erl, Err, ErrMsg$, OnErr, Trap

Errb Function Example
The Following items are returned in the program example below.

In which task the error occurred (Ert function)
Where the error occurred (Erl function)
What error occurred (Err function)
On which joint the error occurred (Era function)
On which robot the error occurred (Errb function)

Function main
 OnErr Goto eHandler
 Do
 Call PickPlace
 Loop
 Exit Function
eHandler:
 Print "The Error code is ", Err
 Print "The Error Message is ", ErrMsg$(Err)
 errTask = Ert
 If errTask > 0 Then
 Print "Task number in which error occurred is ", errTask
 Print "The line where the error occurred is Line ", Erl(errTask)
 If Era(errTask) > 0 Then
 Print "Joint which caused the error is ", Era(errTask)
 EndIf
 Print “Robot number in which error occurred is “, errb
 EndIf
Fend

ErrMsg$ Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 263

ErrMsg$ Function

Returns the error message which corresponds to the specified error number.

Syntax

ErrMsg$(errNumber, langID)

Parameters

errNumber Integer expression containing the error number to get the message for.
langID Optional. Integer expression containing the language ID based on the following values.

0 - English
1 - Japanese
2 - German
3 - French
4 – Simplified Chinese
5 – Traditional Chinese
6 – Spanish
If omitted, English is used.

Return Values

Returns the error message which is described in the Error Codes table.

See Also
Era, Erl, Err, Ert, OnErr, Trap

ErrMsg$ Function Example
The Following items are returned in the program example below.

In which task the error occurred (Ert function)
Where the error occurred (Erl function)
On which joint the error occurred (Era function)

Function main
 OnErr Goto eHandler
 Do
 Call PickPlace
 Loop
 Exit Function
eHandler:
 Print "The Error code is ", Err
 Print "The Error Message is ", ErrMsg$(Err)
 errTask = Ert
 If errTask > 0 Then
 Print "Task number in which error occurred is ", errTask
 Print "The line where the error occurred is Line ", Erl(errTask)
 If Era(errTask) > 0 Then
 Print "Joint which caused the error is ", Era(errTask)
 EndIf
 EndIf
Fend

Error Statement

264 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Error Statement

Generates a user error.

Syntax

(1) Error task Number, errorNumber
(2) Error errorNumber

Parameters

taskNumber Optional. Integer expression representing a task number from 0 to 32.
“0” specifies the current task.

errorNumber Integer expression representing a valid error number. User error numbers range is
from 8000 to 8999.

Description

Use the Error statement to generate system or user defined errors. You can define user error labels and
descriptions by using the User Error Editor in the EPSON RC+ development environment.

See Also
Era, Erl, Err, OnErr

Error Statement Example

#define ER_VAC 8000

If Sw(vacuum) = Off Then
 Error ER_VAC
EndIf

ErrorOn Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 265

ErrorOn Function

Returns the error status of the controller.

Syntax

ErrorOn

Return Values

True if the controller is in error status, otherwise False.

Description

ErrorOn function is used only for NoEmgAbort task (special task using NoEmgAbort at Xqt) and background
task.

See Also

ErrorOn, SafetyOn, SysErr, Wait, Xqt

ErrorOn Function Example

The following example shows a program that monitors the controller error and switches the I/O On/Off
according to the error number when error occurs.

Notes
Forced Flag

This program example uses Forced flag for On/Off command.
Be sure that the I/O outputs change during error, or at Emergency Stop or Safety Door Open when designing
the system.

After Error Occurrence
As this program, finish the task promptly after completing the error handling.

Function main

Xqt ErrorMonitor, NoEmgAbort
:
:

Fend

Function ErrorMonitor
 Wait ErrorOn
 If 4000 < SysErr Then
 Print "Motion Error = ", SysErr
 Off 10, Forced
 On 12, Forced
 Else
 Print "Other Error = ", SysErr
 Off 11, Forced
 On 13, Forced
 EndIf

Fend

Ert Function

266 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Ert Function

Returns the task number in which an error occurred.

Syntax

Ert

Return Values

The task number in which the error occurred.

Description

Ert is used when an error occurs to determine in which task the error occurs.
Ert returns the number as follows:
No task with error (0), normal task (1 to 32), back ground task (65 to 80), TRAP task (257 to 267).

See Also

Era, Erl, Err, ErrMsg$, OnErr, Trap

Ert Function Example

The Following items are returned in the program example below.
In which task the error occurred (Ert function)
Where the error occurred (Erl function)
On which joint the error occurred (Era function)

Function main
 OnErr Goto eHandler
 Do
 Call PickPlace
 Loop
 Exit Function
eHandler:
 Print "The Error code is ", Err
 Print "The Error Message is ", ErrMsg$(Err)
 errTask = Ert
 If errTask > 0 Then
 Print "Task number in which error occurred is ", errTask
 Print "The line where the error occurred is Line ", Erl(errTask)
 If Era(errTask) > 0 Then
 Print "Joint which caused the error is ", Era(errTask)
 EndIf
 EndIf
Fend

EStopOn Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 267

EStopOn Function

Returns the Emergency Stop status.

Syntax

EstopOn

Return Values

True if the status is Emergency Stop, otherwise False.

Description

EStopOn function is used only for NoEmgAbort task (special task using NoEmgAbort at Xqt).

See Also

ErrorOn, SafetyOn, Wait, Xqt

EstopOn Function Example

The following example shows a program that monitors the Emergency Stop and switches the I/O On/Off
when Emergency Stop occurs.

Notes
Forced Flag

This program example uses Forced flag for On/Off command.
Be sure that the I/O outputs change during error, or at Emergency Stop or Safeguard Open when designing
the system.

Error Handling
As this program, finish the task promptly after completing the error handling.

Outputs OFF during Emergency Stop
As this program example, when the task executes I/O On/Off after the Emergency Stop, uncheck the [Setup]-
[System Configuration]-[Controller]-[Preferences]-[Outputs off during emergency stop] check box. If this
check box is checked, the execution order of turn Off by the controller and turn On using the task are not
guaranteed.

Function main

 Xqt EStopMonitor, NoEmgAbort
 :
 :
Fend

Function EStopMonitor
 Wait EStopOn
 Print "EStop !!!"
 Off 10, Forced
 On 12, Forced
Fend

Eval Function

268 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Eval Function

Executes a Command window statement from a program and returns the error status.

Syntax

Eval(command [, reply$])

Parameters

command A string expression containing a command you want to execute.
reply$ Optional. A string variable that contains the reply from the command.

If the command is in the error status, it will return “!Error: error code”.
If the reply is over 255 characters, the extra characters will be truncated.

Return Values

The error code returned from executing the command.
Even if the command execution results in an error, the function itself will not be an error. Also, the system
log doesn’t record it.
When the command is completed successfully, it returns “0”.

Description

You can execute any command (executable commands from Command window) from communication port
such as TCP/IP by using Eval. It takes more time to execute this function than by using a normal
statement.

Use the reply$ parameter to retrieve the reply from the command. For example, if the command was “Print
Sw(1)”, then reply$ would be a “1” or “0”.

See Also

Error Codes

Eval Function Example

This example shows how to execute a command being read over RS-232. After the command is executed,
the error code is returned to the host. For example, the host could send a command like "motor on".

Integer errCode
String cmd$

OpenCom #1
Do
 Line Input #1, cmd$
 errCode = Eval(cmd$)
 Print #1, errCode
Loop

Exit Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 269

Exit Statement

Exits a loop construct or function.

Syntax

Exit { Do | For | Function }

Description

The Exit statement syntax has these forms:

Statement Description
Exit Do Provides a way to exit a Do...Loop statement. It can be used only inside a Do...Loop

statement. Exit Do transfers control to the statement following the Loop statement. When
used within nested Do...Loop statements, Exit Do transfers control to the loop that is one
nested level above the loop where Exit Do occurs.

Exit For Provides a way to exit a For loop. It can be used only in a For...Next loop. Exit For
transfers control to the statement following the Next statement. When used within nested
For loops, Exit For transfers control to the loop that is one nested level above the loop
where Exit For occurs.

Exit Function Immediately exits the Function procedure in which it appears. Execution continues with
the statement following the statement that called the Function.

See Also

Do...Loop, For...Next, Function...Fend

Exit Statement Example

For i = 1 To 10
 If Sw(1) = On Then
 Exit For
 EndIf
 Jump P(i)
Next i

ExportPoints Statement

270 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

ExportPoints Statement

Exports a point file to the specified path.

Syntax
ExportPoints fileName, destination

Parameters
fileName String expression containing the specific file to be exported.

The extension must be “.pts”. You cannot specify a file path and fileName doesn’t have
any effect from ChDisk. See ChDisk for the details.

destination Specify the path and file name to save the file.
The extension must be “.pts”. See ChDisk for the details.

Description

ExportPoints copies a specified point file to a folder on the PC.
If the file already exists in the folder, it will be overwritten.

Potential Errors
File Does Not Exist

If the specified path does not exist, an error will occur.
A Path Cannot be Specified

If fileName contains a path, an error will occur.

See Also

Dir, LoadPoints, SavePoints, FileExists, FolderExists

ExportPoints Statement Example
Function main
 LoadPoints "robot1.pts"
 :
 SavePoints "robot1.pts"
 If FolderExists("c:\mypoints\") Then
 ExportPoints "robot1.pts", "c:\mypoints\model1.pts"
 EndIf
Fend

FbusIO_GetBusStatus Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 271

FbusIO_GetBusStatus Function

Returns the status of the specified Fieldbus.

Syntax

FbusIO_GetBusStatus(busNumber)

Parameters

busNumber Integer expression representing the Fieldbus system number. This number must be 16.
This is the ID for the bus connected to the Fieldbus master board on the PC side of the
controller.

Return Values

0 - OK
1 - Disconnected
2 - Power off

Description

FbusIO_GetBusStatus can be used to verify the general status of the Fieldbus.

Note

This command will only work if the Fieldbus Master option is active.

See Also

FbusIO_GetDeviceStatus, FbusIO_SendMsg

FbusIO_GetBusStatus Function Example

Long sts
sts = FbusIO_GetBusStatus(16)

FbusIO_GetDeviceStatus Function

272 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

FbusIO_GetDeviceStatus Function

Returns the status of the specified Fieldbus device.

Syntax

FbusIO_GetDeviceStatus(busNumber, deviceID)

Parameters

busNumber Integer expression representing the Fieldbus system number. This number must be 16.
This is the ID for the bus connected to the Fieldbus master board on the PC side of the
controller.

deviceID Integer expression representing the Fieldbus ID of the device.

Return Values

0 - OK
1 - Disconnected
2 - Power off
3 - Synchronization error. Device is booting, or has incorrect baud rate.

Description

FbusIO_GetDeviceStatus can be used to verify the general status of a Fieldbus device.

Note

This command will only work if the Fieldbus Master option is active.

See Also

FbusIO_GetBusStatus, FbusIO_SendMsg

FbusIO_GetDeviceStatus Function Example

Long sts
sts = FbusIO_GetDeviceStatus(16, 10)

FbusIO_SendMsg Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 273

FbusIO_SendMsg Statement

Sends an explicit message to a Fieldbus device and returns the reply.

Syntax

FbusIO_SendMsg (busNumber, deviceID, msgParam, sendData(), recvData())

Parameters

busNumber Integer expression representing the Fieldbus system number.
This number must be 16. This is the ID for the bus connected to the Fieldbus master board
on the PC side of the controller.

deviceID Integer expression representing the Fieldbus ID of the device.
msgParam Integer expression for the message parameter. Not used with DeviceNet.
sendData Array of type Byte containing data that is sent to the device. This array must be

dimensioned to the number of bytes to send. If there are no bytes to send, specify 0.
recvData Array of type Byte that contains the data received from the device. This array will

automatically be redimensioned to the number of bytes received.

Description

FBusIO_SendMsg is used to query one Fieldbus device. Refer to the device manufacturer for information
on messaging support.

Note

This command will only work if the Fieldbus Master option is active.

See Also

FbusIO_GetBusStatus, FbusIO_GetDeviceStatus

FbusIO_SendMsg Statement

274 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

FbusIO_SendMsg Statement Example

' Send explicit message to DeviceNet device
Byte sendData(5)
Byte recvData(0)
Integer i

sendData(0) = &H0E ' Command
sendData(1) = 1 ' Class
sendData(3) = 1 ' Instance
sendData(5) = 7 ' Attribute
' msgParam is 0 for DeviceNet
FbusIO_SendMsg 16, 1, 0, sendData(), recvData()
' Display the reply
For i = 0 to UBound(recvData)
 Print recvData(i)
Next i

' Send message to Profibus device
Byte recvData(0)
Integer i

' msgParam is the service number
FbusIO_SendMsg 16, 1, 56, 0, recvData()
' Display the reply
For i = 0 to UBound(recvData)
 Print recvData(i)
Next i

FileDateTime$ Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 275

FileDateTime$ Function

Returns the date and time of a file.

Syntax

FileDateTime$(filename)

Parameters

fileName A string expression containing the file name to check. The drive and path can also
be included.
If only file name is specified, the file in the current directory is displayed.
See ChDisk for the details.

Note
A network path is available.

Return Values

Returns the date and time of the last update in the following format:

m/d/yyyy hh:mm:ss

See Also
FileExists, FileLen

FileDateTime$ Function Example

String myPath$
myPath$ = "ｃ:\TEST\TEST.DAT"

If FileExists(myPath$) Then
 Print "Last access date and time: ", FileDateTime$(myPath$)
 Print "Size: ", FileLen(myPath$)
EndIf

FileExists Function

276 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

FileExists Function

Checks if a file exists.

Syntax

FileExists (filename)

Parameters

fileName A string expression containing the file name to check. The drive and path can also
be included.
If only the file name is specified, the file is checked in the current directory.
See ChDisk for the details.

Note
A network path is available.

Return Values

True if the file exists, False if not.

See Also

FolderExists, FileLen, FileDateTime$

FileExists Function Example

String myPath$
myPath$ = "ｃ:\TEST\TEST.DAT"

If FileExists(myPath$) Then
 Print "Last access date and time: ", FileDateTime$(myPath$)
 Print "Size: ", FileLen(myPath$)
EndIf

FileLen Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 277

FileLen Function

Returns the size of a file.

Syntax

FileLen (filename)

Parameters

fileName A string expression containing the file name to check. This includes both drive name
and path name.
If only the file name is specified, the file is checked in the current directory.
See ChDisk for the details.

Note
A network path is available.

Return Values

Returns the number of bytes in the file.

See Also

FileDateTime$, FileExists

FileLen Function Example

String myPath$
myPath$ = "ｃ:\TEST\TEST.DAT"

If FileExists(myPath$) Then
 Print "Last access date and time: ", FileDateTime$(myPath$)
 Print "Size: ", FileLen(myPath$)
EndIf

Find Statement

278 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Find Statement

Specifies or displays the condition to store coordinates during motion.

Syntax

Find [condition]

Parameters

condition Input status specified as a trigger
[Event] comparative operator (=, <>, >=, >, <, <=) [Integer expression]

The following functions and variables can be used in the Event:
Functions : Sw, In, InW, Oport, Out, OutW, MemSw, MemIn, MemInW, Ctr

GetRobotInsideBox, GetRobotInsidePlane, AIO_In, AIO_InW,
AIO_Out, AIO_OutW Hand_On, Hand_Off, SF_GetStatus

Variables : Byte, Inr32, Integer, Long, Short, UByte, UInt32, UShort global
preserve variable, Global variable, module variable

In addition, using the following operators you can specify multiple event conditions.
Operator : And, Or, Xor

Example : Find Sw(5) = On
 Find Sw(5) = On And Sw(6) = Off

Description

Find statement can be used by itself or as a modifier of a motion command.

The Find condition must include at least one of the functions above.

When variables are included in the Find condition, their values are computed when setting the Find condition.
No use of variable is recommended. Otherwise, the condition may be an unintended condition. Multiple
Find statements are permitted. The most recent Find condition remains current.

When parameters are omitted, the current Find definition is displayed.

Notes
Find Setting at Main Power On

At power on, the Find condition is:
Find Sw(0) = On 'Input bit 0 is on

Use of PosFound Function to Verify Find
Use PosFound function to verify if the Find condition has been satisfied after executing a motion command
using Find modifier.

Use Variables in Event Condition Expression
- Available variables are Integer type (Byte, Int32, Integer, Long, Short, UByte, UInt32, UShort)
- Array variables are not available
- Local variables are not available
- If a variable value cannot satisfy the event condition for more than 0.01 seconds, the system cannot retrieve

the change in variables.
- Up to 64 can wait for variables in one system (including the ones used in the event condition expressions

such as Wait). If it is over 64, an error occurs during the project build.
- If you try to transfer a variable waiting for variables as a reference with Byref, an error occurs.
- When a variable is included in the right side member of the event condition expression, the value is

calculated when starting the motion command. We recommend not using variables in an integer expression
to avoid making unintended conditions.

Find Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 279

See Also
FindPos, Go, Jump, PosFound, SF_GetStatus

Find Statement Example

Find Sw(5) = On
Go P10 Find
If PosFound Then
 Go FindPos
Else
 Print "Cannot find the sensor signal."
EndIf

FindPos Function

280 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

FindPos Function

Returns a robot point stored by Fine during a motion command.

Syntax

FindPos

Return Values

A robot point that was stored during a motion command using Find.

See Also

Find, Go, Jump, PosFound, CurPos, InPos

FindPos Function Example

Find Sw(5) = On
Go P10 Find
If PosFound Then
 Go FindPos
Else
 Print "Cannot find the sensor signal."
EndIf

Fine Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 281

Fine Statement

Specifies and displays the positioning accuracy for target points.

Syntax

(1) Fine axis1, axis2, axis3, axis4 [, axis5, axis6] [, axis7] [, axis8, axis9]
(2) Fine

Parameters
axis1 Integer expression ranging from (0 to 65535) which represents the allowable positioning error

for the 1st joint.
axis2 Integer expression ranging from (0 to 65535) which represents the allowable positioning error

for the 2nd joint.
axis3 Integer expression ranging from (0 to 65535) which represents the allowable positioning error

for the 3rd joint.
axis4 Integer expression ranging from (0 to 65535) which represents the allowable positioning error

for the 4th joint.
axis5 Optional. Integer expression ranging from (0 to 65535) which represents the allowable

positioning error for the 5th joint. Only for the 6-axis robot (including N series).
axis6 Optional. Integer expression ranging from (0 to 65535) which represents the allowable

positioning error for the 6th joint. Only for the 6-axis robot (including N series).
axis 7 Optional. Integer expression ranging from (0 to 65535) which represents the allowable

positioning error for the 7th joint. Only for the Joint type 7-axis robot.
axis 8 Optional. Integer expression ranging from (0 to 65535) which represents the allowable

positioning error for the 7th joint. Only for the additional S axis.
axis 9 Optional. Integer expression ranging from (0 to 65535) which represents the allowable

positioning error for the 7th joint. Only for the additional T axis.
* For C8, C12 series Manipulators, the allowable positioning error is from 0 to 131070.

Return Values
When used without parameters, Fine displays the current fine values for each axis.

Description
Fine specifies, for each joint, the allowable positioning error for detecting completion of any given move.

This positioning completion check begins after the CPU has completed sending the target position pulse to
the servo system. Due to servo delay, the robot will not yet have reached the target position. This check
continues to be executed every few milliseconds until each joint has arrived within the specified range
configuration. Positioning is considered complete when all axes have arrived within the specified ranges.
Once positioning is complete program control is passed to the next statement, however, servo system keeps
the control of the robot target position.

When relatively large ranges are used with the Fine instruction, the positioning will be confirmed relatively
early in the move and executes the next statement.

The default Fine settings depend on the robot type. Refer to your Manipulator manual for details.

Fine Statement

282 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Notes
Cycle Times and the Fine Instruction

The Fine value does not affect the acceleration or deceleration control of the manipulator arm. However,
smaller Fine values can cause the system to run slower because it may take the servo system extra time (a
few milliseconds) to get within the acceptable position range. Once the arm is located within the acceptable
position range (defined by the Fine instruction), the CPU executes the next user instruction.

Initialization of Fine (by Motor On, SLock, SFree)
When any of the following commands is used, the Fine value will be initialized to the default:
SLock, SFree, Motor instructions.
Make sure that you reset Fine values after one of the above commands is executed.

Potential Error

If Fine positioning is not completed within about 2 seconds, Error 4024 will occur. This error normally
means the servo system balance needs to be adjusted. (Call your distributor for assistance)

See Also

Accel, AccelR, AccelS, Arc, Go, Jump, Move, Speed, SpeedR, SpeedS, Pulse, FineDist,
FineStatus

Fine Statement Example
The examples below show the Fine statement used in a program function, and used from the monitor window.

Function finetest
 Fine 5, 5, 5, 5 'reduces precision to +/- 5 Pulse
 Go P1
 Go P2
Fend

> Fine 10, 10, 10, 10
>
> Fine
10, 10, 10, 10

Fine Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 283

Fine Function

Returns Fine setting for a specified joint.

Syntax

Fine(joint)

Parameters

joint Integer expression representing the joint number for which to retrieve the Fine setting.
The additional S axis is 8 and T axis is 9.

Return Values

Real value.

See Also

Accel, AccelS, Arc, Go, Jump, Move, Speed, SpeedS, Pulse

Fine Function Example

This example uses the Fine function in a program:

Function finetst
 Integer a
 a = Fine(1)
Fend

FineDist Statement

284 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

FineDist Statement

Specifies and displays the positioning error limits. The unit of the setting value is “mm”.

Syntax

(1) FineDist value
(2) FineDist

Parameters

value Positioning allowance ranges from 0.001[mm] to 10[mm].

Return Values

If the parameter is not specified, FineDist displays the current set value.

Notes
About the Controllers to use

It cannot be used with T/VT series.

Fine and FineDist

The difference between Fine and FineDist is the unit of the positioning check .
Fine statement sets the positioning check value in pulse, and the positioning check is performed on each axis.
FineDist statement sets the positioning check value in mm, and the positioning check is performed in the
coordinate system of Tool number 0.
Fine and FineDist can be used at the same time. If Fine and FineDist are used in the program as shown below,
the positioning check will be performed by FineDist. (If the order of Fine and FineDist is reversed, Fine will
perform the positioning check.)

Function test
 Fine 5, 5, 5, 5
 FineDist 0.1

 Go P1
 Go P2
Fend

FineDist Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 285

Note
Initialization of Fine (by Motor On, SLock, SFree)

When any of the following commands is used, the FineDist value will be initialized to the default and the
positioning check will be performed by Fine:
 SLock, SFree, Motor
Make sure to reset the FineDist value after any of the above commands is executed.

Potential Error

If FineDist positioning is not completed within about 2 seconds, Error 4024 will occur. This error normally
means the servo system balance needs to be adjusted.

See Also

Accel, AccelR, AccelS, Arc, Go, Jump, Move, Speed, SpeedR, SpeedS, Pulse, Fine, FineStatus

FineDist Statement Example

The example below show the FineDist statement used in a program function, and used from the monitor
window.

Function fineDisttest
 Fine 0.1 'Set precision to +/- 0.1 mm
 Go P1
 Go P2
Fend

> FineDist 0.1
>
> FineDist
0.1

FineStatus Function

286 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

FineStatus Function

Returns whether Fine or FineDist is used by an integer.

Syntax

FineStatus

Return Values

Returns whether Fine is used or FineDist is used by an integer.
0 = Fine is used
1 = FineDist is used

See Also

Fine, FineDist

FineStatus Function Example

Print FineStatus

Fix Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 287

Fix Function

Returns the integer portion of a real number.

Syntax

Fix(number)

Parameters

number Real expression containing number to fix.

Return Values

An integer value containing the integer portion of the real number.

See Also

Int

Fix Function Example

>print Fix(1.123)
 1
>

Flush Statement

288 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Flush Statement

Writes a file's buffer into the file.

Syntax
Flush #fileNumber

Parameters
#fileNumber Integer value from 30 to 63 or expression

Description
Writes a file's buffer into the specified file.
Flush cannot be used if the file was opened with ROpen.

Flush Statement Example

Integer fileNum, i

fileNum = FreeFile
UOpen "TEST.DAT" As #fileNum
For i = 0 To 100
 Print #fileNum, i
Next i
Flush #fileNum
Close #fileNum

FmtStr Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 289

FmtStr Statement

Formats a numeric expression or date/time expression.

Syntax

FmtStr expFormat, strFormat, stringVar

Parameters

expression Numeric expression or date/time expression to be formatted.
 Specify date/time expression in “yyyy/mm/dd”.
strFormat Format specification string.
stringVar Output string variable.

Description

Returns the formatted string according to the strFormat.

Numeric Format Specifiers
Character Description
None Display the number with no formatting.
(0) Digit placeholder. Display a digit or a zero. If the expression has a digit in the position where

“0” appears in the format string, display it; otherwise, display a zero in that position. If the
number has fewer digits than there are “0” (on either side of the decimal) in the format
expression, display leading or trailing “0”. If the number has more digits to the right of the
decimal separator than there are “0” to the right of the decimal separator in the format
expression, round the number to as many decimal places as there are “0”. If the number has
more digits to the left of the decimal separator than there are “0” to the left of the decimal
separator in the format expression, display the extra digits without modification.

(#) Digit placeholder. Display a digit or nothing. If the expression has a digit in the position where
“#” appears in the format string, display it; otherwise, display nothing in that position. This
symbol works like the 0 digit placeholder, except that leading and trailing “0” aren't displayed
if the number has the same or fewer digits than there are “#” characters on either side of the
decimal separator in the format expression.

(.) Decimal placeholder. In some locales, a comma is used as the decimal separator. The decimal
placeholder determines how many digits are displayed to the left and right of the decimal
separator. If the format expression contains only number signs to the left of this symbol,
numbers smaller than 1 begin with a decimal separator. To display a leading zero displayed
with fractional numbers, use “0” as the first digit placeholder to the left of the decimal separator.
The actual character used as a decimal placeholder in the formatted output depends on the
Number Format recognized by your system.

(,) Thousand separator. In some locales, a period is used as a thousand separator. The thousand
separator separates thousands from hundreds within a number that has four or more places to
the left of the decimal separator. Standard use of the thousand separator is specified if the format
contains a thousand separator surrounded by digit placeholders (0 or #). Two adjacent thousand
separators or a thousand separator immediately to the left of the decimal separator (whether or
not a decimal is specified) means "scale the number by dividing it by 1000, rounding as
needed." For example, you can use the format string "##0,," to represent 100 million as “100”.
Numbers smaller than 1 million are displayed as “0”. Two adjacent thousand separators in any
position other than immediately to the left of the decimal separator are treated simply as
specifying the use of a thousand separator. The actual character used as the thousand separator
in the formatted output depends on the Number Format recognized by your system.

FmtStr Statement

290 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Date/Time Expression Specifiers
Character Description

(:) Time separator. In some locals, other characters may be used. The time separator

separates hours, minutes, and seconds when time values are formatted. The actual
character used as the time separator in the formatted output depends on the Windows
settings.

(/) Date separator. In some locals, other characters may be used. The date separator
separates day, month, and year when date values are formatted. The actual character used
as the date separator in the formatted output depends on the Windows settings.

c Display the date in “ddddd” and time in” ttttt”, in this order. If the date serial number does

not have a fraction, it only displays the date. If the timing information does not have the
integer, it only displays the timing information.

d Display the date with the day in the lead without “0”. (1 to 31)
dd Display the date with the day in the lead with “0”. (01 to 31)
ddd Displays the abbreviation of the day of the week. (Sun to Sat)
dddd Displays the unabbreviated day of the week. (Sunday to Saturday)
ddddd Displays the day, month, and year in the format of the short data display settings of the

Windows. Default setting of the short data display format is m/d/yy.
dddddd Displays the serial values of the date as day, month, and year in the long data display

setting of the Windows. Default setting of the long data display is mmmm dd, yyyy.
w Displays the day of the week with a number. (1: Sunday ~ 7: Saturday)

ww Displays the number of weeks in a year with a number (1 to 54).
m Display the month with the day in the lead without “0”. (1 to 12)
 Even if this character is placed right after “h” or “hh”, this does not display “minute”. To

display “minute”, use “n” or “nn”.
mm Display the month with the day in the lead with “0”.(01 to 12)
 Even if this character is placed right after “h” or “hh”, this does not display “minute”. To

display “minute”, use “n” or “nn”.
mmm Displays the abbreviated month name (Jan to Dec)
mmmm Displays the unabbreviated month name (January to December) .

q Displays the number of quarters in a year (1 to 4)
y Displays the day of a year. (1 to 366)
yy Displays the year in 2 digits.(00 to 99)
yyyy Displays the year in 4 digits. (100 to 9999)
h Displays the time in 24-hour clock without “0” at the beginning.(0 to 23)
hh Displays the time in 24-hour clock with “0” at the beginning.(00 to 23)
n Displays the minute without “0” at the beginning. (0 to 59)
nn Displays the minute with “0” at the beginning.(00 to 59)

s Displays the second without “0” at the beginning.(0 to 59)
ss Displays the second with “0” at the beginning. (00 to 59)
t t t t t Displays the time (hour, minute, second) with the time separator of Windows setting. If

the “initial zero” option is used, the time before 10:00am/pm are displayed with “0” at the
beginning. Default time format of the Windows is h:nn:ss.

AM/PM Displays the time in 12-hour clock and displays morning and afternoon with AM/PM

(uppercase).
am/pm Displays the time in 12-hour clock and displays morning and afternoon with am/pm

(lowercase).
A/P Displays the time in 12-hour clock and displays morning and afternoon with A/P

(uppercase).
a/p Displays the time in 12-hour clock and displays morning and afternoon with a/p

(lowercase).

FmtStr Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 291

AMPM Displays the time in 12-hour clock. For the morning, displays AM with a string and for
the afternoon, displays the PM with a string each with the Windows format setting. Both
uppercases and lowercases can be used for AM/PM if the specified string matches the
Windows setting. Default Windows setting is AM/PM.

Note
Mixture of numeric format specifiers and time/date specifiers

An error occurs if both numeric format specifier and time/date specifier are specified.

See Also
Left$, Right$, Str$

FmtStr Statement Example

Function SaveData

 String d$, f$, t$

 ' Make file name in the format
 ' month, day, hour, minute
 d$ = Date$
 t$ = Time$
 d$ = d$ + " " + t$
 FmtStr d$, "mmddhhnn", f$
 f$ = f$ + ".dat"
 WOpen f$ as #30
 Print #30, "data"
 Close #30
Fend

FmtStr$ Function

292 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

FmtStr$ Function

Format a numeric expression.

Syntax

FmtStr$ (expFormat, strFormat)

Parameters

expFormat Numeric expression or date/time expression to be formatted.
 Specify date/time expression in “yyyy/mm/dd”.
strFormat Format specification string.

Return Values

A string containing the formatted expression.

Description

Use FmtStr$ to format a numeric expression into a string.

Numeric Format Specifiers
Character Description
None Display the number with no formatting.
(0) Digit placeholder. Display a digit or a zero. If the expression has a digit in the position where

“0” appears in the format string, display it; otherwise, display a zero in that position. If the
number has fewer digits than there are “0” (on either side of the decimal) in the format
expression, display leading or trailing “0”. If the number has more digits to the right of the
decimal separator than there are “0” to the right of the decimal separator in the format
expression, round the number to as many decimal places as there are “0”. If the number has
more digits to the left of the decimal separator than there are “0” to the left of the decimal
separator in the format expression, display the extra digits without modification.

(#) Digit placeholder. Display a digit or nothing. If the expression has a digit in the position where
“#” appears in the format string, display it; otherwise, display nothing in that position. This
symbol works like the 0 digit placeholder, except that leading and trailing “0” aren't displayed
if the number has the same or fewer digits than there are “#” characters on either side of the
decimal separator in the format expression.

(.) Decimal placeholder. In some locales, a comma is used as the decimal separator. The decimal
placeholder determines how many digits are displayed to the left and right of the decimal
separator. If the format expression contains only number signs to the left of this symbol,
numbers smaller than 1 begin with a decimal separator. To display a leading zero displayed
with fractional numbers, use “0” as the first digit placeholder to the left of the decimal separator.
The actual character used as a decimal placeholder in the formatted output depends on the
Number Format recognized by your system.

(,) Thousand separator. In some locales, a period is used as a thousand separator. The thousand
separator separates thousands from hundreds within a number that has four or more places to
the left of the decimal separator. Standard use of the thousand separator is specified if the format
contains a thousand separator surrounded by digit placeholders (0 or #). Two adjacent thousand
separators or a thousand separator immediately to the left of the decimal separator (whether or
not a decimal is specified) means "scale the number by dividing it by 1000, rounding as
needed." For example, you can use the format string "##0,," to represent 100 million as “100”.
Numbers smaller than 1 million are displayed as “0”. Two adjacent thousand separators in any
position other than immediately to the left of the decimal separator are treated simply as
specifying the use of a thousand separator. The actual character used as the thousand separator
in the formatted output depends on the Number Format recognized by your system.

FmtStr$ Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 293

Date/Time Expression Specifiers
Character Description
(:) Time separator. In some locals, other characters may be used. The time separator

separates hours, minutes, and seconds when time values are formatted. The actual
character used as the time separator in the formatted output depends on the Windows
settings.

(/) Date separator. In some locals, other characters may be used. The date separator
separates day, month, and year when date values are formatted. The actual character used
as the date separator in the formatted output depends on the Windows settings.

c Display the date in “ddddd” and time in” ttttt”, in this order. If the date serial number does

not have a fraction, it only displays the date. If the timing information does not have the
integer, it only displays the timing information.

d Display the date with the day in the lead without “0”. (1 to 31)
dd Display the date with the day in the lead with “0”. (01 to 31)
ddd Displays the abbreviation of the day of the week. (Sun to Sat)
dddd Displays the unabbreviated day of the week. (Sunday to Saturday)
ddddd Displays the day, month, and year in the format of the short data display settings of the

Windows. Default setting of the short data display format is m/d/yy.
dddddd Displays the serial values of the date as day, month, and year in the long data display

setting of the Windows. Default setting of the long data display is mmmm dd, yyyy.
w Displays the day of the week with a number. (1: Sunday ~ 7: Saturday)

ww Displays the number of weeks in a year with a number (1 to 54).
m Display the month with the day in the lead without “0”. (1 to 12)
 Even if this character is placed right after “h” or “hh”, this does not display “minute”. To

display “minute”, use “n” or “nn”.
mm Display the month with the day in the lead with “0”.(01 to 12)
 Even if this character is placed right after “h” or “hh”, this does not display “minute”. To

display “minute”, use “n” or “nn”.
mmm Displays the abbreviated month name (Jan to Dec)
mmmm Displays the unabbreviated month name (January to December) .

q Displays the number of quarters in a year (1 to 4)
y Displays the day of a year. (1 to 366)
yy Displays the year in 2 digits.(00 to 99)
yyyy Displays the year in 4 digits. (100 to 9999)
h Displays the time in 24-hour clock without “0” at the beginning.(0 to 23)
hh Displays the time in 24-hour clock with “0” at the beginning.(00 to 23)
n Displays the minute without “0” at the beginning. (0 to 59)
nn Displays the minute with “0” at the beginning.(00 to 59)

s Displays the second without “0” at the beginning.(0 to 59)
ss Displays the second with “0” at the beginning. (00 to 59)
t t t t t Displays the time (hour, minute, second) with the time separator of Windows setting. If

the “initial zero” option is used, the time before 10:00am/pm are displayed with “0” at the
beginning. Default time format of the Windows is h:nn:ss.

AM/PM Displays the time in 12-hour clock and displays morning and afternoon with AM/PM

(uppercase).
am/pm Displays the time in 12-hour clock and displays morning and afternoon with am/pm

(lowercase).
A/P Displays the time in 12-hour clock and displays morning and afternoon with A/P

(uppercase).
a/p Displays the time in 12-hour clock and displays morning and afternoon with a/p

(lowercase).

FmtStr$ Function

294 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

AMPM Displays the time in 12-hour clock. For the morning, displays AM with a string and for
the afternoon, displays the PM with a string each with the Windows format setting. Both
uppercases and lowercases can be used for AM/PM if the specified string matches the
Windows setting. Default Windows setting is AM/PM.

Note
Mixture of numeric format specifiers and time/date specifiers

An error occurs if both numeric format specifier and time/date specifier are specified.

See Also

Left$, Right$, Str$

FmtStr$ Function Example

Function SendDateCode

 String d$, f$

 f$ = FmtStr$(10, "000.00")
 OpenCom #1
 Print #1, f$
 CloseCom #1
Fend

FolderExists Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 295

FolderExists Function

Checks if a folder exists.

Syntax

FolderExists(pathName)

Parameters

pathName A string expression containing the path of the folder to check. The drive can also be
included. See ChDisk for the details.

Note

- This function is executable only with the PC disk.

Return Values

True if the folder exists, False if not.

See Also

FileExists, MkDir

FolderExists Function Example

If Not FolderExists("ｃ:\TEST") Then
 MkDir "ｃ:\TEST"
EndIf

For...Next Statement

296 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

For...Next Statement

The For...Next instructions are used together to create a loop where instructions located
between For and Next are executed multiple times as specified by the user.

Syntax

For var = initValue To finalValue [Step increment]
statements

Next [var]

Parameters

var The counting variable used with the For...Next loop. This variable is normally
defined as an integer but may also be defined as a Real variable.

initValue The initial value for the counter var.
finalValue The final value of the counter var. Once this value is met, the For...Next loop is

complete and execution continues starting with the statement following the Next
instruction.

increment An optional parameter which defines the counting increment for each time the Next
statement is executed within the For...Next loop. This variable may be positive or
negative. However, if the value is negative, the initial value of the variable must be
larger than the final value of the variable. If the increment value is left out the system
automatically increments by “1”.

statements Any valid SPEL+ statements can be inserted inside the For...Next loop.

Description

For...Next executes a set of statements within a loop a specified number of times. The beginning of the loop
is the For statement. The end of the loop is the Next statement. A variable is used to count the number of
times the statements inside the loop are executed.

The first numeric expression (initValue) is the initial value of the counter. This value may be positive or
negative as long as the finalValue variable and Step increment correspond correctly.

The second numeric expression (finalValue) is the final value of the counter. This is the value which once
reached causes the For...Next loop to terminate and control of the program is passed on to the next instruction
following the Next instruction.

Program statements after the For statement are executed until a Next instruction is reached. The counter
variable (var) is then incremented by the Step value defined by the increment parameter. If the Step option
is not used, the counter is incremented by “1 (one)”.

The counter variable (var) is then compared with the final value. If the counter is less than or equal to the
final value, the statements following the For instruction are executed again. If the counter variable is greater
than the final value, execution branches outside of the For...Next loop and continues with the instruction
immediately following the Next instruction.

For...Next Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 297

Notes
Negative Step Values:

If the value of the Step increment (increment) is negative, the counter variable (var) is decremented
(decreased) each time through the loop and the initial value must be greater than the final value for the loop
to work.

Variable Following Next is Not Required:
The variable name following the Next instruction may be omitted. However, for programs that contain nested
For...Next loops, it is recommended to include the variable name following the Next instruction to aid in
quickly identifying loops.

When a variable exits the loop, the value is not a final value.
 Function forsample
 Integer i
 For i = 0 To 3
 Next
 Print i ' Displays 4
 Fend

When you exit the loop from the nested structure without using Exit For
Error 2020 will occur when you repeatedly execute the program which exits the loop by the command other
than the Exit For command (such as GoSub statement, Goto statement, and Call statement.) Be sure to use
Exit For command to exit the loop.

Avoid endless execution of empty Loop Statements and similar to them, use them with the
Wait command instead

Do not use empty For...Next statements and similar commands to avoid effect on the system. The
Controllers are detecting endless loop tasks. If the controller determines that the system will be affected, it
will stop the program with error 2556 (An excessive loop was detected). When performing operations that
require a loop or waiting for I/O, execute a Wait command (Wait 0.1) and more within the loop to avoid
occupying the CPU.

See Also

Do...Loop

For...Next Statement Example

Function fornext
 Integer counter
 For counter = 1 to 10
 Go Pctr
 Next counter

 For counter = 10 to 1 Step -1
 Go Pctr
 Next counter
Fend

Force_Calibrate Statement

298 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Force_Calibrate Statement

Sets zero offsets for all axes for the current force sensor.

Syntax

Force_Calibrate

Parameters

On | Off Torque Control can be either On or Off.

Description

You should call Force_Calibrate for each sensor when your application starts. This will account for the
weight of the components mounted on the sensor.

Note

This command will only work if the Force Sensing option (ATI Force Sensor) is active.
When using Force Sensor from EPSON, use each command of following manual.
 EPSON RC+ 7.0 Option Force Guide 7.0 SPEL+ Language Reference

See Also

Force_Sensor

Force_Calibrate Statement Example

Force_Calibrate

Force_ClearTrigger Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 299

Force_ClearTrigger Statement

Clears all trigger conditions for the current force sensor.

Syntax

Force_ClearTrigger

Description

Use Force_ClearTrigger to clear all conditions for the current force sensor’s trigger.

Note

This command will only work if the Force Sensing option (ATI Force Sensor) is active.
When using Force Sensor from EPSON, use each command of following manual.
 EPSON RC+ 7.0 Option Force Guide 7.0 SPEL+ Language Reference

See Also

Force_Sensor, Force_SetTrigger

Force_ClearTrigger Statement Example

Force_ClearTrigger

Force_GetForces Statement

300 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Force_GetForces Statement

Returns the forces and torques for all force sensor axes in an array.

Syntax

Force_GetForces array()

Parameters

array() Real array with upper bound of 6.

Return Values

The array elements are filled in as follows:

Index Axis Constant
1 X Force FORCE_XFORCE
2 Y Force FORCE_YFORCE
3 Z Force FORCE_ZFORCE
4 X Torque FORCE_XTORQUE
5 Y Torque FORCE_YTORQUE
6 Z Torque FORCE_ZTORQUE

Description

Use Force_GetForces to read all force and torque values at once.

Note

This command will only work if the Force Sensing option (ATI Force Sensor) is active.
When using Force Sensor from EPSON, use each command of following manual.
 EPSON RC+ 7.0 Option Force Guide 7.0 SPEL+ Language Reference

See Also

Force_GetForce Function

Force_GetForces Statement Example

 Real fValues(6)
 Force_GetForces fValues()

Force_GetForce Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 301

Force_GetForce Function

Returns the force for a specified axis.

Syntax
Force_GetForce (axis)

Parameters
axis Integer expression representing the axis.

Axis Constant Value
X Force FORCE_XFORCE 1
Y Force FORCE_YFORCE 2
Z Force FORCE_ZFORCE 3
X Torque FORCE_XTORQUE 4
Y Torque FORCE_YTORQUE 5
Z Torque FORCE_ZTORQUE 6

Return Values

Returns an real value.

Description

Use Force_GetForce to read the current force setting for one axis. The units are determined by the type of
force sensor.

Note

This command will only work if the Force Sensing option (ATI Force Sensor) is active.
When using Force Sensor from EPSON, use each command of following manual.
 EPSON RC+ 7.0 Option Force Guide 7.0 SPEL+ Language Reference

See Also

Force_GetForces

Force_GetForce Function Example

 Print Force_GetForce(1)

Force_Sensor Statement

302 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Force_Sensor Statement

Sets the current force sensor for the current task.

Syntax

Force_Sensor sensorNumber

Parameters

sensorNumber Integer expression representing the sensor number.

Description

When using multiple force sensors on the same system, you must set the current force sensor before using
other force sensing commands.

If your system has only one sensor, then you don't need to use Force_Sensor because the default sensor
number is 1.

Note

This command will only work if the Force Sensing option (ATI Force Sensor) is active.
When using Force Sensor from EPSON, use each command of following manual.
 EPSON RC+ 7.0 Option Force Guide 7.0 SPEL+ Language Reference

See Also

Force_Sensor Function

Force_Sensor Statement Example

 Force_Sensor 1

Force_Sensor Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 303

Force_Sensor Function

Returns the current force sensor for the current task.

Syntax

Force_Sensor

Description

Force_Sensor returns the current sensor number for the current task. When a task starts, the sensor number
is automatically set to 1.

Note

This command will only work if the Force Sensing option (ATI Force Sensor) is active.
When using Force Sensor from EPSON, use each command of following manual.
 EPSON RC+ 7.0 Option Force Guide 7.0 SPEL+ Language Reference

See Also

Force_Sensor

Force_Sensor Function Example

 var = Force_Sensor

Force_SetTrigger Statement

304 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Force_SetTrigger Statement

Sets the force trigger for the Till command.

Syntax

Force_SetTrigger axis, Threshold, CompareType

Parameters

axis Integer expression containing the desired force sensor axis.
Axis Constant Value
X Force FORCE_XFORCE 1
Y Force FORCE_YFORCE 2
Z Force FORCE_ZFORCE 3
X Torque FORCE_XTORQUE 4
Y Torque FORCE_YTORQUE 5
Z Torque FORCE_ZTORQUE 6

Threshold Real expression containing the desired threshold in units for the sensor being used.
CompareType Comparison Constant Value

Less than or equal FORCE_LESS 0
Greater than or equal FORCE_GREATER 1

Description

To stop motion with a force sensor, you must set the trigger for the sensor, then use Till Force in your
motion statement.

You can set the trigger with multiple axes. Call Force_SetTrigger for each axis. To disable an axis, set the
threshold at 0.

Note

This command will only work if the Force Sensing option (ATI Force Sensor) is active.
When using Force Sensor from EPSON, use each command of following manual.
 EPSON RC+ 7.0 Option Force Guide 7.0 SPEL+ Language Reference

See Also

Force_Calibrate

Force_SetTrigger Statement Example

'Set trigger to stop motion when force is less than −1 on Z axis.
Force_SetTrigger 3, -1, 0
SpeedS 3
AccelS 5000
Move Place Till Force

FreeFile Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 305

FreeFile Function

Returns / reserves a file number that is currently not being used.

Syntax

FreeFile

Return Values

Integer between 30 and 63.

See Also

AOpen, BOpen, ROpen, UOpen, WOpen, Close

FreeFile Function Example

Integer fileNum, i, j

fileNum = FreeFile
WOpen "TEST.DAT" As #fileNum
For i = 0 To 100
 Print #fileNum, i
Next i
Close #fileNum

fileNum = FreeFile
ROpen "TEST.DAT" As #fileNum
For i = 0 to 100
 Input #fileNum, j
 Print "data = ", j
Next i
Close #fileNum

Function...Fend Statement

306 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Function...Fend Statement

A function is a group of program statements which includes a Function statement as the first statement and
an Fend statement as the last statement.

Syntax

Function funcName [(argList)] [As type(function)]
statements

Fend

Parameters

funcName The name which is given to the specific group of statements bound between the
Function and Fend instructions. The function name must contain alphanumeric
characters and may be up to 64 characters in length. Underscores are also allowed.

argList Optional. List of variables representing arguments that are passed to the Function
procedure when it is called. Multiple variables are separated by commas.
The arglist argument has the following syntax:
[{ByRef | ByVal}] varName [()] As type(argument)
ByRef Optional. Specify ByRef when you refer to the variable to be

seen by the calling function. In this case, the argument change
in a function can be reflected to the variable of the calling side.

ByVal Optional. Specify ByVal when you do not want any changes
in the value of the variable to be seen by the calling function.
This is the default.

varName [()] Required. Name of the variable representing the argument;
follows standard variable naming conventions. If you use an
array variable as argument, you should specify ByRef and add
empty parentheses “()” representing the array after the variable
name.

As type (argument) Required. You must declare the type of argument.
As type (function) Use this parameter if you want to obtain return values. You must declare the type of

return values.

Return Values

Value whose data type is specified with the As clause at the end of the function declaration (As
type(function)).

Description

The Function statement indicates the beginning of a group of SPEL+ statements. To indicate where a function
ends we use the Fend statement. All statements located between the Function and Fend statements are
considered part of the function.

The Function...Fend combination of statements could be thought of as a container where all the statements
located between the Function and Fend statements belong to that function. Multiple functions may exist in
one program file.

If you want to use the return value, assign the value to the variable name which has the same name as the
function and then terminate the function.

See Also

Call, Fend, Halt, Quit, Return, Xqt

Function...Fend Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 307

Function...Fend Statement Example
<Example 1>
The following example shows 3 functions which are within a single file. The functions called task2 and
task3 are executed as background tasks while the main task called main executes in the foreground.

Function main
 Xqt 2, task2 'Execute task2 in background
 Xqt 3, task3 'Execute task3 in background
 '....more statements here
Fend

Function task2
 Do
 On 1
 On 2
 Off 1
 Off 2
 Loop
Fend

Function task3
 Do
 On 10
 Wait 1
 Off 10
 Loop
Fend

<Example 2>
In the following example, the pressure control sequence for peripherals is supplied as an argument and the
result sent to the external device is displayed as a return value.

Function main
 Integer iResult
 Real Sequence1(200)
 .
 .
 iResult = PressureControl(ByRef Sequence1()) 'Argument is array
 .
 Print "Result:", iResult
 .
Fend

Function PressureControl(ByRef Array1() As Real) As Integer
 .
 (Control pressure for peripherals according to Array1)
 .
 PressureControl = 3 'Return value
 .
 .
Fend

GetCurrentUser$ Function

308 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

GetCurrentUser$ Function

Returns the current EPSON RC+ user.

Syntax

GetCurrentUser$

Return Values

String containing the current user logID.

Note

This command will only work if the Security option is active.

See Also

LogIn Statement

GetCurrentUser$ Function Example

String currUser$

currUser$ = GetCurrentUser$

GetRobotInsideBox Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 309

GetRobotInsideBox Function

Returns a robot which is in the approach check area.

Syntax

GetRobotInsideBox(AreaNum)

Parameters

AreaNum Integer value (1 to 15) representing the approach check area you want to return the
status for.

Return Values

Return the robot that is in the approach check area specified with AreaNum in bit.
Bit 0 : Robot 1 ……… Bit 15 : Robot 16

If the robot doesn’t configure the approach check area, bit is always 0.
For example, Robot 1, Robot 3 are in the approach check area, bit 0, bit 2 will be On and 5 will be returned.

See Also

Box, InsideBox

GetRobotInsideBox Function Example

The following program uses the GetRobotInsideBox function.
Wait for the status that no robots are in the approach check area.

Function WaitNoBox

 Wait GetRobotInsideBox(1) = 0

Wait for the status that Robot 2 is only one in the approach check area.

Function WaitInBoxRobot2

 Wait GetRobotInsideBox(1) = &H2

The following program uses the GetRobotInsideBox function in the parallel processing of the motion command.
When a robot is in the specific approach check area while it is running, it turns ON the I/O. One robot is
connected to the controller in this case.

Function Main
 Motor On
 Power High
 Speed 30; Accel 30, 30

 Go P1 !D0; Wait GetRobotInsideBox(1) = 1; On 1!

Fend

Note

D0 must be described.

GetRobotInsidePlane Function

310 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

GetRobotInsidePlane Function

Returns a robot which is in the approach check plane.

Syntax

GetRobotInsidePlane (PlaneNum)

Parameters

PlaneNum Integer value (1 to 15) representing the approach check plane you want to return the
status for.

Return Values

Returns the number of the robot that is in the approach check plane specified with PlaneNum in bit.
Bit 0 : Robot 1 ……… Bit 15 : Robot 16

If the robot doesn’t configure the approach check plane, it always returns bit 0.
For example, Robot 1, Robot 3 are in the approach check plane, bit 0, bit 2 will be On and 5 will be returned.

See Also

InsidePlane, Plane

GetRobotInsidePlane Function Example

The following program uses the GetRobotInsidePlane function.
Wait for the status that no robots are in the approach check plane.

Function WaitNoPlane

 Wait GetRobotInsidePlane(1) = 0

Wait for the status Robot 2 is only one in the approach check plane.

Function WaitInPlaneRobot2

 Wait GetRobotInsidePlane(1) = &H2

The following program uses the GetRobotInsidePlane function in the parallel processing of the motion
command. When a robot is in the specific approach check plane while it is running, it turns ON the I/O. One
robot is connected to the controller in this case.

Function Main
 Motor On
 Power High
 Speed 30; Accel 30, 30

 Go P1 !D0; Wait GetRobotInsidePlane(1) = 1; On 1!

Fend

Note

D0 must be described.

Global Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 311

Global Statement

Declares variables with the global scope. Global variables can be accessed from anywhere.

Syntax

Global [Preserve] dataType varName [(subscripts)] [, varName [(subscripts)] , ...]

Parameters

Preserve If Preserve is specified, then the variable retains its values. The values are cleared by
project changes. If Preserve is omitted, the variable doesn’t retain its values.

dataType Data type including Boolean, Byte, Double, Int32, Integer, Long, Real, Short, String,
UByte, UInt32, or UShort.

varName Variable name. Names may be up to 32 characters in length.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared. The

subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 to the upper bound

value.
 The total available number of array elements for global variables is 10000 for strings

and 100000 for all other types.
 The total available number of array elements for global preserve variables is 400 for

strings and 4000 for all other types.
 To calculate the total elements used in an array, use the following formula.

(If a dimension is not used, substitute 0 for the ubound value.)
total elements = (ubound1 + 1) * (ubound2 + 1) * (ubound3 + 1)

Description

Global variables are variables which can be used in more than 1 file within the same project. They are cleared
whenever a function is started from the Run window or Operator window unless they are declared with the
Preserve option.

When declared in Preserve option, the variable retains the value at turning off the controller.

Global Preserve variables can be used with the RC+ Connectivity option.

It is recommended that global variable names begin with a "g_" prefix to make it easy to recognize globals
in a program. For example:

Global Long g_PartsCount

See Also

Boolean, Byte, Double, Int32, Int64, Integer, Long, Real, Short, String, UByte, UInt32, UInt64,
UShort

Global Statement

312 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Global Statement Example

The following example shows 2 separate program files. The first program file defines some global variables
and initializes them. The second file then also uses these global variables.

FILE1 (MAIN.PRG)

Global Integer g_Status
Global Real g_MaxValue

Function Main

 g_Status = 10
 g_MaxValue = 1.1
 .
 .
Fend

FILE2 (TEST.PRG)

Function Test

 Print "status1 =" , g_Status
 Print "MaxValue =" , g_MaxValue
 .
 .
Fend

Go Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 313

Go Statement

Moves the arm using point to point motion from the current position to the specified point or X, Y, Z, U, V,
W position. The Go instruction can move any combination of 1-6 joints at the same time.

Syntax

Go destination [CP] [LJM [orientationFlag]] [searchExpr] [!...!] [SYNC]

Parameters

destination The target destination of the motion using a point expression.
CP Optional. Specifies continuous path motion.
LJM Optional. Convert the target destination using LJM function.
orientationFlag Optional. Specifies a parameter that selects an orientation flag for LJM function.
searchExpr Optional. A Till or Find expression.

Till | Find
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

!...! Optional. Parallel Processing statements can be added to execute I/O and other
commands during motion.

SYNC Reserves a motion command. The robot will not move until SyncRobots is executed.

Description

Go simultaneously moves all joints of the robot arm using point to point motion. The destination for the Go
instruction can be defined in a variety of ways:
 - Using a specific point to move to. For example: Go P1.
 - Using an explicit coordinate position to move to. For example: Go XY(50, 400, 0, 0).
 - Using a point with a coordinate offset. For example: Go P1 +X(50).
 - Using a point but with a different coordinate value. For example: Go P1 :X(50).

The path is not predictable because each joint interpolates between the current point and the target point. Be
careful of the interference with peripherals.

The Speed instruction determines the arm speed for motion initiated by the Go instruction. The Accel
instruction defines the acceleration.

With CP parameter, the arm can accelerate for the next motion command while the arm starts decelerating
to a stop. In this case, the arm is not positioned at the target point.

With LJM parameter, the arm moves to the point into where the target point is converted using LJM function,
with the current point as reference point.

Go LJM (P1, Here, 1) can be Go P1 LJM 1.
At this point, the original point data P1 does not change.
LJM parameter is available for the 6-axis (including N series) and RS series robots.
When using orientationFlag with the default value, it can be omitted.
 Go P1 LJM

Notes
Difference between Go and Move

The Move instruction and the Go instruction each cause the robot arm to move. However, the primary
difference between the 2 instructions is that the Go instruction causes point to point motion whereas the Move
instruction causes the arm to move in a straight line. The Go instruction is used when the user is primarily
concerned with the orientation of the arm when it arrives on point. The Move instruction is used when it is
important to control the path of the robot arm while it is moving.

Go Statement

314 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Difference between Go and Jump
The Jump instruction and the Go instruction each cause the robot arm to move in a point to point type fashion.
However, the JUMP instruction has 1 additional feature. Jump causes the robot end effector to first move up
to the LimZ value, then in a horizontal direction until it is above the target point, and then finally down to
the target point. This allows Jump to be used to guarantee object avoidance and more importantly to improve
cycle times for pick and place motions.

Proper Speed and Acceleration Instructions with Go
The Speed and Accel instructions are used to specify the speed and acceleration of the manipulator during
motion caused by the Go instruction. Pay close attention to the fact that the Speed and Accel instructions
apply to point to point type motion (like that for the Go instruction) while linear and circular interpolation
motion uses the SpeedS and AccelS instructions.

Using Go with the Optional Till Modifier
The optional Till modifier allows the user to specify a condition to cause the robot to decelerate to a stop at
an intermediate position prior to completing the motion caused by the Go instruction. If the Till condition is
not satisfied, the robot travels to the target position. The Go with Till modifier can be used in 2 ways as
described below:

(1) Go with Till Modifier
 Checks if the current Till condition becomes satisfied. If satisfied, this command completes by

decelerating and stopping the robot at an intermediate position prior to completing the motion
caused by the Go instruction.

(2) Go with Till Modifier, Sw(Input bit number) Modifier, and Input Condition
 This version of the Go with Till modifier allows the user to specify the Till condition on the same

line with the Go instruction rather than using the current definition previously defined for Till. The
condition specified is simply a check against one of the inputs. This is accomplished through using
the Sw instruction. The user can check if the input is On or Off and cause the arm to stop based on
the condition specified. This feature works almost like an interrupt where the motion is interrupted
(stopped) once the Input condition is met. If the input condition is never met during the robot motion
then the arm successfully arrives on the point specified by destination.

Using Go with the Optional Find Modifier
The optional Find modifier allows the user to specify a condition to cause the robot to record a position
during the motion caused by the Go instruction. The Go with Find modifier can be used in 2 ways as
described below:

(1) Go with Find Modifier:
 Checks if the current Find condition becomes satisfied. If satisfied, the current position is stored in

the special point FindPos.
(2) Go with Find Modifier, Sw(Input bit number) Modifier, and Input Condition:
 This version of the Go with Find modifier allows the user to specify the Find condition on the same

line with the Go instruction rather than using the current definition previously defined for Find.
The condition specified is simply a check against one of the inputs. This is accomplished through
using the Sw instruction. The user can check if the input is On or Off and cause the current position
to be stored in the special point FindPos.

Go Instruction Always Decelerates to a Stop
The Go instruction always causes the arm to decelerate to a stop prior to reaching the final destination of the
move.

Potential Error

Attempt to Move Outside of Robots Work Envelope
When using explicit coordinates with the Go instruction, you must make sure that the coordinates defined
are within the robots valid work envelope. Any attempt to move the robot outside of the valid work envelope
will result in an error.

See Also

!...! Parallel Processing, Accel, Find, Jump, Move, Pass, P#= (Point Assignment), Pulse, Speed,
Sw, Till

Go Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 315

Go Example
The example shown below shows a simple point to point move between points P0 and P10. Later in the
program the arm moves in a straight line toward point P2 until input #2 turns on. If input #2 turns On during
the Go, then the arm decelerates to a stop prior to arriving on point P2 and the next program instruction is
executed.

Function sample

 Integer i

 Home
 Go P0
 Go P1
 For i = 1 to 10
 Go P(i)
 Next i
 Go P2 Till Sw(2) = On
 If Sw(2) = On Then
 Print "Input #2 came on during the move and"
 Print "the robot stopped prior to arriving on"
 Print "point P2."
 Else
 Print "The move to P2 completed successfully."
 Print "Input #2 never came on during the move."
 EndIf
Fend

Some syntax examples from the command window are shown below:

>Go Here +X(50) ' Move only in the X direction 50 mm from current position
>Go P1 ' Simple example to move to point P1
>Go P1 :U(30) ' Move to P1 but use +30 as the position for the U joint to move to
>Go P1 /L ' Move to P1 but make sure the arm ends up in lefty position
>Go XY(50, 450, 0, 30) ' Move to position X=50, Y=450, Z=0, U=30

<Another Coding Example>
Till Sw(1) = Off And Sw(2) = On ' Specifies Till conditions for inputs 1 & 2
Go P1 Till ' Stop if current Till condition defined on previous line is met
Go P2 Till Sw(2) = On ' Stop if Input Bit 2 is On
Go P3 Till ' Stop if current Till condition defined on previous line is met

GoSub...Return Statement

316 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

GoSub...Return Statement

GoSub transfers program control to a subroutine. Once the subroutine is complete, program control returns
back to the line following the GoSub instruction which initiated the subroutine.

Syntax

GoSub { label }

{ label:}
statements
Return

Parameters

label When the user specifies a label, the program execution will jump to the line on which
this label resides. The label can be up to 32 characters in length. However, the first
character must be an alphabet character (not numeric).

Description

The GoSub instruction causes program control to branch to the user specified statement label. The program
then executes the statement on that line and continues execution through subsequent line numbers until a
Return instruction is encountered. The Return instruction then causes program control to transfer back to the
line which immediately follows the line which initiated the GoSub in the first place. (i.e. the GoSub
instruction causes the execution of a subroutine and then execution returns to the statement following the
GoSub instruction.) Be sure to always end each subroutine with Return. Doing so directs program execution
to return to the line following the GoSub instruction.

Potential Errors
Branching to Non-Existent Statement

If the GoSub instruction attempts to branch control to a non-existent label then an Error 3108 will be issued.
Return Found Without GoSub

A Return instruction is used to "return" from a subroutine back to the original program which issued the
GoSub instruction. If a Return instruction is encountered without a GoSub having first been issued then an
Error 2383 will occur. A standalone Return instruction has no meaning because the system doesn't know
where to Return to.

See Also

GoTo, OnErr, Return

GoSub...Return Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 317

GoSub Statement Example
The following example shows a simple function which uses a GoSub instruction to branch to a label and
execute some I/O instructions then return.

Function main
 Integer var1, var2

 GoSub checkio 'GoSub using Label
 On 1
 On 2
 Exit Function

checkio: 'Subroutine starts here
 var1 = In(0)
 var2 = In(1)
 If var1 = 1 And var2 = 1 Then
 On 1
 Else
 Off 1
 EndIf
 Return 'Subroutine ends here
Fend

GoTo Statement

318 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

GoTo Statement

The GoTo instruction causes program control to branch unconditionally to a designated statement label.

Syntax

GoTo { label }

Parameters

label Program execution will jump to the line on which the label resides. The label can be up to 32
characters. However, the first character must be an alphabetic character (not numeric).

Description

The GoTo instruction causes program control to branch to the user specified label. The program then
executes the statement on that line and continues execution from that line on. GoTo is most commonly used
for jumping to an exit label because of an error.

Note
Using Too Many GoTo's

Please be careful with the GoTo instruction since using too many GoTo's in a program can make the program
difficult to understand. The general rule is to try to use as few GoTo instructions as possible. Some GoTo's
are almost always necessary. However, jumping all over the source code through using too many GoTo
statements is an easy way to cause problems.

See Also

GoSub, OnErr

GoTo Statement Example

The following example shows a simple function which uses a GoTo instruction to branch to a line label.

Function main

 If Sw(1) = Off Then
 GoTo mainAbort
 EndIf
 Print "Input 1 was On, continuing cycle"
 .
 .
 Exit Function

mainAbort:
 Print "Input 1 was OFF, cycle aborted!"
Fend

Halt Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 319

Halt Statement

Temporarily suspends execution of a specified task.

Syntax
Halt taskIdentifier

Parameters
taskIdentifier Task name or integer expression representing the task number.

A task name is the function name used in an Xqt statement or a function started from
the Run window or Operator window. If an integer expression is used, the range is
from 1 to 16 for normal tasks and from 257 to 261 for trap tasks.

Description

Halt temporarily suspends the task being executed as specified by the task name or number.

To continue the task where it was left off, use Resume. To stop execution of the task completely, use Quit.
To display the task status, click the Task Manager Icon on the EPSON RC+ Toolbar to run the Task manager.

Halt also stops the task when the specified task is NoPause task, NoEmgAbort task (special task using
NoPause or NoEmgAbort at Xqt), trap tasks, or the background tasks.
However, stopping these tasks needs enough consideration. Normally, Halt is not recommended for the
special task.

See Also
Quit, Resume, Xqt

Halt Statement Example
The example below shows a function named “flicker” that is started by Xqt, then is temporarily stopped by
Halt and continued again by Resume.

Function main
 Xqt flicker 'Execute flicker function

 Do
 Wait 3 'Execute task flicker for 3 seconds
 Halt flicker

 Wait 3 'Halt task flicker for 3 seconds
 Resume flicker

 Loop
Fend

Function flicker
 Do
 On 1
 Wait 0.2
 Off 1
 Wait 0.2
 Loop
Fend

Hand Statement

320 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Hand Statement

Sets the hand (arm) orientation of a point.

Syntax

(1) Hand point [, Lefty | Righty]
(2) Hand

Parameters

point Pnumber or P(expr) or point label.
Lefty | Righty Hand (arm) orientation.

Return Values

When both parameters are omitted, the hand (arm) orientation is displayed for the current robot position.
If Lefty | Righty is omitted, the hand (arm) orientation for the specified point is displayed.

Note
Hand command is not a command to control hand (end-effecter).

Command Function
Hand (This command) Specify the arm of manipulator is righty or lefty.
Hand_On, Hand_Off, Hand_On Function,
Hand_Off Function, Hand_TW Function,
Hand_Def Function, Hand_Type Function,
Hand_Label$ Function, Hand_Number
Function

Control hand (end-effector) installed to the end of the
manipulator.

Please be careful not to confuse it.
For details of Hand control commands, refer to the Hand Function Manual.

See Also

Elbow, Hand Function, J4Flag, J6Flag, Wrist, J1Flag, J2Flag

Hand Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 321

Hand Statement Example

Hand P0, Lefty
Hand pick, Righty
Hand P(myPoint), myHand

P1 = -364.474, 120.952, 469.384, 72.414, 1.125, -79.991

Hand P1, Righty
Go P1

Hand P1, Lefty
Go P1

Hand Function

322 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Hand Function

Returns the hand (arm) orientation of a point.

Syntax

Hand [(point)]

Parameters

point Optional. Point expression. If point is omitted, then the hand (arm) orientation of the current
robot position is returned.

Return Values

1 Righty (/R)
2 Lefty (/L)

Note
Hand command is not a command to control hand (end-effecter).

Command Function
Hand (This command) Specify the arm of manipulator is righty or lefty.
Hand_On, Hand_Off, Hand_On Function,
Hand_Off Function, Hand_TW Function,
Hand_Def Function, Hand_Type Function,
Hand_Label$ Function, Hand_Number
Function

Control hand (end-effector) installed to the end of the
manipulator.

Please be careful not to confuse it.
For details of Hand control commands, refer to the Hand Function Manual.

See Also

Elbow, Wrist, J4Flag, J6Flag, J1Flag, J2Flag

Hand Function Example

Print Hand(pick)
Print Hand(P1)
Print Hand
Print Hand(P1 + P2)

HealthCalcPeriod Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 323

HealthCalcPeriod Statement
Sets and displays a period calculating “remaining months” of parts consumption control information.

Syntax
(1) HealthCalcPeriod Period
(2) HealthCalcPeriod

Parameters

Period Specify a period to calculate in integer (1~7).(Unit: day) Default value is “7”.

Return Values
Displays the current setting value of HealthCalcPeriod when omitting the parameter.

Description
Remaining months of parts consumption control information is automatically calculated based on the past
operating condition. HealthCalcPeriod command sets and displays an operating period for this calculation.
When setting the period longer, “remaining month” that the influence of variations due to fluctuations within
the period is suppressed.

Therefore, even when the motion or speed is changed, it takes a time until it is reflected to the “remaining
month”.

Setting value of HealthCalcPeriod is applied to all robot, joint, and part controlled by executed controller.

Note
About the Controllers to use

It cannot be used with T/VT series. It is always using 1 (day) for T/VT series.

Setting Period

Period which is set in HealthCalcPeriod command is running hour of the controller.
The number of period is increased by 1 when 24 hours are accumulated.

Calculation of “remaining months” and “consumption rate” when clearing.
Calculates remaining months every day in spite of the setting value of HealthCalcPeriod until the setting
period is reached for the first time after clearing the remaining months and parts consumption rate at the
“parts consumption control information” in EPSON RC+ or by executing HealthCtrlReset or HealthRBReset.
During this period, the number of remaining months will vary widely.

See Also
HealthCalcPeriod Function, HealthCtrlInfo, HealthRBInfo, HealthCtrlReset, HealthRBReset

HealthCalcPeriod on Functional Example
> HealthCalcPeriod 3
> HealthCalcPeriod
 3

HealthCalcPeriod Function

324 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

HealthCalcPeriod Function
Returns “remaining months” calculating period of the parts consumption control information which is
currently set.

Syntax
HealthCalcPeriod

Return Values

Returns calculating period in integer. (Unit: day)

Note
About the Controllers to use

It cannot be used with T/VT series.

See Also

HealthCalcPeriod

HealthCalcPeriod on Functional Example
Example to display the calculating period.

Print "period is", HealthCalcPeriod

HealthCtrlAlarmOn Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 325

HealthCtrlAlarmOn Function

Returns the status of the parts consumption alarm for the specified Controller parts.

Syntax

HealthCtrlAlarmOn(partType)

Parameters

partType Integer expression (1) or the following constant representing the parts you want to obtain the
alarm status.

Constant Value Mode
HEALTH_CONTROLLER_TYPE_BATTERY 1 Specifies the batteries.

Return Values

True if the parts consumption alarm is occurring for the specified parts, otherwise False.

The parts consumption alarm occurs when the parts consumption rate obtained by HealthRateCtrlInfo
exceeds 100%.

See Also

HealthCtrlInfo, HealthRateCtrlInfo

HealthCtrlAlarmOn Function Example

The example below determines if the parts consumption alarm is occurring for the Controller batteries.

Function PrintAlarm
 If HealthCtrlAlarmOn(HEALTH_CONTROLLER_TYPE_BATTERY) = True Then
 Print "Controller Battery NG"
 Else
 Print "Controller Battery OK"
 EndIf
Fend

HealthCtrlInfo Statement

326 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

HealthCtrlInfo Statement

Displays the remaining months before the recommended replacement time for the specified Controller parts.

Syntax
HealthCtrlInfo partType

Parameters
partType Integer expression (1) or the following constant representing the parts you want to obtain

the remaining months before the recommended replacement time.
Constant Value Mode

HEALTH_CONTROLLER_TYPE_BATTERY 1 Specifies the batteries.

Description
Displays the remaining months before the recommended replacement time for the specified Controller parts.

The remaining months are calculated based on the parts consumption rate from the past usage and the amount
of change in the consumption rate obtained every operation of a period which is set in HealthCalcPeriod of
the Controller.

Notes
Since the remaining months are calculated based on the amount of change in the consumption rate obtained
every operation of a period which is set in HealthCalcPeriod of the Controller, they cannot be calculated
properly in the following cases:

- If the command is executed when the operating time is less than every operation of a period which is set
in HealthCalcPeriod

- If the command is executed after the long-term operation stop period of the robot.
- If the command is executed after the parts consumption alarm is reset due to the parts replacement.
- If the time and date on the Controller is changed.

In above cases, execute the command after operating the Controller more than twice of setting period in
HealthCalcPeriod to display the accurate value.

See Also

HealthCtrlAlarmOn, HealthRateCtrlInfo

HealthCtrlInfo Statement Example
The example below displays the remaining months before the recommended replacement time for the
Controller batteries.

> HealthCtrlInfo HEALTH_CONTROLLER_TYPE_BATTERY
BATTERY 240.000
>

HealthCtrlInfo Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 327

HealthCtrlInfo Function

Returns the remaining months before the recommended replacement time for the specified Controller parts.

Syntax
HealthCtrlInfo(partType)

Parameters
partType Integer expression (1) or the following constant representing the parts you want to obtain

the remaining months before the recommended replacement time.
Constant Value Mode

HEALTH_CONTROLLER_TYPE_BATTERY 1 Specifies the batteries.

Return Values
Real number representing the remaining months before the recommended replacement time. (Unit: month)

Description
The remaining months are calculated based on the parts consumption rate from the past usage and the amount
of change in the consumption rate obtained every operation of a period which is set in HealthCalcPeriod of
the Controller.

Notes
Since the remaining months are calculated based on the amount of change in the consumption rate obtained
every operation of a period which is set in HealthCalcPeriod of the Controller, they cannot be calculated
properly in the following cases:

- If the command is executed when the operating time is less than every operation of a period which is set
in HealthCalcPeriod.

- If the command is executed after the long-term operation stop period of the robot.
- If the command is executed after the parts consumption alarm is reset due to the parts replacement.
- If the time and date on the Controller is changed.

In above cases, execute the command after operating the Controller more than twice of setting period in
HealthCalcPeriod to display the accurate value.

See Also

HealthCtrlAlarmOn, HealthRateCtrlInfo

HealthCtrlInfo Function Example
The example below outputs the alarm when the recommended replacement time is in less than one month.

Function AlarmCheck
 Real month

 month = HealthCtrlInfo(HEALTH_CONTROLLER_TYPE_BATTERY)
 If month < 1 Then
 Print "Alarm ON"
 EndIf
Fend

HealthCtrlRateOffset Statement

328 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

HealthCtrlRateOffset Statement

Sets the offset for the consumption rate of the specified parts.

Syntax
HealthCtrlRateOffset partType, offset

Parameters
partType Integer expression (1) or the following constant representing the controller related parts.

Constant Value Mode
HEALTH_CONTROLLER_TYPE_BATTERY 1 Specifies the batteries.

offset Integer expression that specifies the offset value added to the consumption rate. (Unit: %)

Description
Sets the offset for the consumption rate of the specified parts.

See Also

HealthRBAlarmOn, HealthRateRBInfo, HealthRBInfo

HealthCtrlRateOffset Statement Example
The following is the example to add 10% to the parts consumption rate of the Controller batteries.

> HealthCtrlRateOffset HEALTH_CONTROLLER_TYPE_BATTERY,10
>

HealthCtrlReset Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 329

HealthCtrlReset Statement

Clears the remaining months before the recommended replacement time and the consumption rate for the
specified parts.

Syntax
HealthCtrlReset partType

Parameters
partType Integer expression (1) or the following constant representing the controller related parts.

Constant Value Mode
HEALTH_CONTROLLER_TYPE_BATTERY 1 Specifies the batteries.

Description

Clears the remaining months before the recommended replacement time and the consumption rate for the
specified parts.
The warnings are also canceled.

See Also

HealthCtrlAlarmOn, HealthRateCtrlInfo, HealthCtrlInfo

HealthCtrlReset Statement Example
> HealthCtrlReset HEALTH_CONTROLLER_TYPE_BATTERY
>

HealthCtrlWarningEnable Statement

330 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

HealthCtrlWarningEnable Statement

Enable or disable the parts consumption alarm notification of specified part related to the Controller.

Syntax
HealthCtrlWarningEnable partType [, On/Off]

Parameters
partType Integer expression or the following constant representing the controller.

Constant Value Mode
HEALTH_CONTROLLER_TYPE_BATTERY 1 Specifies the batteries.

On/Off On: Enable the parts consumption alarm notification.

 Off: Disable the parts consumption alarm notification

Return Values
If On/Off parameters are omitted, the current On/Off settings are displayed.

Description

When the parts consumption alarm of the specified part occurs, set whether to notify the parts consumption
alarm.

Notes
If the parts consumption alarm of the specified part is disabled, the parts consumption alarm will not be
notified when the recommended replacement time is passed. Be careful to set when using this command.

See Also
HealthCtrlAlarmOn

HealthCtrlWarningEnable Example
Example to disable the parts consumption alarm of batteries of the controller.

> HealthCtrlWarningEnable HEALTH_CONTROLLER_TYPE_BATTERY, Off

Example to display the parts consumption alarm settings of batteries of the controller.

> HealthCtrlWarningEnable HEALTH_CONTROLLER_TYPE_BATTERY
BATTERY Off
>

HealthCtrlWarningEnable Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 331

HealthCtrlWarningEnable Function

Returns the setting status of the parts consumption alarm notification of specified part related to the Controller.

Syntax
HealthCtrlWarningEnable(partType)

Parameters

partType Integer expression or the following constant representing the controller.
Constant Value Mode

HEALTH_CONTROLLER_TYPE_BATTERY 1 Specifies the batteries.

Return Values
Returns the setting values of the parts consumption alarm in integer.
1: On
0: Off

See Also
HealthCtrlAlarmOn

HealthCtrlWarningEnable Function Example
Example to display the parts consumption alarm of batteries of the controller.

Print HealthCtrlWarningEnable(HEALTH_CONTROLLER_TYPE_BATTERY)

HealthRateCtrlInfo Function

332 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

HealthRateCtrlInfo Function

Returns the consumption rate of the specified Controller parts.

Syntax
HealthRateCtrlInfo(partType)

Parameters
partType Integer expression (1) or the following constant representing the parts you want to obtain

the remaining months before the recommended replacement time.
Constant Value Mode

HEALTH_CONTROLLER_TYPE_BATTERY 1 Specifies the batteries.

Return Values
Real number representing the current parts consumption rate, when regarding the recommended
replacement time as 100%. (Unit: %)

Description
This command calculates the parts consumption rate based on the actual operating condition.

Notes
The recommended replacement time is the recommended time to replace the parts calculated based on
statistics.
Replacement may be required before the consumption rate reaches 100%.
In addition, the parts will not become immediately unusable when the consumption rate reaches 100%.
However, it is recommended to replace the parts soon as the possibility of breakage increases after the
consumption rate reaches 100%.

See Also

HealthCtrlAlarmOn, HealthCtrlInfo,

HealthRateCtrlInfo Function Example
The example below outputs the alarm when the consumption rate for the Controller batteries reaches 90%.

Function AlarmCheck
 Real HealthRate

 HealthRate = HealthRateCtrlInfo (HEALTH_CONTROLLER_TYPE_BATTERY)
 If HealthRate > 90 Then
 Print "Alarm ON"
 EndIf
Fend

HealthRateRBInfo Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 333

HealthRateRBInfo Function

Returns the consumption rate for the specified robot parts.

Syntax
HealthRateRBInfo(robotNumber, partType, jointNumber)

Parameters
robotNumber Integer expression (1-16) representing the robot number you want to obtain the parts

consumption rate.
partType Integer expression (1-6) or the following constants representing the parts you want to

obtain the consumption rate.
Constant Value Mode

HEALTH_ROBOT_TYPE_BATTERY 1 Specifies the
batteries.

HEALTH_ROBOT_TYPE_BELT 2 Specifies the
timing belts.

HEALTH_ROBOT_TYPE_GREASE 3 Specifies the
grease.

HEALTH_ROBOT_TYPE_MOTOR 4 Specifies the
motors.

HEALTH_ROBOT_TYPE_GEAR 5
Specifies the
reduction gear
units.

HEALTH_ROBOT_TYPE_BALL_SCREW_SPLINE 6 Specifies the ball
screw spline.

jointNumber Integer expression (1-9) representing the joint you want to obtain the parts consumption
rate.
This command is unavailable for the additional axes.

Return Values

Real number representing the current parts consumption rate, when regarding the recommended
replacement time as 100%. (Unit: %)

Returns “-1” when the robot does not have the specified parts.

Description
This command calculates the parts consumption rate based on the actual operating condition.

Notes
The recommended replacement time is the recommended time to replace the parts calculated based on
statistics.
Replacement may be required before the consumption rate reaches 100%.
In addition, the parts will not become immediately unusable when the consumption rate reaches 100%.
However, it is recommended to replace the parts soon as the possibility of breakage increases after the
consumption rate reaches 100%.

See Also

HealthRBAlarmOn, HealthRBInfo

HealthRateRBInfo Function

334 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

HealthRateRBInfo Function Example
The example below outputs the alarm when the consumption rate of the Joint #3 reduction gear unit on the
robot 1 reaches 90%.

Function AlarmCheck
Real HealthRate

HealthRate = HealthRateRBInfo(1,HEALTH_ROBOT_TYPE_GEAR,3)
If HealthRate > 90 Then
Print "Alarm ON"

EndIf
Fend

HealthRBAlarmOn Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 335

HealthRBAlarmOn Function

Returns the status of the parts consumption alarm for the specified robot parts.

Syntax
HealthRBAlarmOn(robotNumber, partType, jointNumber)

Parameters
robotNumber Integer expression (1-16) representing the robot number you want to obtain the alarm status.
partType Integer expression (1-6) or the following constants representing the parts you want to

obtain the alarm status.
Constant Value Mode

HEALTH_ROBOT_TYPE_BATTERY 1 Specifies the
batteries.

HEALTH_ROBOT_TYPE_BELT 2 Specifies the
timing belts.

HEALTH_ROBOT_TYPE_GREASE 3 Specifies the
grease.

HEALTH_ROBOT_TYPE_MOTOR 4 Specifies the
motors.

HEALTH_ROBOT_TYPE_GEAR 5
Specifies the
reduction gear
units.

HEALTH_ROBOT_TYPE_BALL_SCREW_SPLINE 6 Specifies the ball
screw spline.

jointNumber Integer expression (1-9) representing the joint you want to obtain the alarm status. When
the batteries are selected for partType, the same value will be returned when any joint is
specified because the batteries are common to all joints. This command is unavailable for
the additional axes.

Return Values

True if the parts consumption alarm is occurring for the specified parts, otherwise False.

The parts consumption alarm occurs when the parts consumption rate obtained by HealthRateRBInfo exceeds
100%.

Returns “-1” when the robot does not have the specified parts.

See Also

HealthRBInfo, HealthRateRBInfo

HealthRBAlarmOn Function Example
The example below determines if the parts consumption alarm is occurring for the grease on the Joint #3 of
the robot 1.

Function PrintAlarm4
If HealthRBAlarmOn(1, HEALTH_ROBOT_TYPE_GREASE, 3) = True Then
Print "Robot1 Joint3 Grease NG"

Else
Print "Robot1 Joint3 Grease OK"

EndIf
Fend

HealthRBAnalysis Statement

336 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

HealthRBAnalysis Statement

Simulates and displays the usable months for the specified parts in a particular robot operation cycle.

Syntax
HealthRBAnalysis robotNumber, partType[, jointNumber]

Parameters
robotNumber Integer expression (1-16) representing the robot number.
partType Integer expression or the following constants representing the robot parts.

Constant Value Mode
HEALTH_ROBOT_TYPE_ALL 0 Specifies all parts.

HEALTH_ROBOT_TYPE_BELT 2 Specifies the timing
belts.

HEALTH_ROBOT_TYPE_GREASE 3 Specifies the grease.
HEALTH_ROBOT_TYPE_MOTOR 4 Specifies the motors.

HEALTH_ROBOT_TYPE_GEAR 5 Specifies the
reduction gear units.

HEALTH_ROBOT_TYPE_BALL_SCREW_SPLINE 6
Specifies the ball
screw spline.

jointNumber Integer expression (1-6) representing the joint. If the joint number is not specified,
returns values for all the joints. This command is unavailable for the additional axes.

Description

Simulates and displays the usable months for the specified parts in a particular robot operation cycle. This
command calculates and displays how many months the parts can be used if they are new and used for 24
hours a day. The past usage is not considered.

Returns “-1” when the specified parts are not installed on the specified joint.

Notes
- This command does not function in Auto mode.
- This command does not function in dry run mode (including the virtual controller).

See Also

HealthRBStart, HealthRBStop

HealthRBAnalysis Statement Example
The example below displays the usable months for all parts of all joints on SCARA robot.

> HealthRBAnalysis 1, HEALTH_ROBOT_TYPE_ALL
BELT -1.000, -1.000, 38.689, 95.226
GREASE -1.000, -1.000, 21.130, -1.000
MOTOR 240.000, 240.000, 240.000, 240.000
GEAR 240.000, 224.357, -1.000, -1.000
BALL_SCREW_SPLINE -1.000, -1.000, 240.000, -1.000
>

HealthRBAnalysis Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 337

The example below displays the usable months for the reduction gear units of all joints on SCARA robot.

> HealthRBAnalysis 1, HEALTH_ROBOT_TYPE_GEAR
GEAR 240.000, 224.357, -1.000, -1.000
>

The example below displays the usable months for the Joint #2 motor on 6-axis robot.

> HealthRBAnalysis 1, HEALTH_ROBOT_TYPE_MOTOR, 2
MOTOR 224.357
>

HealthRBAnalysis Function

338 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

HealthRBAnalysis Function

Returns the usable months for the specified parts in a particular robot operation cycle.

Syntax
HealthRBAnalysis(robotNumber, partType, jointNumber)

Parameters
robotNumber Integer expression (1-16) representing the robot number.
partType Integer expression (2-6) or the following constants representing the robot parts.

Constant Value Mode

HEALTH_ROBOT_TYPE_BELT 2 Specifies the
timing belts.

HEALTH_ROBOT_TYPE_GREASE 3 Specifies the
grease.

HEALTH_ROBOT_TYPE_MOTOR 4 Specifies the
motors.

HEALTH_ROBOT_TYPE_GEAR 5
Specifies the
reduction gear
units.

HEALTH_ROBOT_TYPE_BALL_SCREW_SPLINE 6 Specifies the ball
screw spline.

jointNumber Integer expression (1-6) representing the joint. This command is unavailable for the
additional axes.

Return Values

Real number representing the usable months.

Returns “-1” when the specified parts are not installed on the specified joint.

Description
Simulates the usable months for the specified parts in a particular robot operation cycle. This command
calculates how many months the parts can be used if they are new and used for 24 hours a day. The past
usage is not considered.

Notes
- This command does not function in Auto mode.
- This command does not function in dry run mode.

See Also

HealthRBStart, HealthRBStop

HealthRBAnalysis Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 339

HealthRBAnalysis Function Example
Function RobotPartAnalysis
 Real month

 Robot 1

 HealthRBStart 1
 Motor On
 Go P0
 Go P1
 Motor Off
 HealthRBStop 1

 month = HealthRBAnalysis(1, HEALTH_ROBOT_TYPE_BALL_SCREW_SPLINE, 3)
 Print "Ball Screw Spline analysis =", Str$(month)
Fend

HealthRBDistance Statement

340 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

HealthRBDistance Statement

Displays the driving (rotation) amount of the motor of the specified joint.

Syntax
HealthRBDistance [robotNumber] [,jointNumber]

Parameters
robotNumber Optional. Integer expression (1-16) representing the robot number.

If omitted, the current robot number will be used.
jointNumber Integer expression (1-6) representing the joint. If the joint number is not specified,

returns values for all the joints. This command is unavailable for the additional axes.

Description
Calculates and displays the driving (rotation) amount of the motor of the specified joint in robot operation
from HealthRBStart to HealthRBStop. The past usage is not considered.

Notes
- This command does not function in Auto mode.
- This command does not function in dry run mode.

See Also

HealthRBStart, HealthRBStop

HealthRBDistance Statement Example
The example below displays the driving amount of the Joint #1 of SCARA robot.

> HealthRBDistance 1, 1
 1.000
>

HealthRBDistance Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 341

HealthRBDistance Function

Returns the driving (rotation) amount of the motor of the specified joint.

Syntax
HealthRBDistance([robotNumber,] jointNumber)

Parameters
robotNumber Optional. Integer expression (1-16) representing the robot number.

If omitted, the current robot number will be used.
jointNumber Integer expression (1-6) representing the joint. This command is unavailable for the

additional axes.

Return Values
Real number representing the driving amount.

Description
Returns the driving (rotation) amount of the motor of the specified joint in robot operation from
HealthRBStart to HealthRBStop. The past usage is not considered.

Notes
- This command does not function in Auto mode.
- This command does not function in dry run mode.

See Also

HealthRBStart, HealthRBStop

HealthRBDistance Function Example
Function RobotPartAnalysis
 Real healthDistance

 Robot 1

 HealthRBStart 1
 Motor On
 Go P0
 Go P1
 Motor Off
 HealthRBStop 1

 healthDistance = HealthRBDistance(1,1)
 Print "Distance =", Str$(healthDistance)
Fend

HealthRBInfo Statement

342 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

HealthRBInfo Statement

Displays the remaining months before the recommended replacement time for the specified robot parts.

Syntax
HealthRBInfo robotNumber, partType[, jointNumber]

Parameters
robotNumber Integer expression (1-16) representing the robot number you want to obtain the remaining

months before the recommended replacement time.
partType Integer expression (0-6) or the following constants representing the parts you want to

obtain the remaining months before the recommended replacement time.
Constant Value Mode

HEALTH_ROBOT_TYPE_ALL 0 Specifies all parts.

HEALTH_ROBOT_TYPE_BATTERY 1 Specifies the
batteries.

HEALTH_ROBOT_TYPE_BELT 2 Specifies the timing
belts.

HEALTH_ROBOT_TYPE_GREASE 3 Specifies the grease.

HEALTH_ROBOT_TYPE_MOTOR 4 Specifies the
motors.

HEALTH_ROBOT_TYPE_GEAR 5 Specifies the
reduction gear units.

HEALTH_ROBOT_TYPE_BALL_SCREW_SPLINE 6 Specifies the ball
screw spline.

jointNumber Integer expression (1-9) representing the joint you want to obtain the remaining months
before the recommended replacement time. When the batteries are selected for partType,
the same value will be returned when any joint is specified because the batteries are
common to all joints. If the joint number is not specified, returns values for all the joints.
This command is unavailable for the additional axes.

Description

Displays the remaining months before the recommended replacement time for the specified robot parts.

The remaining months are calculated based on the parts consumption rate from the past usage and the amount
of change in the consumption rate obtained every operation of a period which is set in HealthCalcPeriod of
the Controller.

Returns “-1” when the robot joint does not have the specified parts.

Notes
Since the remaining months are calculated based on the amount of change in the consumption rate obtained
every operation of a period which is set in HealthCalcPeriod of the Controller, they cannot be calculated
properly in the following cases:

- If this command is executed when the operating time is less than every operation of a period which is set
in HealthCalcPeriod.

- If this command is executed after the long-term operation stop period of the robot.
- If this command is executed after the parts consumption alarm is reset after the parts replacement.
- If the time and date on the Controller is changed.

In above cases, execute the command after operating the Controller more than twice of setting period
in HealthCalcPeriod to display the accurate value.

See Also

HealthRBAlarmOn, HealthRateRBInfo

HealthRBInfo Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 343

HealthRBInfo Statement Example
The example below displays the remaining months for all parts of all joints on the robot 1.

> HealthRBInfo 1, HEALTH_ROBOT_TYPE_ALL
BATTERY 240.000
BELT -1.000, -1.000, 38.689, 95.226
GREASE -1.000, -1.000, 21.130, -1.000
MOTOR 240.000, 240.000, 240.000, 240.000
GEAR 240.000, 224.357, -1.000, -1.000
BALL_SCREW_SPLINE -1.000, -1.000, 240.000, -1.000
>

The example below displays the remaining months for the reduction gear units of all joints on the robot 1.

> HealthRBInfo 1, HEALTH_ROBOT_TYPE_GEAR
GEAR 240.000, 224.357, -1.000, -1.000
>

The example below displays the remaining months for the Joint #2 motor of the robot 1.

> HealthRBInfo 1, HEALTH_ROBOT_TYPE_MOTOR, 2
MOTOR 224.357
>

HealthRBInfo Function

344 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

HealthRBInfo Function

Returns the remaining months before the recommended replacement time for the specified robot parts.

Syntax
HealthRBInfo(robotNumber, partType, jointNumber)

Parameters
robotNumber Integer expression (1-16) representing the robot number you want to obtain the remaining

months before the recommended replacement time.
partType Integer expression (1-6) or the following constants representing the parts you want to

obtain the remaining months before the recommended replacement time.
Constant Value Mode

HEALTH_ROBOT_TYPE_BATTERY 1 Specifies the
batteries.

HEALTH_ROBOT_TYPE_BELT 2 Specifies the
timing belts.

HEALTH_ROBOT_TYPE_GREASE 3 Specifies the
grease.

HEALTH_ROBOT_TYPE_MOTOR 4 Specifies the
motors.

HEALTH_ROBOT_TYPE_GEAR 5
Specifies the
reduction gear
units.

HEALTH_ROBOT_TYPE_BALL_SCREW_SPLINE 6 Specifies the ball
screw spline.

jointNumber Integer expression (1-9) representing the joint you want to obtain the remaining months
before the recommended replacement time. When the batteries are selected for partType,
the same value will be returned when any joint is specified because the batteries are
common to all joints. This command is unavailable for the additional axes.

Return Values

Real number representing the remaining months before the recommended replacement time. (Unit: month)
Returns “-1” when the robot does not have the specified parts.

Description
The remaining months are calculated based on the parts consumption rate from the past usage and the amount
of change in the consumption rate obtained every operation of a period which is set
in HealthCalcPeriod of the Controller.

Notes

Since the remaining months are calculated based on the amount of change in the consumption rate obtained
every operation of a period which is set in HealthCalcPeriod of the Controller, they cannot be calculated
properly in the following cases:

- If this command is executed when the operating time is less than every operation of a period which is set
in HealthCalcPeriod.
- If this command is executed after the long-term operation stop period of the robot.
- If this command is executed after the parts consumption alarm is reset after the parts replacement.
- If the time and date on the Controller is changed.

In above cases, execute the command after operating the Controller more than twice of setting period
in HealthCalcPeriod to display the accurate value.

HealthRBInfo Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 345

See Also

HealthRBAlarmOn, HealthRateRBInfo

HealthRBInfo Function Example
The example below outputs the alarm when the recommended replacement time for the Joint #3 ball screw
spline on the robot 1 is in less than one month.

 Function AlarmCheck
 Real month

 month = HealthRBInfo(1, HEALTH_ROBOT_TYPE_BALL_SCREW_SPLINE, 3)
 If month < 1 Then
 Print "Alarm ON"
 EndIf
Fend

HealthRBRateOffset Statement

346 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

HealthRBRateOffset Statement

Sets the offset for the consumption rate of the specified parts.

Syntax
HealthRBRateOffset robotNumber, partType, jointNumber, offset

Parameters
robotNumber Integer expression (1-16) representing the robot number.
partType Integer expression (1-6) or the following constants representing the robot part.

Constant Value Mode

HEALTH_ROBOT_TYPE_BATTERY 1 Specifies the
batteries.

HEALTH_ROBOT_TYPE_BELT 2 Specifies the
timing belts.

HEALTH_ROBOT_TYPE_GREASE 3 Specifies the
grease.

HEALTH_ROBOT_TYPE_MOTOR 4 Specifies the
motors.

HEALTH_ROBOT_TYPE_GEAR 5
Specifies the
reduction gear
units.

HEALTH_ROBOT_TYPE_BALL_SCREW_SPLINE 6 Specifies the ball
screw spline.

jointNumber Integer expression (1-6) representing the joint. When the batteries are selected for
partType, the offset will be set when any joint is specified because the batteries are
common to all joints. This command is unavailable for the additional axes.

offset Integer expression that specifies the offset value added to the consumption rate. (Unit: %)

Description
Sets the offset for the consumption rate of the specified parts and joints.

See Also

HealthRBAlarmOn, HealthRateRBInfo, HealthRBInfo

HealthRBRateOffset Example
The example below adds 10% to the consumption rate of the Joint #1 reduction gear unit on the robot 1.

> HealthRBRateOffset 1,HEALTH_ROBOT_TYPE_GEAR,1,10
>

HealthRBReset Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 347

HealthRBReset Statement
Clears the remaining months before the recommended replacement time and the consumption rate for the
specified parts.

Syntax
HealthRBReset robotNumber, partType, jointNumber

Parameters
robotNumber Integer expression (1-16) representing the robot number.
partType Integer expression (1-6) or the following constants representing the robot parts.

Constant Value Mode

HEALTH_ROBOT_TYPE_BATTERY 1 Specifies the
batteries.

HEALTH_ROBOT_TYPE_BELT 2 Specifies the
timing belts.

HEALTH_ROBOT_TYPE_GREASE 3 Specifies the
grease.

HEALTH_ROBOT_TYPE_MOTOR 4 Specifies the
motors.

HEALTH_ROBOT_TYPE_GEAR 5
Specifies the
reduction gear
units.

HEALTH_ROBOT_TYPE_BALL_SCREW_SPLINE 6 Specifies the ball
screw spline.

jointNumber Integer expression (1-6) representing the joint you want to obtain the remaining months
before the recommended replacement time. When the batteries are selected for partType,
the remaining months will be cleared when any joint is specified because the batteries are
common to all joints. This command is unavailable for the additional axes.

Description

Clears the remaining months before the recommended replacement time and the consumption rate for the
specified parts and joints.

The warnings are also canceled.

See Also

HealthRBAlarmOn, HealthRateRBInfo, HealthRBInfo

HealthRBReset Statement Example
> HealthRBReset 1,HEALTH_ROBOT_TYPE_GEAR,1
>

HealthRBSpeed Statement

348 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

HealthRBSpeed Statement

Displays the average speed of the specified joint.

Syntax

HealthRBSpeed [robotNumber] [, jointNumber]

Parameters
robotNumber Optional. Integer expression (1-16) representing the robot number.

If omitted, the current robot number will be used.
jointNumber Integer expression (1-6) representing the joint. If the joint number is not specified, returns

values for all the joints. This command is unavailable for the additional axes.

Description
Returns the average of the absolute values for speed of the specified joint in robot operation from
HealthRBStart to HealthRBStop. The result is a real number from 0 to 1.
The maximum average speed is "1".
The value is "0" when the average value is 0.001 or less.

Notes
- This command does not function in Auto mode.
- This command does not function in dry run mode.

See Also

HealthRBStart, HealthRBStop, AveSpeed

HealthRBSpeed Statement Example
The example below displays the speed of the Joint #1 of SCARA robot.

> HealthRBSpeed 1, 1
 0.100
>

HealthRBSpeed Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 349

HealthRBSpeed Function

Returns the average of the absolute values for speed of the specified joint.

Syntax
HealthRBSpeed ([robotNumber,] jointNumber)

Parameters
robotNumber Optional. Integer expression (1-16) representing the robot number.

If omitted, the current robot number will be used.
jointNumber Integer expression (1-6) representing the joint. This command is unavailable for the

additional axes.

Return Values
The result is a real number from 0 to 1.

Description
Returns the average of the absolute values for speed of the specified joint in robot operation from
HealthRBStart to HealthRBStop. The result is a real number from 0 to 1. The maximum average speed is
"1".

Notes
- This command does not function in Auto mode.
- This command does not function in dry run mode (including the virtual controller).

See Also

HealthRBStart, HealthRBStop, AveSpeed

HealthRBSpeed Function Example
Function RobotPartAnalysis
 Real healthSpeed

 Robot 1

 HealthRBStart 1
 Motor On
 Go P0
 Go P1
 Motor Off
 HealthRBStop 1

 healthSpeed = HealthRBSpeed(1,1)
 Print "AveSpeed =", Str$(healthSpeed)
Fend

HealthRBStart Statement

350 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

HealthRBStart Statement

Starts calculation of the usable months and elements for the parts in a particular robot operation cycle.

Syntax
HealthRBStart robotNumber

Parameters
robotNumber Integer expression (1-16) representing the robot number.

Description
Starts calculation of the usable months and elements (torque, speed, and driving amount) for the parts on
the specified robot in a particular robot operation cycle.
If this command is executed again when the calculation is already started, the previous calculation result
will be initialized.

Notes
- This command does not function in Auto mode.
- This command does not function in dry run mode (including the virtual controller).

See Also

HealthRBAnalysis, HealthRBStop, HealthRBTRQ, HealthRBSpeed, HealthRBDistance

HealthRBStart Statement Example
Function RobotPartAnalysis
 Real month

 Robot 1

 HealthRBStart 1
 Motor On
 Go P0
 Go P1
 Motor Off
 HealthRBStop 1

 month = HealthRBAnalysis(1, HEALTH_ROBOT_TYPE_BALL_SCREW_SPLINE, 3)
 Print "Ball Screw Spline analysis =", Str$(month)
Fend

HealthRBStop Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 351

HealthRBStop Statement

Stops calculation of the usable months and elements for the parts in a particular robot operation cycle.

Syntax
HealthRBStop robotNumber

Parameters
robotNumber Integer expression (1-16) representing the robot number.

Description
Stops calculation for the usable months and elements (torque, speed, and driving amount) of the parts on the
specified robot in a particular robot operation cycle.

Notes
- This command does not function in Auto mode.
- This command does not function in dry run mode (including the virtual controller).
- Calculation automatically ends when one hour passes since calculation starts.
- If the command is executed after the automatic termination, an error will occur.
- If the command is executed without executing the HealthRBStart command, an error will occur.
- If the command is executed again without executing the HealthRBStart command after the previous

HealthRBStop command, an error will occur.

See Also

HealthRBAnalysis, HealthRBStart, HealthRBTRQ, HealthRBSpeed, HealthRBDistance

HealthRBStop Statement Example
Function RobotPartAnalysis
 Real month

 Robot 1

 HealthRBStart 1
 Motor On
 Go P0
 Go P1
 Motor Off
 HealthRBStop 1

 month = HealthRBAnalysis(1, HEALTH_ROBOT_TYPE_BALL_SCREW_SPLINE, 3)
 Print "Ball Screw Spline analysis =", Str$(month)
Fend

HealthRBTRQ Statement

352 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

HealthRBTRQ Statement

Displays the torque value which affects the life of the parts on the specified joint.

Syntax
HealthRBTRQ [robotNumber] [, jointNumber]

Parameters
robotNumber Optional. Integer expression (1-16) representing the robot number.

If omitted, the current robot number will be used.
jointNumber Integer expression (1-6) representing the joint. If the joint number is not specified, returns

values for all the joints. This command is unavailable for the additional axes.

Description
Displays the torque value which affects the life of the parts on the specified joint in robot operation from
HealthRBStart to HealthRBStop. The result is a real number from 0 to 1. The maximum torque value is "1".

Notes
- This command does not function in Auto mode.
- This command does not function in dry run mode (including the virtual controller).

See Also

HealthRBStart, HealthRBStop, ATRQ

HealthRBTRQ Statement Example
The example below displays the torque value which affects the life of the parts on the Joint #1 of SCARA
robot.

> HealthRBTRQ 1, 1
 0.020
>

HealthRBTRQ Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 353

HealthRBTRQ Function

Returns the torque value which affects the life of the parts on the specified joint.

Syntax
HealthRBTRQ ([robotNumber,] jointNumber)

Parameters
robotNumber Optional. Integer expression (1-16) representing the robot number.

If omitted, the current robot number will be used.
jointNumber Integer expression (1-6) representing the joint. This command is unavailable for the

additional axes.

Return Values
The result is a real number from 0 to 1.

Description
Returns the torque value which affects the life of the parts on the specified joint in robot operation from
HealthRBStart to HealthRBStop. The result is a real value from 0 to 1. The maximum torque value is "1".

Notes
- This command does not function in Auto mode.
- This command does not function in dry run mode (including the virtual controller).

See Also

HealthRBStart, HealthRBStop, ATRQ

HealthRBTRQ Function Example

Function RobotPartAnalysis
 Real healthTRQ

 Robot 1

 HealthRBStart 1
 Motor On
 Go P0
 Go P1
 Motor Off
 HealthRBStop 1

 healthTRQ = HealthRBTRQ(1,1)
 Print "Torque =", Str$(healthTRQ)
Fend

HealthRBWarningEnable Statement

354 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

HealthRBWarningEnable Statement

Enable or disable the parts consumption alarm notification of specified part related to the robot.

Syntax
HealthRBWarningEnable robotNumber, partType [, On/Off]

Parameters
robotNumber Integer expression (1-16) representing the robot number.
partType Integer expression (1-6) or the following constants representing the robot parts.

Constant Value Mode

HEALTH_ROBOT_TYPE_BATTERY 1 Specifies the
batteries.

HEALTH_ROBOT_TYPE_BELT 2 Specifies the
timing belts.

HEALTH_ROBOT_TYPE_GREASE 3 Specifies the
grease.

HEALTH_ROBOT_TYPE_MOTOR 4 Specifies the
motors.

HEALTH_ROBOT_TYPE_GEAR 5
Specifies the
reduction gear
units.

HEALTH_ROBOT_TYPE_BALL_SCREW_SPLINE 6 Specifies the ball
screw spline.

On/Off On: Enable the parts consumption alarm notification.

 Off: Disable the parts consumption alarm notification

Return Values
If On/Off parameters are omitted, the current On/Off settings are displayed.

Description

When the parts consumption alarm of the specified part occurs, set whether to notify the parts consumption
alarm.

Notes
If the parts consumption alarm of the specified part is disabled, the parts consumption alarm will not be
notified when the recommended replacement time is passed. Be careful to set when using this command.

See Also
HealthRBAlarmOn

HealthRBWarningEnable Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 355

HealthRBWarningEnable Example
Example to disable the parts consumption alarm of the grease part of SCARA robot 1.

> HealthRBWarningEnable 1, HEALTH_ROBOT_TYPE_GREASE, Off

Example to display the parts consumption alarm settings of the grease part of SCARA robot 1.

> HealthRBWarningEnable 1, HEALTH_ROBOT_TYPE_GREASE
GREASE Off
>

HealthRBWarningEnable Function

356 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

HealthRBWarningEnable Function

Returns the setting status of the parts consumption alarm notification of specified part related to the robot.

Syntax
HealthRBWarningEnable(robotNumber, partType)

Parameters
robotNumber Integer expression (1-16) representing the robot number you want to obtain the remaining

months before the recommended replacement time.
partType Integer expression (1-6) or the following constants representing the parts you want to

obtain the remaining months before the recommended replacement time.

Constant Value Mode

HEALTH_ROBOT_TYPE_BATTERY 1 Specifies the
batteries.

HEALTH_ROBOT_TYPE_BELT 2 Specifies the
timing belts.

HEALTH_ROBOT_TYPE_GREASE 3 Specifies the
grease.

HEALTH_ROBOT_TYPE_MOTOR 4 Specifies the
motors.

HEALTH_ROBOT_TYPE_GEAR 5
Specifies the
reduction gear
units.

HEALTH_ROBOT_TYPE_BALL_SCREW_SPLINE 6 Specifies the ball
screw spline.

Return Values

Returns the setting values of the parts consumption alarm in integer.
1: On
0: Off

See Also
HealthRBAlarmOn

HealthRBWarningEnable Function Example
Example to display the parts consumption alarm settings of the grease part of SCARA robot 1.

Print HealthRBWarningEnable(1, HEALTH_ROBOT_TYPE_GREASE)

Here Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 357

Here Statement

Teach a robot point at the current position.

Syntax

Here point

Parameters

point Pnumber or P(expr) or point label.

Notes
The Here statement and Parallel Processing

You cannot use both of the Here statement and parallel processing in one motion command like this:
Go Here :Z(0) ! D10; MemOn 1 !

Be sure to change the program like this:
P999 = Here
Go P999 Here :Z(0) ! D10; MemOn 1 !

The Here statement and Multitask
If the Here statement is executed in a multitask function executed by Xqt while the robot is moved by Move,
Go, etc., in the main task, the task will be stopped due to an error.
Current robot position can be retrieved by CurPos.

Example

Function Xqt_PrintHere
Do

Print CurPOS
Wait 0.1

Loop
Fend
Function main

Xqt 10, Xqt_PrintHere
Go P0

Fend

See Also

Here Function, CurPos

Here Statement Example

Here P1
Here pick

Here Function

358 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Here Function

Returns current robot position as a point.

Syntax

Here

Return Values

A point representing the current robot position.

Description

Use Here to retrieve the current position of the current manipulator.

See Also

Here Statement

Here Function Example

P1 = Here

Hex$ Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 359

Hex$ Function

Returns a string representing a specified number in hexadecimal format.

Syntax

Hex$(number)

Parameters

number Integer expression.

Return Values

Returns a string containing the ASCII representation of the number in hexadecimal format.

Description

Hex$ returns a string representing the specified number in hexadecimal format. Each character is from 0 to
9 or A to F. Hex$ is especially useful for examining the results of the Stat function.

See Also

Str$, Stat, Val

Hex$ Function Example

> print hex$(stat(0))
A00000
> print hex$(255)
FF

Hofs Statement

360 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Hofs Statement

Displays or sets the offset pulses between the encoder origin and the home sensor.

Syntax

(1) Hofs j1Pulses, j2Pulses, j3Pulses, j4Pulses [, j5pulses, j6pulses] [, j7pulses] [, j8pulses,
j9pulses]

(2) Hofs

Parameters

j1Pulses Integer expression representing joint 1 offset pulses.
j2Pulses Integer expression representing joint 2 offset pulses.
j3Pulses Integer expression representing joint 3 offset pulses.
j4Pulses Integer expression representing joint 4 offset pulses.
j5Pulses For 6 axis robots (including N series).

Integer expression representing joint 5 offset pulses.
j6Pulses For 6 axis robots (including N series).

Integer expression representing joint 6 offset pulses.
j7Pulses For 7 axis robots. Integer expression representing joint 7 offset pulses.
j8Pulses For additional S axis. Integer expression representing joint 8 (additional S axis)

offset pulses.
j9Pulses For additional T axis. Integer expression representing joint 9 (additional T axis)

offset pulses.

Return Values

Displays current Hofs values when used without parameters.

Description

Hofs displays or sets the home position offset pulses. Hofs specifies the offset from the encoder 0 point (Z
phase) to the mechanical 0 point.)

Although the robot motion control is based on the zero point of the encoder mounted on each joint motor,
the encoder zero point may not necessarily match the robot mechanical zero point. The Hofs offset pulse
correction pulse is used to carry out a software correction to the mechanical 0 point based on the encoder 0
point.

Hofs Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 361

Notes
Hofs Values SHOULD NOT be Changed unless Absolutely Necessary

The Hofs values are correctly specified prior to delivery. There is a danger that unnecessarily changing the
Hofs value may result in position errors and unpredictable motion. Therefore, it is strongly recommended
that Hofs values not be changed unless absolutely necessary.

Reset JointAccuracy (only the supported products of joint accuracy offset)
For the supported products of joint accuracy offset, when sets the home position offset pulses by Hofs, offset
value of joint accuracy offset set in JointAccuracy is reset to “0” for the changed axis. When not want to reset
the accuracy value that set in the JointAccuracy, use HofsJointAccuracy.

To Automatically Calculate Hofs Values

To have Hofs values automatically calculated, move the arm to the desired calibration position, and execute
Calib. The controller then automatically calculates Hofs values based on the CalPls pulse values and
calibration position pulse values.

Saving and Restoring Hofs

Hofs can be saved and restored using the Save and Load commands in the [System Configuration] dialog-
[Robot]-[Calibration] from the System Configuration menu.

After executing this command, start the Safety Function Manager (only for the Controllers
with Safety Board)

For the Controllers with Safety Board, the Hofs value of the Controller and the Hofs value of the Safety
Board that implements the safety function must match.
If this command executed with these Controllers, a warning occurs because only the Hofs value of the
Controller is changed and there is a difference with the Safety Board setting.
Therefore, after executing this command, start the Safety Function Manager to refresh the Safety board
settings.
For more details, refer to the following manual.

Robot Controller Safety Function Manual

See Also

Calib, CalPls, JointAccuracy, HofsJointAccuracy, Home, Hordr, MCal, SysConfig

Hofs Statement Example

These are simple examples on the monitor window that first sets the joint 1 home offset value to be -545,
the joint 2 home offset value to be 514, and the joint 3 and the joint 4 Home offset values to be both 0. It
then displays the current home offset values.

> hofs -545, 514, 0, 0

> hofs
-545, 514, 0, 0
>

Hofs Function

362 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Hofs Function

Returns the offset pulses used for software zero point correction.

Syntax

Hofs(jointNumber)

Parameters

jointNumber Integer expression representing the joint number to retrieve the Hofs value for.
The additional S axis is 8 and T axis is 9.

Return Values

The offset pulse value (integer value, in pulses).

See Also

Calib, CalPls, Home, Hordr, MCal, SysConfig

Hofs Function Example

This example uses the Hofs function in a program:

Function DisplayHofs
 Integer i

 Print "Hofs settings:"
 For i = 1 To 4
 Print "Joint ", i, " = ", Hofs(i)
 Next i
Fend

HofsJointAccuracy Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 363

HofsJointAccuracy Statement

Sets and displays the offset pulses between the encoder origin and the software origin without changing the
joint accuracy offset values.

Syntax
(1) HofsJointAccuracy j1Pulses, j2Pulses, j3Pulses, j4Pulses

[, j5pulses, j6pulses] [, j7pulses] [, j8pulses, j9pulses]
(2) HofsJointAccuracy

Parameters
j1Pulses An expression or a numerical value representing Joint #1 offset pulses (integer).
j2Pulses An expression or a numerical value representing Joint #2 offset pulses (integer).
j3Pulses An expression or a numerical value representing Joint #3 offset pulses (integer).
j4Pulses An expression or a numerical value representing Joint #4 offset pulses (integer).
j5Pulses Optional for 6-axis robots (including N series).

An expression or a numerical value representing Joint #5 offset pulses (integer).
j6Pulses Optional for 6-axis robots (including N series).

An expression or a numerical value representing Joint #6 offset pulses (integer).
j7Pulses Optional for Joint type 7-axis robots.

An expression or a numerical value representing Joint #7 offset pulses (integer).
j8Pulses Optional for additional S axis.

An expression or a numerical value representing Joint #8 (additional S axis) offset
pulses (integer).

j9Pulses Optional for additional T axis.
An expression or a numerical value representing Joint #9 (additional T axis) offset
pulses (integer).

Return Values
Displays current Hofs values when used without parameters.

Description
HofsJointAccuracy displays or sets the home position offset pulses without changing the joint accuracy
offset values. For more information about joint accuracy offset-compatible models, refer to the Manipulator
manual.

Although the robot motion control is based on the zero point of the encoder mounted on each joint motor,
the encoder zero point may not necessarily match the robot mechanical zero point. The Hofs offset pulse is
used to set the encoder position matching the mechanical zero point as the zero point in the software
application.

When values change at any joint, the Hofs statement resets the corresponding joint accuracy offset value
set with JointAccuracy to 0, but the HofsJointAccuracy statement does not reset the value. Use
HofsJointAccuracy if you do not wish to reset the joint accuracy offset value to 0.

HofsJointAccuracy Statement

364 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Note
Do not use Hofs values unless absolutely necessary.

Hofs values have been precisely set at the factory. Changing these values unnecessarily may lead to
positioning errors and other hazardous unexpected behavior. Do not change Hofs values unless absolutely
necessary.

See Also

JointAccuracy, Hofs

HofsJointAccuracy Statement Example
The following is a simple example using the Command window.
This example sets the Joint #1 home offset value to be “-545”, the Joint #2 home offset value to be “514”,
and the Joint #3 and the Joint #4 home offset values to both be “0”. It then displays the current home offset
values. Joint accuracy offset values do not change when using HofsJointAccuracy.

> JointAccuracy 1
1000, 420, 100, 240
> HofsJointAccuracy -545, 514, 0, 0

> HofsJointAccuracy
-545, 514, 0, 0
> JointAccuracy 1
 1000, 420, 100, 240
>

Home Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 365

Home Statement

Moves the robot arm to the user defined home position.

Syntax

Home

Description

Executes low speed Point to Point motion to the Home (standby) position specified by HomeSet, in the
homing order defined by Hordr.

Normally, for SCARA robots (including RS series), the Z joint (J3) returns first to the HomeSet position,
then the J1, J2 and J4 joints simultaneously return to their respective HomeSet coordinate positions. The
Hordr instruction can change this order of the axes returning to their home positions.

Note
Home Status Output:

When the robot is in its Home position, the controller's system Home output is turned ON.

Potential Error
Attempting to Home without HomeSet Values Defined

Attempting to Home the robot without setting the HomeSet values will result in an Error 2228 being issued.

See Also

HomeClr, HomeDef, HomeSet, Hordr

Home Statement Example
The Home instruction can be used in a program such as this:

Function InitRobot
 Reset
 If Motor = Off Then
 Motor On
 EndIf
 Home
Fend

Or it can be issued from the Command window like this:

> home
>

HomeClr Function

366 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

HomeClr Function

Clears the home position definition.

Syntax

HomeClr

Description

Robot parameter data is stored in compact flash in controller. Therefore, writing to command flash occurs
when executing this command. Frequent writing to compact flash affect to lifetime of compact flash. We
recommend to use this command minimally.

See Also

HomeDef, HomeSet

HomeClr Function Example

This example uses the HomeClr function in a program:

Function ClearHome

 If HomeDef = True Then
 HomeClr
 EndIf
Fend

HomeDef Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 367

HomeDef Function

Returns whether home position has been defined or not.

Syntax

HomeDef

Return Values

True if home position has been defined, otherwise False.

See Also

HomeClr, HomeSet

HomeDef Function Example

This example uses the HomeDef function in a program:

Function DisplayHomeSet

 Integer i

 If HomeDef = False Then
 Print "Home is not defined"
 Else
 Print "Home values:"
 For i = 1 To 4
 Print "J", i, " = ", HomeSet(i)
 Next i
 EndIf
Fend

HomeSet Statement

368 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

HomeSet Statement

Specifies and displays the Home position.

Syntax

(1) HomeSet j1Pulses, j2Pulses, j3Pulses, j4Pulses
 [, j5Pulses, j6Pulses] [, j7Pulses] [, j8Pulses, j9Pulses]

(2) HomeSet

Parameters

j1Pulses The home position encoder pulse value for joint 1.
j2Pulses The home position encoder pulse value for joint 2.
j3Pulses The home position encoder pulse value for joint 3.
j4Pulses The home position encoder pulse value for joint 4.
j5Pulses Optional for 6-axis robots (including N series).

The home position encoder pulse value for joint 5.
j6Pulses Optional for 6-axis robots (including N series).

The home position encoder pulse value for joint 6.
j7Pulses Optional for Joint type 7-axis robots. The home position encoder pulse value for joint 7.
j8Pulses Optional for additional S axis.

The home position encoder pulse value for joint 8 (additional S axis).
j9Pulses Optional for additional T axis.

The home position encoder pulse value for joint 9 (additional T axis).

Return Values

Displays the pulse values defined for the current Home position when parameters are omitted.

Description

Allows the user to define a new home (standby) position by specifying the encoder pulse values for each of
the robot joints.

Robot parameter data is stored in compact flash in controller. Therefore, writing to command flash occurs
when executing this command. Frequent writing to compact flash affect to lifetime of compact flash. We
recommend to use this command minimally.

Potential Errors
Attempting to Home without HomeSet Values Defined:

Attempting to Home the robot without setting the HomeSet values will result in an Error 2228 being issued.
Attempting to Display HomeSet Values without HomeSet Values Defined:

Attempting to display home position pulse values without HomeSet values defined causes an Error 2228.

See Also

Home, HomeClr, HomeDef, Hordr, Pls

HomeSet Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 369

HomeSet Statement Example
The following examples are done from the monitor window:

> homeset 0,0,0,0 'Set Home position at 0,0,0,0
> homeset
 0 0
 0 0

> home 'Robot homes to 0,0,0,0 position

Using the Pls function, specify the current position of the arm as the Home position.

> homeset Pls(1), Pls(2), Pls(3), Pls(4)

HomeSet Function

370 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

HomeSet Function

Returns pulse values of the home position for the specified joint.

Syntax
HomeSet(jointNumber)

Parameters
jointNumber Integer expression representing the joint number to retrieve the HomeSet value for.

The additional S axis is 8 and T axis is 9.

Return Values

Returns pulse value of joint home position. When jointNumber is “0”, returns “1” when HomeSet has been
set or “0” if not.

See Also
HomeSet Statement

HomeSet Function Example
This example uses the HomeSet function in a program:

Function DisplayHomeSet

 Integer i

 If HomeSet(0) = 0 Then
 Print "HomeSet is not defined"
 Else
 Print "HomeSet values:"
 For i = 1 To 4
 Print "J", i, " = ", HomeSet(i)
 Next i
 EndIf
Fend

Hordr Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 371

Hordr Statement

Specifies or displays the order of the axes returning to their Home positions.

Syntax
(1) Hordr step1, step2, step3, step4 [, step5] [, step6] [, step7] [, step8] [, step9]
(2) Hordr

Parameters
step1 Bit pattern that defines which joints should home during the 1st step of the homing process.
step2 Bit pattern that defines which joints should home during the 2nd step of the homing process.
step3 Bit pattern that defines which joints should home during the 3rd step of the homing process.
step4 Bit pattern that defines which joints should home during the 4th step of the homing process.
step5 Bit pattern that defines which joints should home during the 5th step of the homing process.
step6 Bit pattern that defines which joints should home during the 6th step of the homing process.
step7 Bit pattern that defines which joints should home during the 7th step of the homing process.
step8 Bit pattern that defines which joints should home during the 8th step of the homing process.
step9 Bit pattern that defines which joints should home during the 9th step of the homing process.

Return Values

Displays current Home Order settings when parameters are omitted.

Description

Hordr specifies joint motion order for the Home command. (i.e. Defines which joint will home 1st, which
joint will home 2nd, 3rd, etc.)

The purpose of the Hordr instruction is to allow the user to change the homing order. The homing order is
broken into 4, 6, or 9 separate steps, depending on robot type. The user then uses Hordr to define the specific
joints which will move to the Home position during each step. It is important to realize that more than one
joint can be defined to move to the Home position during a single step. This means that all joints can
potentially be homed at the same time. For SCARA robots (including RS series, 4 axis robots), it is
recommended that the Z joint normally be defined to move to the Home position first (in Step 1) and then
allow the other joints to follow in subsequent steps.

The Hordr instruction expects that a bit pattern be defined for each of the steps. Each joint is assigned a
specific bit. When the bit is set to “1” for a specific step, then the corresponding joint will home. When the
bit is cleared to “0”, then the corresponding axis will not home during that step. The joint bit patterns are
assigned as follows:

Joint: 1 2 3 4 5 6 7 8 9
Bit Number: bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7 bit 8

Binary Code: &B0001 &B0010 &B0100 &B1000 &B100
00

&B100
000

&B100
0000

&B100
00000

&B100
000000

Hordr Statement

372 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Robot parameter data is stored in compact flash in controller. Therefore, writing to command flash occurs
when executing this command. Frequent writing to compact flash affect to lifetime of compact flash. We
recommend to use this command minimally.

See Also
Home, HomeSet

Hordr Statement Example

Following are some command window examples for SCARA robots (including RS series, 4 axis robots):

This example defines the home order as J3 in the first step, J1 in second step, J2 in third step, and J4 in the
fourth step. The order is specified with binary values.

>hordr &B0100, &B0001, &B0010, &B1000

This example defines the home order as J3 in the first step, then J1, J2 and J4 joints simultaneously in the
second step. The order is specified with decimal values.

>hordr 4, 11, 0, 0

This example displays the current home order in decimal numbers.

>hordr
4, 11, 0, 0
>

Hordr Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 373

Hordr Function

Returns Hordr value for a specified step.

Syntax

Hordr(stepNumber)

Parameters

stepNumber Integer expression representing which Hordr step to retrieve.

Return Values

Integer containing the Hordr value for the specified step.

See Also

Home, HomeSet

Hordr Function Example

Integer a
a = Hordr(1)

Hour Statement

374 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Hour Statement

Displays the accumulated controller operating time.

Syntax

Hour

Description

Displays the amount of time the controller has been turned on and running SPEL. (Accumulated Operating
Time) Time is always displayed in units of hours.

See Also

Time

Hour Statement Example

The following example is done from the Command window:

> hour
2560
>

Hour Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 375

Hour Function

Returns the accumulated controller operating time.

Syntax

Hour

Return Values

Returns accumulated operating time of the controller (real number, in hours).

See Also
Time

Hour Function Example

Print "Number of controller operating hours: ", Hour

If…Then…Else…EndIf Statement

376 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

If…Then…Else…EndIf Statement

Executes instructions based on a specified condition.

Syntax

(1) If condition Then
 stmtT1
 .
 .
 [ElseIf condition Then]
 stmtT1
 .
 .
 [Else]
 stmtF1
 .
 .
 EndIf

(2) If condition Then stmtT1 [; stmtT2...] [Else stmtF1 [; stmtF2...]]

Parameters

condition Any valid test condition which returns a True (any number besides “0”) or False result (returned
as a “0”). (See sample conditions below)

stmtT1 Executed when the condition is True. (Multiple statements may be put here in a blocked
If...Then...Else style.)

stmtF1 Executed when the condition is False. (Multiple statements may be put here in a blocked
If...Then...Else style.)

Description

(1) If...Then...Else executes stmtT1, etc. when the conditional statement is True. If the condition is False
then stmtF1, etc. are executed. The Else portion of the If...Then...Else instruction is optional. If you
omit the Else statement and the conditional statement is False, the statement following the EndIf
statement will be executed. For blocked If...Then...Else statements the EndIf statement is required to
close the block regardless of whether an Else is used or not.

(2) If...Then...Else can also be used in a non blocked fashion. This allows all statements for the

If...Then...Else to be put on the same line. Please note that when using If...Then...Else in a non blocked
fashion, the EndIf statement is not required. If the If condition specified in this line is satisfied (True),
the statements between the Then and Else are executed. If the condition is not satisfied (False), the
statements following Else are executed. The Else section of the If...Then...Else is not required. If there
is no Else keyword then control passes on to the next statement in the program if the If condition is False.

If…Then…Else…EndIf Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 377

Notes
Sample Conditions:

a = b :a is equal to b
a < b :b is larger than a
a >= b :a is greater than or equal to b
a <> b :a is not equal to b
a > b :b is smaller than a
a <= b :a is less than or equal to b

Logical operations And, Or and Xor may also be used.

True in the Conditions:

Constant True is −1 and the type is Boolean, so you need to be careful when using it in a comparing condition
with other type variable.

Function main
 Integer i
 i = 3
 If i = True Then
 Print "i=TRUE"
 EndIf
Fend

When you execute the program above, “i=TRUE” is displayed.
The judgement of condition including the Boolean type is done with “0” or “non-0”.
If the value of “i” is not “0”, it is considered that the condition is established and “i=TRUE” is displayed.

See Also

Else, Select...Case, Do...Loop

If/Then/Else Statement Example

<Single Line If...Then...Else>
The following example shows a simple function which checks an input to determine whether to turn a specific
output on or off. This task could be a background I/O task which runs continuously.

Function main
 Do
 If Sw(0) = 1 Then On 1 Else Off 1
 Loop
Fend

If…Then…Else…EndIf Statement

378 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

<Blocked If...Then...Else>
The following example shows a simple function which checks a few inputs and prints the status of these
inputs

If Sw(0) = 1 Then Print "Input0 ON" Else Print "Input0 OFF"
'
If Sw(1) = 1 Then
 If Sw(2) = 1 Then
 Print "Input1 On and Input2 ON"
 Else
 Print "Input1 On and Input2 OFF"
 EndIf
Else
 If Sw(2) = 1 Then
 Print "Input1 Off and Input2 ON"
 Else
 Print "Input1 Off and Input2 OFF"
 EndIf
EndIf

<Other Syntax Examples>

If x = 10 And y = 3 Then GoTo 50
If test <= 10 Then Print "Test Failed"
If Sw(0) = 1 Or Sw(1) = 1 Then Print "Everything OK"

ImportPoints Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 379

ImportPoints Statement

Imports a point file into the current project for the specified robot.

Syntax

ImportPoints sourcePath, filename [, robotNumber]

Parameters

sourcePath String expression containing the specific path and file to import into the current
project. The extension can be “.pts” or “.pnt” (EPSON RC+ 3.x and 4.x format).
See ChDisk for the details.

fileName String expression containing the specific file to be imported to in the current project
for the current robot. The extension must be “.pts”.
You cannot specify a file path and fileName doesn’t have any effect from ChDisk.
See ChDisk for the details.

robotNumber Optional. Integer expression that specifies which robot the point file should be
associated with. If robotNumber = 0, then the point file is imported as a common
point file. If robotNumber is omitted, the current robot number is used.

Description

ImportPoints copies a point file into the current project and adds it to the project files for the specified robot.
The point file is then compiled and is ready for loading using the LoadPoints command. If the file already
exists for the current robot, it will be overwritten and recompiled.

The point data is stored in the Compact Flash inside of the controller. Therefore, ImportPoints starts writing
into the Compact Flash. Frequent writing into the Compact Flash will shorten the Compact Flash lifetime.
We recommend using ImportPoints only for saving the point data.

Potential Errors
File Does Not Exist

If sourcePath does not exist, an error will occur.
A Path Cannot be Specified

If fileName contains a path, an error will occur.
Point file for another robot.

If fileName is a point file for another robot, an error will occur.

See Also

LoadPoints, Robot, SavePoints

ImportPoints Statement Example

Function main
 Robot 1
 ImportPoints "c:\mypoints\model1.pts", "robot1.pts"
 LoadPoints "robot1.pts"
Fend

In Function

380 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

In Function

Returns the status of the specified Byte port. Each port contains 8 input channels.

Syntax
In(byteportNumber)

Parameters

byteportNumber Integer number representing one eight bit port (one byte).

Return Values

Returns an integer value between 0 and 255. The return value is 8 bits, with each bit corresponding to 1 input
channel.

Description

In provides the ability to look at the value of 8 input channels at the same time. The In instruction can be
used to store the 8 I/O channels status into a variable or it can be used with the Wait instruction to Wait until
a specific condition which involves more than 1 I/O channel is met.

Since 8 channels are checked at a time, the return values range from 0 to 255. Please review the chart below
to see how the integer return values correspond to individual input channels.

Input Channel Result (Using Byte port #0)
Return Values 7 6 5 4 3 2 1 0

1 Off Off Off Off Off Off Off On
5 Off Off Off Off Off On Off On
15 Off Off Off Off On On On On
255 On On On On On On On On

Input Channel Result (Using Byte port #2)

Return Values 23 22 21 20 19 18 17 16
3 Off Off Off Off Off Off On On
7 Off Off Off Off Off On On On
32 Off Off On Off Off Off Off Off
255 On On On On On On On On

See Also

InBCD, MemIn, MemOff, MemOn, MemSw, Off, On, OpBCD, Oport, Out, Sw, Wait

In Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 381

In Function Example
For the example below let’s assume that input channels 20, 21, 22, and 23 are all connected to sensory devices
such that the application should not start until each of these devices are returning an On signal indicating
everything is OK to start. The program example gets the 8 input channels status of byte port 2 and makes
sure that channels 20, 21, 22, and 23 are each On before proceeding. If they are not On (i.e. returning a value
of 1) an error message is given to the operator and the task is stopped.

In the program, the variable “var1” is compared against the number 239 because in order for inputs 20, 21,
22, and 23 to all be On, then the result of In(2) will be 240 or larger. (We don’t care about Inputs 16, 17, 18,
and 19 in this case so any values between 240-255 will allow the program to proceed.)

Function main
 Integer var1
 var1 = In(2) 'Get 8 input channels status of byte port 2
 If var1 > 239 Then
 Go P1
 Go P2
 'Execute other motion statements here
 '.
 '.
 Else
 Print "Error in initialization!"
 Print "Sensory Inputs not ready for cycle start"
 Print "Please check inputs 20,21,22, and 23 for"
 Print "proper state for cycle start and then"
 Print "start program again"
 EndIf
Fend

We cannot set inputs from the command window but we can check them. For the examples shown below,
we will assume that the Input channels 1, 5, and 15 are On. All other inputs are Off.

> print In(0)
34
> print In(1)
128
> print In(2)
0

InBCD Function

382 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

InBCD Function

Returns the input status of 8 inputs using BCD format. (Binary Coded Decimal)

Syntax

InBCD(portNumber)

Parameters
portNumber Integer number representing one eight bit port (one byte).

Return Values
Returns as a Binary Coded Decimal (0-9), the input status of the input port (0 to 99).

Description
InBCD simultaneously reads 8 input lines using the BCD format. The portNumber parameter for the InBCD
instruction defines which group of 8 inputs to read where portNumber = 0 means inputs 0 to 7, portNumber
= 1 means inputs 8 to 15, etc.

The resulting value of the 8 inputs is returned in BCD format. The return value may have 1 or 2 digits
between 0 and 99. The 1st digit (or 10's digit) corresponds to the upper 4 outputs of the group of 8 outputs
selected by portNumber. The 2nd digit (or 1’s digit) corresponds to the lower 4 outputs of the group of 8
outputs selected by portNumber.

Since valid entries in BCD format range from 0 to 9 for each digit, every I/O combination cannot be met.
The able below shows some of the possible I/O combinations and their associated return values assuming
that portNumber is 0.

Input Settings (Input number)
Return Values 7 6 5 4 3 2 1 0

01 Off Off Off Off Off Off Off On
02 Off Off Off Off Off Off On Off
03 Off Off Off Off Off Off On On
08 Off Off Off Off On Off Off Off
09 Off Off Off Off On Off Off On
10 Off Off Off On Off Off Off Off
11 Off Off Off On Off Off Off On
99 On Off Off On On Off Off On

Notice that the Binary Coded Decimal format only allows decimal values to be specified. This means that
through using Binary Coded Decimal format it is impossible to retrieve a valid value if all inputs for a specific
port are turned on at the same time when using the InBCD instruction. The largest value possible to be
returned by InBCD is 99. In the table above it is easy to see that when 99 is the return value for InBCD, all
inputs are not on. In the case of a return value of 99, inputs 0, 3, 4, and 7 are On and all the others are Off.

InBCD Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 383

Note
Difference between InBCD and In

The InBCD and In instructions are very similar in the SPEL+ language. However, there is one major
difference between the two. This difference is shown below:

- The InBCD instruction uses the Binary Coded Decimal format for specifying the return value format
for the 8 inputs. Since Binary Coded Decimal format precludes the values of &HA, &HB, &HC,
&HD, &HE or &HF from being used, all combinations for the 8 inputs cannot be satisfied.

- The In instruction works very similarly to the InBCD instruction except that In allows the return value
for all 8 inputs to be used. (i.e. 0 to 255 vs. 0 to 99 for InBCD) This allows all possible combinations
for the 8 bit input groups to be read.

See Also

In, MemOff, MemOn, MemOut, MemSw, Off, On, OpBCD, Oport, Out, Sw, Wait

InBCD Function Example
Some simple examples from the Command window are as follows:

Assume that inputs 0, 4, 10, 16, 17, and 18 are all On (The rest of the inputs are Off).

> Print InBCD(0)
11
> Print InBCD(1)
04
> Print InBCD(2)
07
>

Inertia Statement

384 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Inertia Statement

Specifies load inertia and eccentricity for current robot.

Syntax

Inertia [loadInertia [, eccentricity]]
Inertia

Parameters

loadInertia Optional (It is not possible to omit only loadInertia). Real expression that specifies total
moment of inertia in kgm2 around the center of the end effector joint, including end
effector and part.

eccentricity Optional. Real expression that specifies eccentricity in mm around the center of the end
effector joint, including end effector and part.

Return Values

When parameters are omitted, the current Inertia parameters are displayed.
When [eccentricity] is omitted, the entered [loadInertia] will be set and the default value [eccentricity] will
be set.
It is not possible to omit only [loadInertia].

Note that when you specify a value smaller than the actual value to the inertia or eccentricity, excessive
acceleration and deceleration values will be set and may damage the manipulator. In addition, it may cause
an error or impact. It may cause the function will not work best, the life of the parts be shortened, or the
belt be misaligned due to teeth losing.

Description
Use the Inertia statement to specify the total moment of inertia for the load on the end effector joint. This
allows the system to more accurately compensate acceleration, deceleration, and servo gains for end effector
joint. You can also specify the distance from the center of end effector joint to the center of gravity of the
end effector and part using the eccentricity parameter.

Robot parameter data is stored in compact flash in controller. Therefore, writing to command flash occurs
when executing this command. Frequent writing to compact flash affect to lifetime of compact flash. We
recommend to use this command minimally.
You can also set by following “Weight, Inertia, and Eccentricity/offset Measurement Utility”.
The following manual describes the details.

EPSON RC+ 7.0 User’s Guide 6.18.12 Weight, Inertia, and Eccentricity/offset Measurement Utility

Notes
Inertia Values Are Not Changed by Turning Main Power Off

The Inertia values are not changed by turning power off. Once the value is set, the value is memorized in the
controller.
When nothing is changed, it will remain at the previously set value.

See Also

Inertia Function

For details of Hand, refer to the Hand Function Manual.

Inertia Statement Example

Inertia 0.02, 1

Inertia Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 385

Inertia Function

Returns inertia parameter value.

Syntax

Inertia(paramNumber)

Parameters

paramNumber Integer expression which can have the following values:
 0: Causes function to return “1” if robot supports inertia parameters or “0” if not.
 1: Causes function to return load inertia in kgm2.
 2: Causes function to return eccentricity in mm.

Return Values

Real value of the specified setting.

See Also

Inertia Statement

For details of Hand, refer to the Hand Function Manual.

Inertia Function Example

Real loadInertia, eccentricity

loadInertia = Inertia(1)
eccentricity = Inertia(2)

InPos Function

386 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

InPos Function

Returns the position status of the specified robot.

Syntax

InPos

Return Values
True if position has been completed successfully, otherwise False.

See Also
CurPos, FindPos, WaitPos

InPos Function Example

Function main

 P0 = XY(0, -100, 0, 0)
 P1 = XY(0, 100, 0, 0)

 Xqt MonitorPosition
 Do
 Jump P0
 Wait .5
 Jump P1
 Wait .5
 Loop

Fend

Function MonitorPosition

 Boolean oldInPos, pos

 Do
 Pos = InPos
 If pos <> oldInPos Then
 Print "InPos = ", pos
 EndIf
 oldInPos = pos
 Loop

Fend

Input Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 387

Input Statement

Receives input data from the display device and stored in a variable(s).

Syntax

Input varName [, varName, varName,...]

Parameters

varName Variable name. Multiple variables can be used with the Input command as long as
they are separated by commas.

Description

Input receives data from the display device and assigns the data to the variable(s) used with the Input
instruction.

When executing the Input instruction, a “?” prompt appears at the display device. After inputting data press
the return key (Enter) on the keyboard.

Notes
Rules for Numeric Input

When inputting numeric values and non-numeric data is found in the input other than the delimiter (comma),
the Input instruction discards the non-numeric data and all data following that non-numeric data.

Rules for String Input
When inputting strings, numeric and alpha characters are permitted as data.

Other Rules for the Input Instruction
- When more than one variable is specified in the instruction, the numeric data input intended for each

variable has to be separated by a comma (",") character.
- Numeric variable names and string variable names are allowed. However, the input data type must match

the variable type.

Potential Error
Number of variables and input data differ

For multiple variables, the number of input data must match the number of Input variable names. When the
number of the variables specified in the instruction is different from the number of numeric data received
from the keyboard, an Error 2505 will occur.

See Also

Input #, Line Input, Line Input #, Print, String

Input Statement

388 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Input Statement Example
This is a simple program example using Input statement.

Function InputNumbers
 Integer A, B, C

 Print "Please enter 1 number"
 Input A
 Print "Please enter 2 numbers separated by a comma"
 Input B, C
 Print "A = ", A
 Print "B = ", B, "C = ", C
Fend

A sample session of the above program running is shown below:
(Use the Run menu or F5 key to start the program)

Please enter 1 number
?-10000
Please enter 2 numbers separated by a comma
?25.1, -10000
A = -10000
B = 25 C = -10000

Input # Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 389

Input # Statement

Allows string or numeric data to be received from a file, communications port, or database and stored in
one or more variables.

Syntax

Input #portNumber, varName [, varName, varName,...]

Parameters

#portNumber The ID number that specifies a file, communication port, database, or device. The
File number can be specified in ROpen, WOpen, and AOpen statements.
Communication port number can be specified in OpenCom (RS-232C) and OpenNet
(TCP/IP) statements.
The database number can be specified in OpenDB statement.

Device ID is:
 21 RC+
 24 TP (TP1 only)
 20 TP3

varName Variable name to receive the data.

Description

The Input # instruction receives numeric or string data from the device specified by handle, and assigns the
data to the variable(s).

Notes
About the Controllers to use

For T/VT series, an error will occur at operation when RS-232C port of the Controller is specified.
Rules for Numeric Input

When inputting numeric values and non-numeric data is found in the input other than the delimiter (comma),
the Input instruction discards the non-numeric data and all data following that non-numeric data.

Rules for String Input
When inputting strings, numeric and alpha characters are permitted as data.

Maximum data length
This command can handle up to 256 bytes.
However, the target is the database, it can handle up to 4096 bytes.
If the target is the communication port (TCP/IP), it can handle up to 1024 bytes.

Other Rules for the Input Instruction
- When more than one variable is specified in the instruction, the numeric data input intended for each

variable has to be separated by a comma (",") character or blank (“ ”).
- When more than one string variable or both of numeric variable and string variable is specified, the numeric

data has to be separated by a comma (“,”) character or blank (“ “).
- The input data type must match the variable type.

The following programs are examples to exchange the string variable and numeric variable between the
controllers using a communication port.

Sending end (Either pattern is OK.)
Print #PortNum, "$Status,", InData, OutData
Print #PortNum, "$Status", ",",InData, OutData

Receiving end
Input #PortNum, Response$, InData, OutData

Input # Statement

390 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Potential Error
Number of variables and input data differ

When the number of the variables specified in the instruction is different from the number of numeric data
received from the device, an Error 2505 will occur.

See Also

Input, Line Input, Line Input #, Print #, Read, ReadBin

Input # Statement Example

This function shows some simple Input # statement examples.

Function GetData
 Integer A
 String B$

 OpenCom #1
 Print #1, "Send"
 Input #1, A 'Get a numeric value from Port#1
 Input #1, B$ 'Get a string from Port#1
 CloseCom #1
Fend

InputBox Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 391

InputBox Statement

Displays a prompt in a dialog box, waits for the operator to input text or choose a button, and returns the
contents of the box.

Syntax

InputBox prompt, title, default, data$

Parameters
prompt String expression displayed as a message in the dialog box.
title String expression displayed in the title bar of the dialog box.
default String expression displayed in the text box as the default response. If no default is

desired, use an empty string (“”).
data$ A string variable which will contain what the operator entered. If the operator clicks

Cancel, this string will be “@”.

Description

InputBox displays the dialog and waits for the operator to click OK or Cancel. data is a string that contains
what the operator typed in.

See Also
MsgBox

InputBox Statement Example
This function shows an InputBox example.

Function GetPartName$ As String
 String prompt$, title$, data$

 prompt$ = "Enter " + Chr$(34) + "part name" + Chr$(34) + ":"
 title$ = "Sample Application"
 InputBox prompt$, title$, "", data$
 If data$ <> "@" Then
 GetPartName$ = data$
 EndIf
Fend

The following picture shows the example output from the InputBox example code shown above.

Restriction

If the prompt, title, and default of parameter contain a half-width comma ",", the string cannot be displayed
correctly.
Use a string that does not contain a half-width comma.

InReal Function

392 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

InReal Function

Returns the input data of 2 words (32 bits) as the floating-point data (IEEE754 compliant) of 32 bits.

Syntax

InReal(WordPortNumber)

Parameters

WordPortNumber Integer expression representing the I/O Input Word.

Return Values

Returns the input port status in Real type number.

Description

From the input word port specified by the word port number, retrieve the 2 input word values as IEEE754
Real type value. Input word label can be used for the word port number parameter.
InReal Function cannot be used for the Wait command, or the condition of Till, Find, Sense.

See Also

In, InW, InBCD, Out, OutW, OpBCD, OutReal

InW Function Example

Real realVal

realVal = InReal(32)

InsideBox Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 393

InsideBox Function

Returns the check status of the approach check area.

Syntax

InsideBox(AreaNum [, robotNumber | All])

Parameters

AreaNum Integer expression from 1 to 15 representing which approach check area to return
status for.

robotNumber Integer value that contains the robot number you want to search.
If omitted, the current robot will be specified.
If you specify All, True is returned if one robot is in the check area.

Return Values

True if the robot end effector approaches the specified approach check area, otherwise False.

See Also

Box, BoxClr, BoxDef, GetRobotInsideBox, InsidePlane

Note
You can use the Wait statement with InsideBox to wait for the result of the InsideBox function in EPSON
RC+ 5.0. However, you cannot use it in EPSON RC+ 6.0 and 7.0.
In this case, use the GetRobotInsideBox function instead of the InsideBox function.

Correspondence table

RC+
version

Robot
Controller Wait Till, Find,

Sense, Trap

Other commands
(such as Print)/
branch decision

processing

Use of
GetRobotInsideBox

Function

RC+ 7.0 RC700 series Not available Not available Available All available
RC+ 7.0 RC90 series Not available Not available Available All available
RC+ 6.0 RC620 Not available Not available Available All available
RC+ 5.0 RC90 series Available Not available Available Not available
Not available: Unavailable combination
Available: Available combination
All available: Available for Wait, Till, Find, Sense, Trap, Print, and branch decision processing.

InsideBox Function Example

The following program checks Robot 1 is in the check area (Box 3) or not.

Function PrintInsideBox
If InsideBox(3,1) = True Then

Print “Inside Box3”
Else

Print “Outside Box3”
EndIf

Fend

InsidePlane Function

394 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

InsidePlane Function

Returns the check status of the approach check plane.

Syntax

InsidePlane(PlaneNum [, robotNumber | All])

Parameters

PlaneNum Integer expression from 1 to 15 representing which approach check plane to return
status for.

robotNumber Integer value that contains the robot number you want to search.
If omitted, the current robot will be specified.
If you specify All, True is returned if one robot is in the check area.

Return Values

True if the robot end effector approaches the specified approach check plane, otherwise False.

See Also
InsideBox, GetRobotInsidePlane, Plane, PlaneClr, PlaneDef

Note
You can use the Wait statement with InsidePlane to wait for the result of the InsidePlane function in EPSON
RC+ 5.0. However, you cannot use it in EPSON RC+ 6.0 and 7.0.
In this case, use the GetRobotInsidePlane function instead of the InsidePlane function.

Correspondence table

RC+
version

Robot
Controller Wait Till, Find,

Sense, Trap

Other commands
(such as Print)/
branch decision

processing

Use of
GetRobotInsidePlane

Function

RC+ 7.0 RC700 series Not available Not available Available All available
RC+ 7.0 RC90 series Not available Not available Available All available
RC+ 6.0 RC620 Not available Not available Available All available
RC+ 5.0 RC90 series Available Not available Available Not available
Not available: Unavailable combination
Available: Available combination
All available: Available for Wait, Till, Find, Sense, Trap, Print, and branch decision processing.

InsidePlane Function Example

This is an example to check Robot 1 is in the check plane (Plane 3).

Function PrintInsidePlane

If InsidePlane(3,1) = True Then
Print “Inside Plane3”

Else
Print “Outside Plane3”

EndIf
Fend

InStr Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 395

InStr Function

Returns position of one string within another.

Syntax

InStr(string, searchString)

Parameters

string String expression to be searched.
searchString String expression to be searched for within string.

Return Values

Returns the position of the search string if the location is found, otherwise -1.

See Also
Mid$

Instr Function Example

Integer pos

pos = InStr("abc", "b")

Int Function

396 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Int Function

Converts a Real number to Integer. Returns the largest integer that is less than or equal to the specified
value.

Syntax
Int(number)

Parameters

number A real number expression.

Return Values

Returns an Integer value of the real number used in number.

Description

Int(number) takes the value of number and returns the largest integer that is less than or equal to number.

Note
For Values Less than 1 (Negative Numbers)

If the parameter number has a value of less than 1 then the return value have a larger absolute value than
number. (For example, if number = -1.35 then -2 will be returned.)

See Also

Abs, Atan, Atan2, Cos, Mod, Not, Sgn, Sin, Sqr, Str$, Tan, Val

Int Function Example
Some simple examples from the Command window are as follows:

> Print Int(5.1)
5
> Print Int(0.2)
0
> Print Int(-5.1)
-6
>

Int32 Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 397

Int32 Statement

Declares variables of Int32 type. (4 byte integer type variable).

Syntax

Int32 varName [(subscripts)] [, varName [(subscripts)]...]

Parameters

varName Variable name which the user wants to declare.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared. The

subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 and the available

number of array elements is the upper bound value + 1.
 When specifying the upper bound value, make sure the number of total elements is

within the range shown below:
Local variable 2,000
Global Preserve variable 4,000
Global variable and module variable 100,000

Description

Int32 is used to declare variables as type integer. Integer variables can contain values from -2147483648 to
2147483647. Local variables should be declared at the top of a function. Global and module variables must
be declared outside of functions.

See Also

Boolean, Byte, Double, Global, Int64, Integer, Long, Real, Short, String, UByte, UInt32, UInt64,
UShort

Int32 Statement Example

The following example shows a simple program that declares some variables using Int32.

Function int32test
 Int32 A(10) 'Single dimension array of Int32
 Int32 B(10, 10) 'Two dimension array of Int32
 Int32 C(5, 5, 5) 'Three dimension array of Int32
 Int32 var1, arrayvar(10)
 Integer i
 Print "Please enter an Integer Number"
 Input var1
 Print "The Integer variable var1 = ", var1
 For i = 1 To 5
 Print "Please enter an Integer Number"
 Input arrayvar(i)
 Print "Value Entered was ", arrayvar(i)
 Next i
Fend

Int64 Statement

398 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Int64 Statement

Declares variables of Int64 type. (8 byte integer type variable).

Syntax

Int64 varName [(subscripts)] [, varName [(subscripts)]...]

Parameters
varName Variable name which the user wants to declare.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared. The

subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 and the available

number of array elements is the upper bound value + 1.
 When specifying the upper bound value, make sure the number of total elements is

within the range shown below:
Local variable 2,000
Global Preserve variable 4,000
Global variable and module variable 100,000

Description

Int64 is used to declare variables as type integer. Integer variables can contain values from
-9223372036854775808 to 9223372036854775807. Local variables should be declared at the top of a
function. Global and module variables must be declared outside of functions.

See Also

Boolean, Byte, Double, Global, Int32, Integer, Long, Real, Short, String, UByte, UInt32, UShort
UInt64

Int64 Statement Example

The following example shows a simple program that declares some variables using Int64.

Function int64test
 Int64 A(10) 'Single dimension array of Int64
 Int64 B(10, 10) 'Two dimension array of Int64
 Int64 C(5, 5, 5) 'Three dimension array of Int64
 Int64 var1, arrayvar(10)
 Integer i
 Print "Please enter an Integer Number"
 Input var1
 Print "The Integer variable var1 = ", var1
 For i = 1 To 5
 Print "Please enter an Integer Number"
 Input arrayvar(i)
 Print "Value Entered was ", arrayvar(i)
 Next i
Fend

Integer Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 399

Integer Statement

Declares variables of Integer type. (2 byte integer type variable).

Syntax

Integer varName [(subscripts)] [, varName [(subscripts)]...]

Parameters
varName Variable name which the user wants to declare as type integer.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared. The

subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 and the available

number of array elements is the upper bound value + 1.
 When specifying the upper bound value, make sure the number of total elements is

within the range shown below:
Local variable 2,000
Global Preserve variable 4,000
Global variable and module variable 100,000

Description

Integer is used to declare variables as type integer. Variables of type integer can contain whole numbers with
values from -32768 to 32767. Local variables should be declared at the top of a function. Global and module
variables must be declared outside of functions.

See Also

Boolean, Byte, Double, Global, Int32, Int64, Long, Real, Short, String, UByte, UInt32, UInt64,
UShort

Integer Statement Example
The following example shows a simple program that declares some variables using Integer.

Function inttest
 Integer A(10) 'Single dimension array of integer
 Integer B(10, 10) 'Two dimension array of integer
 Integer C(5, 5, 5) 'Three dimension array of integer
 Integer var1, arrayvar(10)
 Integer i
 Print "Please enter an Integer Number"
 Input var1
 Print "The Integer variable var1 = ", var1
 For i = 1 To 5
 Print "Please enter an Integer Number"
 Input arrayvar(i)
 Print "Value Entered was ", arrayvar(i)
 Next i
Fend

InW Function

400 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

InW Function

Returns the status of the specified input word port. Each word port contains 16 input bits.

Syntax

InW(WordPortNum)

Parameters
WordPortNum Integer expression representing the I/O Input Word.

Return Values
Returns the current status of inputs (long integers from 0 to 65535).

Note
Rule of word port which contains the input bit of Real Time I/O

Word ports =1, 3, 17, 19 return the state of the input port with an integer from 0 to 255.
The input bit of the Real Time I/O is not reflected.

See Also

In, Out, OutW

InW Function Example

Long word0

word0 = InW(0)

IODef Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 401

IODef Function

Returns whether the specified input or output bit, byte, word, or I/O label are defined.

Syntax

IODef (IOType, IOWidth, portNumber)
IODef (IOlabel)

Parameters

IOType Integer expression representing the type of I/O.
0 - Input
1 - Output
2 - Memory

IOWidth Integer expression representing the width of the port: 1(bit), 8 (byte), or 16 (word).
portNumber Integer expression representing the bit, byte, or word port number to return the label for.
IOlabel String expression that specifies the standard I/O or memory I/O label.

Return Values

True if the specified input or output bit, byte, word or the I/O label are defined, otherwise False.

See Also
IOLabel$, IONumber

IODef Function Example

Integer i

 For i = 0 To 15
 If IODef(0, 1, i) = TRUE Then
 Print “Port “ , i, “ is defined”
 Else
 Print “Port “ , i, “ is undefined”
 EndIf
 Next i

IOLabel$ Function

402 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

IOLabel$ Function

Returns the I/O label for a specified input or output bit, byte, or word.

Syntax

IOLabel$(IOType, IOWidth, portNumber)

Parameters

IOType Integer expression representing the type of I/O.
0 - Input
1 - Output
2 - Memory

IOWidth Integer expression representing the width of the port: 1(bit), 8 (byte), or 16 (word).
portNumber Integer expression representing the bit, byte, or word port number to return the label for.

Return Values
String containing the label.

See Also
PLabel$, IONumber, IODef

IOLabel$ Function Example

Integer i

For i = 0 To 15
 Print "Input ", i, ": ", IOLabel$(0, 1, i)
Next i

IONumber Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 403

IONumber Function

Returns the I/O number of the specified I/O label.

Syntax

IONumber(IOlabel)

Parameters

IOlabel String expression that specifies the standard I/O or memory I/O label.

Return Values
Returns the I/O port number (bit, byte, word) of the specified I/O label. If there is no such I/O label, an error
will be generated.

See Also
IOLabel$, IODef

IONumber Function Example

Integer IObit

IObit = IONumber("myIO")

IObit = IONumber("Station" + Str$(station) + "InCycle")

J1Angle Statement

404 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

J1Angle Statement

Sets the J1Angle attribute of a point.

Syntax

(1) J1Angle point [, Step]
(2) J1Angle

Parameters
point Pnumber or P(expr) or point label.
Step Optional. Real value that specifies the set value.

Result

The J1Angle attribute can be used for the RS and N robot series.
If Step is omitted, the J1Angle value for the specified point will be displayed.
If both parameters are omitted, the J1Angle value of the current robot position will be displayed.

RS series: Specify the angle of the Joint #1 when both X and Y coordinate values of a point are “0”
(singularity). For other robot series points, J1Angle has no meaning.

N series: Specify the angle of the Joint #1 when the axis centers of “Joint #1, #4, and #6”, “Joint #1
and #6”, or “Joint #1 and #4” are on the straight line. For other robot series points (not
singularity), J1Angle has no meaning.

See Also

Hand, J1Angle Function, J1Flag, J2Flag, J4Angle, J4Angle Function

J1Angle Statement Example

J1Angle P0, 10.0
J1Angle P(mypoint), 0.0

J1Angle Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 405

J1Angle Function

Returns the J1Angle attribute of a point.

Syntax

J1Angle [(point)]

Parameters
point Point expression
 Optional. If omitted, returns the J1Angle setting of the current robot position.

Return Values
The J1Angle attribute can be used for the RS and N robot series.
Returns the angle of Joint 1 when both X and Y coordinate values of a point are “0” (singularity) in a real
value. The J1Angle attribute can be used for the RS series.

RS series: Returns an integer value representing the angle of the Joint #1 when both X and Y
coordinate values of a point are “0” (singularity).

N series: Returns an integer value representing the angle of the Joint #1 when the axis centers of
“Joint #1, #4, and #6”, “Joint #1 and #6”, or “Joint #1 and #4” are on the straight line.

See Also

Hand, J1Angle, J1Flag, J2Flag, J4Angle, J4Angle Function

J1Angle Function Example

Print J1Angle(pick)
Print J1Angle(P1)
Print J1Angle

J1Flag Statement

406 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

J1Flag Statement

Specifies the J1Flag attribute of a point.

Syntax

(1) J1Flag point [, value]
(2) J1Flag

Parameters
point Pnumber or P(expr) or point label.
value Optional. Integer expression.

For RS series Manipulator:
0 (/J1F0) J1 range is -90 to +270 degrees

 1 (/J1F1) J1 range is from -270 to -90 or +270 to +450 degrees
 For C8, C12 series Manipulator:
 0 (/J1F0) J1 range is 0 to -180 or 0 to +180 degrees

1 (/J1F1) J1 range is -180 to -240 or +180 to -240 degrees

Return Values
The J1Flag attribute specifies the range of values for joint 1 for one point. If value is omitted, the J1Flag
value for the specified point is displayed. When both parameters are omitted, the J1Flag value is displayed
for the current robot position.

See Also
Hand, J1Flag Function, J2Flag

J1Flag Statement Example

J1Flag P0, 1
J1Flag P(mypoint), 0

J1Flag Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 407

J1Flag Function

Returns the J1Flag attribute of a point.

Syntax
J1Flag [(point)]

Parameters
point Optional. Point expression. If point is omitted, then the J1Flag setting of the current robot

position is returned.

Return Values
0 /J1F0
1 /J1F1

See Also
Hand, J1Flag Statement, J2Flag

J1Flag Function Example

Print J1Flag(pick)
Print J1Flag(P1)
Print J1Flag
Print J1Flag(Pallet(1, 1))

J2Flag Statement

408 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

J2Flag Statement

Sets the J2Flag attribute of a point.

Syntax
(1) J2Flag point [, value]
(2) J2Flag

Parameters
point Pnumber or P(expr) or point label.
value Optional. Integer expression.

0 (/J1F0) J1 range is -180 to +180 degrees
1 (/J1F1) J1 range is -240 to -180 or +180 to +240 degrees

Return Values

The J2Flag attribute specifies the range of values for joint 2 for one point. If value is omitted, the J2Flag
value for the specified point is displayed. When both parameters are omitted, the J2Flag value is displayed
for the current robot position.

See Also
Hand, J1Flag, J2Flag Function

J2Flag Statement Example

J2Flag P0, 1
J2Flag P(mypoint), 0

J2Flag Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 409

J2Flag Function

Returns the J2Flag attribute of a point.

Syntax
J2Flag [(point)]

Parameters
point Optional. Point expression. If point is omitted, then the J2Flag setting of the current robot

position is returned.

Return Values
0 /J2F0
1 /J2F1

See Also
Hand, J1Flag, J2Flag Statement

J2Flag Function Example

Print J2Flag(pick)
Print J2Flag(P1)
Print J2Flag
Print J2Flag(P1 + P2)

J4Angle Statement

410 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

J4Angle Statement

Sets the J4Angle attribute of a point.

Syntax
(1) J4Angle point [, value]
(2) J4Angle

Parameters
point Pnumber or P(expr) or point label.
value Optional. Integer expression.

Result

The J4Angle attribute is used only for N robot series.
It specifies the angle of the Joint #4 when the axis centers of the Joint #4 and #6 are on the straight line.
If the point is not singularity, J4Angle has no meaning.
If value is omitted, the J4Angle value for the specified point is displayed. When both parameters are omitted,
the J4Angle value is displayed for the current robot position.

See Also
Hand, J1Angle, J1Angle Function, J4Angle Function

Note

When both J4Flag and J4Angle are used, J4Angle is prioritized as follows:
J4Angle P0,0
J4Flag P0,1

J4Angle Example

J4Angle P0, 10.0
J4Angle P(mypoint), 0.0

J4Angle Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 411

J4Angle Function

Returns the J4Angle attribute of a point.

Syntax
J4Angle [(point)]

Parameters
point Optional. Point expression. If point is omitted, then the J4Angle setting of the current robot

position is returned.

Return Values
Returns an integer value representing the angle of the Joint #4 when the axis centers of the Joint #4 and #6
are on the straight line.
The J4Angle attribute is used only for N robot series.

See Also
Hand, J1Angle, J1Angle Function, J4Angle

J4Angle Function Example

Print J4Angle(pick)
Print J4Angle(P1)
Print J4Angle

J4Flag Statement

412 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

J4Flag Statement

Sets the J4Flag attribute of a point.

Syntax
(1) J4Flag point [, value]
(2) J4Flag

Parameters

point Pnumber or P(expr) or point label.
value Optional. Integer expression.

0 (/J4F0) J4 range is -180 to +180 degrees
 1 (/J4F1) J4 range is from -360 to -180 or +180 to +360 degrees

Return Values

The J4Flag attribute specifies the range of values for joint 4 for one point. If value is omitted, the J4Flag
value for the specified point is displayed. When both parameters are omitted, the J4Flag value is displayed
for the current robot position.

See Also

Elbow, Hand, J4Flag Function, J6Flag, Wrist

J4Flag Statement Example

J4Flag P0, 1
J4Flag P(mypoint), 0

J4Flag Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 413

J4Flag Function

Returns the J4Flag attribute of a point.

Syntax
J4Flag [(point)]

Parameters

point Optional. Point expression. If point is omitted, then the J4Flag setting of the current robot
position is returned.

Return Values

0 /J4F0
1 /J4F1

See Also
Elbow, Hand, Wrist, J4Flag Statement, J6Flag

J4Flag Function Example

Print J4Flag(pick)
Print J4Flag(P1)
Print J4Flag
Print J4Flag(Pallet(1, 1))

J6Flag Statement

414 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

J6Flag Statement

Sets the J6Flag attribute of a point.

Syntax

(1) J6Flag point [, value]
(2) J6Flag

Parameters

point Pnumber or P(expr) or point label.
value Integer expression. Range is 0 - 127 (/J6F0 to /J6F127). J6 range for the specified point is as

follows:
 (-180 * (value+1) < J6 <= -180 * value) and (180 * value < J6 <= 180 * (value+1))

Return Values

The J6Flag attribute specifies the range of values for joint 6 for one point. If value is omitted, the J6Flag
value for the specified point is displayed. When both parameters are omitted, the J6Flag value is displayed
for the current robot position.

See Also

Elbow, Hand, J4Flag, J6Flag Function, Wrist

Note

Range of J6Flag differs depending on manipulator models
C4 : 0 - 127 (/J6F0 to /J6F127)
C8, C12 : 0 - 81 (/J6F0 to /J6F81)
N2 : 0 - 40 (/J6F0 to /J6F40)
N6 : 0 - 61 (/J6F0 to /J6F61)

J6Flag Statement Example

J6Flag P0, 1
J6Flag P(mypoint), 0

J6Flag Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 415

J6Flag Function

Returns the J6Flag attribute of a point.

Syntax
J6Flag [(point)]

Parameters
point Optional. Point expression. If point is omitted, then the J6Flag setting of the current robot

position is returned.

Return Values
0 to 127 /J6F0 to /J6F127

See Also

Elbow, Hand, Wrist, J4Flag, J6Flag

J6Flag Function Example

Print J6Flag(pick)
Print J6Flag(P1)
Print J6Flag
Print J6Flag(P1 + P2)

JA Function

416 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

JA Function

Returns a robot point specified in joint angles.

Syntax

JA (j1, j2, j3, j4 [, j5, j6] [, j7] [, j8, j9])

Parameters

j1 – j9 Real expressions representing joint angles.
For linear joints, specifies in units of mm.
j5 and j6 are for the 6-axis robot (including N series) and Joint type 6-axis robot.
j7 is for the Joint type 7-axis robot.
j8 and j9 are for the additional ST axis.

Note
If the angle exceeding the motion range is specified, an out of range error occurs.

Return Values
A robot point whose location is determined by the specified joint angles.

Description
Use JA to specify a robot point using joint angles.

When the points returned from JA function specify a singularity of the robot, the joint angles of the robot do
not always agree with the joint angles supplied to the JA function as arguments during the execution of a
motion command for the points. To operate the robot using the joint angles specified for the JA function,
avoid a singularity of the robot.

For example:

> go ja(0,0,0,90,0,-90)
> where
WORLD: X: 0.000 mm Y: 655.000 mm Z: 675.000 mm U: 0.000 deg
V: -90.000 deg W: -90.000 deg
JOINT: 1: 0.000 deg 2: 0.000 deg 3: 0.000 deg 4: 0.000 deg
5: 0.000 deg 6: 0.000 deg
PULSE: 1: 0 pls 2: 0 pls 3: 0 pls 4: 0 pls
5: 0 pls 6: 0 pls
> go ja(0,0,0,90,0.001,-90)
> where
WORLD: X: -0.004 mm Y: 655.000 mm Z: 675.000 mm U: 0.000 deg
V: -90.000 deg W: -89.999 deg
JOINT: 1: 0.000 deg 2: 0.000 deg 3: 0.000 deg 4: 90.000 deg
5: 0.001 deg 6: -90.000 deg
PULSE: 1: 0 pls 2: 0 pls 3: 0 pls 4: 2621440 pls
5: 29 pls 6: -1638400 pls

See Also

AglToPls, XY

JA Function Example

P10 = JA(60, 30, -50, 45)
Go JA(135, 90, -50, 90)
P3 = JA(0, 0, 0, 0, 0, 0)

Joint Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 417

Joint Statement

Displays the current position for the robot in joint coordinates.

Syntax

Joint

See Also

Pulse, Where

Joint Statement Example

>joint
JOINT: 1: -6.905 deg 2: 23.437 deg 3: -1.999 mm 4: -16.529 deg
>

JointAccuracy Statement

418 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

JointAccuracy Statement

Sets and displays the joint accuracy offset values.

Syntax
(1) JointAccuracy jointNumber, settingValue1, settingValue2, settingValue3, settingValue4
(2) JointAccuracy jointNumber

Parameters
jointNumber Specifies the joint number.
settingValue1 Specifies the first setting value (integer) as a numerical value. The value is within a

range of 0 to 2000.
settingValue2 Specifies the second setting value (integer) as a numerical value. The value is within a

range of 0 to 999.
settingValue3 Specifies the third setting value (integer) as a numerical value. The value is within a

range of 0 to 2000.
settingValue4 Specifies the fourth setting value (integer) as a numerical value. The value is within a

range of 0 to 999.

Joints compatible with joint accuracy offset settings vary from manipulator to manipulator. Setting joint
accuracy offset settings on a joint that does not support it will result in an error. For more information about
compatible joints, refer to the Manipulator manual.

Return Values
In the case of syntax (2), it displays the current joint accuracy offset corresponding to the joint number.

Description
JointAccuracy sets the offset value for the specified joint. Setting the offset value properly will improve robot
trajectory accuracy.

Note
Do not change JointAccuracy unless absolutely necessary.

JointAccuracy contains factory settings that have been precisely set. Changing this value unnecessarily may
adversely impact trajectory accuracy. JointAccuracy is set automatically when running the calibration wizard.
Do not change JointAccuracy unless absolutely necessary.

Using Calib and Hofs

Running the Calib and Hofs commands when JointAccuracy is set will return the joint accuracy offset value
for the altered joint to “0”. To change the Hofs value without changing the JointAccuracy offset value, run
HofsJointAccuracy.

See Also
HofsJointAccuracy, Calib, Hofs

JointAccuracy Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 419

JointAccuracy Statement Example
The following is a simple example using the Command window. In this example, the joint accuracy offset
value for Joint #1 is set to “1000” for the first setting value, “420” for the second setting value, “100” for the
third setting value, and “240” for the fourth setting value. Once set, the current joint accuracy offset value is
displayed for Joint #1.

> JointAccuracy 1, 1000, 420, 100, 240

> JointAccuracy 1
1000, 420, 100, 240
>

JointAccuracy Function

420 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

JointAccuracy Function

Displays the joint accuracy offset values.

Syntax
JointAccuracy(jointNumber, paramNumber)

Parameters
jointNumber Specifies the joint number.
paramNumber Specifies the joint number to display with following constants or integer (1 to 4).

Constant Value Description
JAC_PARAM1 1: First Parameter Value
JAC_PARAM2 2: Second Parameter Value
JAC_PARAM3 3: Third Parameter Value
JAC_PARAM4 4: Forth Parameter Value

Return Values
Returns offset values (integer) of the joint accuracy corresponding to the specified joint parameter number.

Description
JointAccuracy

JointAccuracy Statement Example
The example below displays the program using JointAccuracy function.

Function DisplayJointAccuracy(joint As Integer)
 Integer i

 Print "Joint “, joint, “, JointAccuracy settings:"
 For i = 1 To 4
 Print "Param ", i, " = ", JointAccuracy(joint, i)
 Next i
Fend

JRange Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 421

JRange Statement

Defines the permissible working range of the specified joint in pulses.

Syntax

JRange jointNumber, lowerLimit, upperLmit

Parameters

jointNumber Integer expression from 1 to 9 representing the joint for which JRange will be specified.
The additional S axis is 8 and T axis is 9.

lowerLmit Long integer expression representing the encoder pulse count position for the lower limit
range of the specified joint.

upperLmit Long Integer expression representing the encoder pulse count position for the upper limit
range of the specified joint.

Description

Defines the permissible working range for the specified joint with upper and lower limits in encoder pulse
counts. JRange is similar to the Range command. However, the Range command requires that all joint range
limits be set while the JRange command can be used to set each joint working limits individually thus
reducing the number of parameters required. To confirm the defined working range, use the Range command.

Robot parameter data is stored in compact flash in controller. Therefore, writing to command flash occurs
when executing this command. Frequent writing to compact flash affect to lifetime of compact flash. We
recommend to use this command minimally.

Notes
Lower Limits Must Not Exceed Upper Limits:

The Lower limit defined in the JRange command must not exceed the Upper limit. A lower limit in excess
of the Upper limit will cause an error, making it impossible to execute a motion command.

Factors Which can Change JRange:
Once JRange values are set they remain in place until the user modifies the values either by the Range or
JRange commands. Turning controller power off will not change the JRange joint limit values.

Maximum and Minimum Working Ranges:
Refer to the specifications in the Manipulator manual for maximum working ranges for each robot model
since these vary from model to model.

See Also

Range, JRange Function

JRange Statement Example

The following examples are done from the Command window:

> JRange 2, -6000, 7000 'Define the 2nd joint range

> JRange 1, 0, 7000 'Define the 1st joint range

JRange Function

422 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

JRange Function

Returns the permissible working range of the specified joint in pulses.

Syntax

JRange(jointNumber, paramNumber)

Parameters

jointNumber Specifies reference joint number (integer from 1 to 9) by an expression or numeric
value.

 The additional S axis is 8 and T axis is 9.
paramNumber Integer expression containing one of two values:
 1: Specifies lower limit value.
 2: Specifies upper limit value.

Return Values
Range configuration (integer value, pulses) of the specified joint.

See Also
Range, JRange Statement

JRange Function Example

Long i, oldRanges(3, 1)

For i = 0 To 3
 oldRanges(i, 0) = JRange(i + 1, 1)
 oldRanges(i, 1) = JRange(i + 1, 2)
Next i

JS Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 423

JS Function

Jump Sense detects whether the arm stopped prior to completing a Jump, Jump3, JumpTLZ , or Jump3CP
instruction which used a Sense input or if the arm completed the move.

Syntax

JS

Return Values
Returns a True or a False.

True : When the arm was stopped prior to reaching its target destination because a Sense Input
condition was met JS returns a True.

False : When the arm completes the normal move and reaches the target destination as defined
in the Jump instruction JS returns a False.

Description

JS is used in conjunction with the Jump and Sense instructions. The purpose of the JS instruction is to provide
a status result as to whether an input condition (as defined by the Sense instruction) is met during motion
caused by the Jump instruction or not. When the input condition is met, JS returns a True. When the input
condition is not met and the arm reaches the target position, JS returns a False.

JS is simply a status check instruction and does not cause motion or specify which Input to check during
motion. The Jump instruction is used to initiate motion and the Sense instruction is used to specify which
Input (if any) to check during Jump initiated motion.

Note
JS Works only with the Most Recent Jump, Jump3, JumpTLZ, Jump3CP Instruction:

JS can only be used to check the most recent Jump instruction's input check (which is initiated by the Sense
instruction.) Once a 2nd Jump instruction is initiated, the JS instruction can only return the status for the 2nd
Jump instruction. The JS status for the first Jump is gone forever. So be sure to always do any JS status
check for Jump instructions immediately following the Jump instruction to be checked.

See Also

JT, Jump, Jump3, Jump3CP, JumpTLZ, Sense

JS Function Example

Function SearchSensor As Boolean
 Sense Sw(5) = On

 Jump P0
 Jump P1 Sense
 If JS = TRUE Then
 Print "Sensor was found"
 SearchSensor = TRUE
 EndIf
Fend

JT Function

424 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

JT Function

Returns the status of the most recent Jump, Jump3, JumpTLZ, or Jump3CP instruction for the current
robot.

Syntax
JT

Return Values

JT returns a long with the following bits set or clear:

Bit 0 Set to 1 when rising motion has started or rising distance is 0.
Bit 1 Set to 1 when horizontal motion has started or horizontal distance is 0.
Bit 2 Set to 1 when descent motion has started or descent distance is 0.
Bit 16 Set to 1 when rising motion has completed or rising distance is 0.
Bit 17 Set to 1 when horizontal motion has completed or horizontal distance is 0.
Bit 18 Set to 1 when descent motion has completed or descent distance is 0.

Description

Use JT to determine the status of the most recent Jump command that was stopped before completion by
Sense, Till, abort, etc.

See Also

JS, Jump, Jump3, Jump3CP, JumpTLZ, Sense, Till

JT Function Example

Function SearchTill As Boolean

 Till Sw(5) = On

 Jump P0
 Jump P1 Till
 If JT And 4 Then
 Print "Motion stopped during descent"
 SearchTill = TRUE
 EndIf
Fend

JTran Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 425

JTran Statement

Perform a relative move of one joint.

Syntax

JTran jointNumber, distance

Parameters

jointNumber Integer expression representing which joint to move.
 The additional S axis is 8 and T axis is 9.
distance Real expression representing the distance to move in degrees for rotational joints or

millimeters for linear joints.

Description

Use JTran to move one joint a specified distance from the current position.

See Also

Go, Jump, Move, Ptran

JTran Statement Example

JTran 1, 20

Jump Statement

426 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Jump Statement

Moves the arm from the current position to the specified destination point using point to point motion by
first moving in a vertical direction up, then horizontally and then finally vertically downward to arrive on
the final destination point.

Syntax

Jump destination [CarchNumber] [LimZ [zLimit]] [CP]
[searchExpr] [!...!] [SYNC]

Parameters

destination The target destination of the motion using a point expression.
archNumber Optional. The arch number (archNumber) specifies which Arch Table entry to use for the

Arch type motion caused by the Jump instruction. archNumber must always be proceeded
by the letter C. (Valid entries are from C0 to C7.)

zLimit Optional. This is a Z limit value which represents the maximum position the Z joint will
travel to during the Jump motion. This can be thought of as the Z Height Ceiling for the
Jump instruction. Any valid Z joint Coordinate value is acceptable.

CP Optional. Specifies continuous path motion.
searchExpr Optional. A Sense, Till or Find expression.

Sense | Till | Find
Sense Sw(expr) = {On | Off}
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

!...! Optional. Parallel Processing statements can be added to the Jump instruction to cause I/O
and other commands to execute during motion.

SYNC Reserves a motion command. The robot will not move until SyncRobots is executed.

Description
Jump moves the arm from the current position to destination using what is called Arch Motion. Jump can be
thought of as 3 motions in 1. For example, when the Arch table entry defined by archNumber is 7, the
following 3 motions will occur.

1) The move begins with only Z-joint motion until it reaches the Z joint height calculated by the Arch
number used for the Jump command.

2) Next the arm moves horizontally (while still moving upward in Z) towards the target point position
until the upper Z Limit (defined by LimZ) is reached. Then the arm begins to move downward in
the Z direction (while continuing X, Y and U joint motion) until the final X, and Y and U joint
positions are reached.

3) The Jump instruction is then completed by moving the arm down with only Z-joint motion until the
target Z-joint position is reached.

Jump Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 427

The coordinates of destination (the target position for the move) must be taught previously before executing
the Jump instruction. The coordinates cannot be specified in the Jump instruction itself. Acceleration and
deceleration for the Jump is controlled by the Accel instruction. Speed for the move is controlled by the
Speed instruction.

The Jump instruction cannot be executed for the vertical 6-axis robots (including N series). Use the Jump3
instruction.

CP Details
The CP parameter causes acceleration of the next motion command to start when the deceleration starts for
the current motion command. In this case the robot will not stop at the destination coordinate and will
continue to move to the next point.

archNumber Details
The Arch for the Jump instruction can be modified based on the archNumber value optionally specified with
the Jump instruction. This allows the user to define how much Z to move before beginning the X, Y, and U
joint motion. (This allows the user to move the arm up and out of the way of parts, feeders and other objects
before beginning horizontal motion.) Valid archNumber entries for the Jump instruction are between C0 and
C7. The Arch table entries for C0 to C6 are user definable with the Arch instruction. However, C7 is a
special Arch entry which always defines what is called Gate Motion. Gate Motion means that the robot first
moves Z all the way to the coordinate defined by LimZ before beginning any X, Y, or U joint motion. Once
the LimZ Z limit is reached, X, Y and U joint motion begins. After the X, Y, and U joints each reaches its
final destination position, then the Z joint can begin moving downward towards the final Z joint coordinate
position as defined by destination (the target point). Gate Motion looks as follows:

Origin Pt.

Destination Pt.
Pend

LIMZ

LimZ Details
LimZ zLimit specifies the upper Z coordinate value for the horizontal movement plane in the current local
coordinate system. The specified arch settings can cause the X, Y, and U joints to begin movement before
reaching LimZ, but LimZ is always the maximum Z height for the move. When the LimZ optional parameter
is omitted, the previous value specified by the LimZ instruction is used for the horizontal movement plane
definition.

It is important to note that the LimZ zLimit height limit specification is the Z value for the local robot
coordinate system. It is not the Z value for Arm or Tool. Therefore take the necessary precautions when using
tools or hands with different operating heights.

Sense Details
The Sense optional parameter allows the user to check for an input condition or memory I/O condition before
beginning the final Z motion downward. If satisfied, this command completes with the robot stopped above
the target position where only Z motion is required to reach the target position. It is important to note that the
robot arm does not stop immediately upon sensing the Sense input modifier.

Jump Statement

428 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

The JS or Stat commands can then be used to verify whether the Sense condition was satisfied and the robot
stopped prior to its target position or that the Sense condition was not satisfied and the robot continued until
stopping at its target position.

Till Details
The optional Till qualifier allows the user to specify a condition to cause the robot to decelerate to a stop
prior to completing the Jump. The condition specified is simply a check against one of the I/O inputs or one
of the memory I/O. This is accomplished through using either the Sw or MemSw function. The user can
check if the input is On or Off and cause the arm to decelerate and stop based on the condition specified.

The Stat function can be used to verify whether the Till condition has been satisfied and this command has
been completed, or the Till condition has not been satisfied and the robot stopped at the target position.

Notes
Jump cannot be executed for 6-axis robots (including N series)

Use Jump3 or Jump3CP for 6-axis robots.
Omitting archNumber Parameters

If the archNumber optional parameter is omitted, the default Arch entry for use with the Jump instruction is
C7. This will cause Gate Motion, as described above.

Difference between Jump and Jump3, Jump3CP
The Jump3 and Jump3CP instructions can be used for 6-axis robots (including N series). On the other hand
the Jump instruction cannot be used for 6-axis robots. For SCARA robots (including RS series), using the
Jump instruction shortens the joint motion time for depart and approach motion. The depart and approach
motions in Jump3 can be executed along the Z axis and in other directions.

Difference between Jump and Go
The Go instruction is similar to Jump in that they both cause Point to Point type motion, however there are
many differences. The most important difference is that the Go instruction simply causes Point to Point
motion where all joints start and stop at the same time (they are synchronized). Jump is different since it
causes vertical Z movement at the beginning and end of the move. Jump is ideal for pick and place type
applications.

Decelerating to a Stop With the Jump Instruction
The Jump instruction always causes the arm to decelerate to a stop prior to reaching the destination point.

Proper Speed and Acceleration Instructions with Jump:
The Speed and Accel instructions are used to specify the speed and acceleration of the robot during Jump
motion. Pay close attention to the fact that Speed and Accel apply to point to point type motion (Go, Jump,
Etc.). while linear and circular interpolated motion instructions such as Move or Arc use the SpeedS and
AccelS instructions. For the Jump instruction, it is possible to separately specify speeds and accelerations for
Z joint upward motion, horizontal travel including U joint rotation, and Z joint downward motion.

Jump Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 429

Pass function of Jump
When the CP parameter is specified for Jump with 0 downward motion, the Jump horizontal travel does not
decelerate to a stop but goes on smoothly to the next PTP motion.
When the CP parameter is specified for a PTP motion command right before a Jump with 0 upward motion,
the PTP motion does not decelerate to a stop but connects smoothly with the Jump horizontal travel.
This is useful when you want to replace the horizontal travel of Jump (a PTP motion) with several PTP
motions.

(Example)
Go P1
Jump P2 :Z(-50) C0 LimZ -50 CP
Go P3 :Z(0) CP
Jump P4 C0 LimZ 0

Caution for Arch motion

Jump motion trajectory is comprised of vertical motion and horizontal motion. It is not a continuous path
trajectory. The actual Jump trajectory of arch motion is not determined by Arch parameters alone. It also
depends on motion and speed.

Always use care when optimizing Jump trajectory in your applications. Execute Jump with the desired
motion and speed to verify the actual trajectory.

When speed is lower, the trajectory will be lower. If Jump is executed with high speed to verify an arch
motion trajectory, the end effector may crash into an obstacle with lower speed.

In a Jump trajectory, the depart distance increases and the approach distance decreases when the motion
speed is set high. When the fall distance of the trajectory is shorter than the expected, lower the speed and/or
the deceleration, or change the fall distance to be larger.

Even if Jump commands with the same distance and speed are executed, the trajectory is affected by motion
of the robot arms. As a general example, for a SCARA robot the vertical upward distance increases and the
vertical downward distance decreases when the movement of the first arm is large. When the vertical fall
distance decreases and the trajectory is shorter than the expected, lower the speed and/or the deceleration, or
change the fall distance to be larger.

Potential Errors
LimZ Value Not High Enough

When the current arm position of the Z joint is higher than the value set for LimZ and a Jump instruction is
attempted, an Error 4005 will occur.

See Also

Accel, Arc, Arch, Go, JS, JT, LimZ, P#= (Point Assignment), Pulse, Sense, Speed, Stat, Till

Jump Statement

430 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Jump Statement Example
The example shown below shows a simple point to point move between points P0 and P1 and then moves
back to P0 using the Jump instruction. Later in the program the arm moves using the Jump instruction. If
input #4 never goes high then the arm starts the approach motion and moves to P1. If input #4 goes high then
the arm does not execute the approach motion.

Function jumptest
 Home
 Go P0
 Go P1
 Sense Sw(4) = On
 Jump P0 LimZ -10
 Jump P1 LimZ -10 Sense 'Check input #4
 If Js(0) = 1 Then
 Print "Input #4 came on during the move and"
 Print "the robot stopped prior to arriving on"
 Print "point P1."
 Else
 Print "The move to P1 completed successfully."
 Print "Input #4 never came on during the move."
 EndIf
Fend

> Jump P10+X50 C0 LimZ-20 Sense !D50;On 0;D80;On 1!

Here’s an example from Command window.

> Jump P0 'Jump to P0
> Jump P0 C0 'Jump to P0 with arch motion specified as

archNumber C0.
> Jump P0 LimZ -10 'Jump to P0 of Z -10mm point
> Jump P0 !D0; On 1; D50; Off 1! 'Jump to P0. Turn on the first bit of the output

until the amount of the movement reaches 50%,
and turn off the first bit after 50%.

If the first bit of the input is turned On, stop the Jump and go on to the next process.

Function main
 (omitted)
 Till Sw(1) = On
 Jump P0 C0 CP Till
 (omitted)
Fend

Jump3, Jump3CP Statements

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 431

Jump3, Jump3CP Statements

3D gate motion.
Jump3 is a combination of two CP motions and one PTP motion.
Jump3CP is a combination of three CP motions.

Syntax
(1) Jump3 depart, approach, destination [, CarchNumber] [, CP] [, LJM [, orientationFlag]] [,

searchExpr] [, !...!] [, SYNC]
(2) Jump3CP depart, approach, destination [, ROT] [, CarchNumber] [, CP] [, LJM [,

orientationFlag]] [, searchExpr] [, !...!] [, SYNC]

Parameters
depart The departure point above the current position using a point expression.
approach The approach point above the destination position a point expression.
destination The target destination of the motion using a point expression.
ROT Optional. :Decides the speed/acceleration/deceleration in favor of tool rotation.
archNumber Optional. The arch number (archNumber) specifies which Arch Table entry to use for the

Arch type motion caused by the Jump instruction. archNumber must always be proceeded
by the letter C. (Valid entries are C0 to C7.)

CP Optional. Specifies continuous path motion.
LJM Optional. Convert the target destination using LJM function.
orientationFlag Optional. Specifies a parameter that selects an orientation flag for LJM function.
searchExpr Optional. A Sense, Till or Find expression.

Sense | Till | Find
Sense Sw(expr) = {On | Off}
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

!...! Optional. Parallel Processing statements can be added to the Jump instruction to cause I/O
and other commands to execute during motion.

SYNC Reserves a motion command. The robot will not move until SyncRobots is executed.

Description
Moves the arm from the current position to the destination point with 3D gate motion. 3D gate motion
consists of depart motion, span motion, and approach motion. The depart motion form the current position
to the depart point is always CP motion. The span motion from the depart point to the start approach point
is PTP motion in Jump3, and the CP motion in Jump3CP.
The approach motion from the starting approach point to the target point is always CP motion.

Span motion

PTP/CP

Depart
motion
CP

Current position

Destination point

Depart point

Approach point

Approach motion
CP

Jump3, Jump3CP Statements

432 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Arch motion is achieved by specifying the arch number. The arch motion for Jump3, Jump3CP is as shown
in the figure below. For arch motion to occur, the Depart distance must be greater than the arch upward
distance and the Approach distance must be greater than the arch downward distance.

Depart point

ARCH Upward

ARCH downward

Approach distance

Depart distance

 Start approach point

Jump3CP uses the SpeedS speed value and AccelS acceleration and deceleration values. Refer to Using
Jump3CP with CP below on the relation between the speed/acceleration and the acceleration/deceleration.
If, however, the ROT modifier parameter is used, Jump3CP uses the SpeedR speed value and AccelR
acceleration and deceleration values. In this case SpeedS speed value and AccelS acceleration and
deceleration value have no effect.

Usually, when the move distance is 0 and only the tool orientation is changed, an error will occur. However,
by using the ROT parameter and giving priority to the acceleration and the deceleration of the tool rotation,
it is possible to move without an error. When there is not an orientational change with the ROT modifier
parameter and movement distance is not 0, an error will occur.

Also, when the tool rotation is large as compared to move distance, and when the rotation speed exceeds the
specified speed of the manipulator, an error will occur. In this case, please reduce the speed or append the
ROT modifier parameter to give priority to the rotational speed/acceleration/deceleration.

Notes
LimZ does not affect Jump3 and Jump3CP

LimZ has no effect on Jump3 or Jump3CP since the span motion is not necessarily perpendicular to the Z
axis of the coordinate system.

Jump3 span motion is PTP (point to point)
It is difficult to predict Jump3 span motion trajectory. Therefore, be careful that the robot doesn't collide
with peripheral equipment and that robot arms don’t collide with the robot.

Using Jump3, Jump3CP with CP
The CP parameter causes the arm to move to destination without decelerating or stopping at the point defined
by destination. This is done to allow the user to string a series of motion instructions together to cause the
arm to move along a continuous path while maintaining a specified speed throughout all the motion. The
Jump3 and Jump3CP instructions without CP always cause the arm to decelerate to a stop prior to reaching
the point destination.

Pass function of Jump3
When the CP parameter is specified for Jump3 with 0 approach motion, the Jump3 span motion does not
decelerate to a stop but goes on smoothly to the next PTP motion.
When the CP parameter is specified for a PTP motion command right before Jump3 with 0 depart motion,
the PTP motion does not decelerate to a stop but connects smoothly with the Jump3 span motion.
This is useful when you want to replace the span motion of Jump3 (a PTP motion) with several PTP motions.

Pass function of Jump3CP

Jump3, Jump3CP Statements

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 433

When the CP parameter is specified for Jump3CP with 0 approach motion, the Jump3CP span motion does
not decelerate to a stop but goes on smoothly to the next CP motion.
When the CP parameter is specified for a CP motion command right before Jump3CP with 0 depart motion,
the CP motion does not decelerate to a stop but connects smoothly with the Jump3CP span motion.
This is useful when you want to replace the span motion of Jump3CP (a CP motion) with several CP motions.
(Example 1)

Jump3 P1,P2,P2 CP
Go P3,P4 CP
Jump3 P4,P5,P5+tlz(50)

(Example 2)

Jump3CP P1,P2,P2 CP
Move P3,P4 CP
Jump3CP P4,P5,P5+tlz(50)

Using Jump3, Jump3CP with LJM

With LJM parameter, the program using LJM function can be more simple.
For example, the following four-line program

P11 = LJM(P1, Here, 2)
P12 = LJM(P2, P11, 2)
P13 = LJM(P3, P12, 2)
Jump3 P11, P12, P13

can be… the one-line program.
 Jump3 P1, P2, P3 LJM 2
LJM parameter is available for 6-axis (including N series) and RS series robots.
Jump3CP span motion is straight line (CP) motion and it cannot switch the wrist orientation along the way.
Therefore, do not use the orientationFlag (LJM 1) of LJM function which is able to switch the wrist
orientation.

Caution for Arch motion
Jump3 Motion trajectory changes depending on motion and speed

Jump3 motion trajectory is comprised of depart, span, and approach motions. It is not a continuous path
trajectory. The actual Jump3 trajectory of arch motion is not determined by Arch parameters alone. It also
depends on motion and speed.

Always use care when optimizing Jump3 trajectory in your applications. Execute Jump3 with the desired
motion and speed to verify the actual trajectory.

When speed is lower, the trajectory will be lower. If Jump3 is executed with high speed to verify an arch
motion trajectory, the end effector may crash into an obstacle with lower speed.

In a Jump3 trajectory, the depart distance increases and the approach distance decreases when the motion
speed is set high. When the approach distance of the trajectory is shorter than the expected, lower the speed
and/or the deceleration, or change the approach distance to be larger.

Even if Jump commands with the same distance and speed are executed, the trajectory is affected by motion
of the robot arms.

P2
P1

P3

P4
P5

End Start

Jump3, Jump3CP Statements

434 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Potential acceleration errors
When the majority of depart (approach) motion uses the same joint as the span motion

An acceleration error may occur during an arch motion execution by the Jump3 and Jump3CP commands.
This error is issued frequently when the majority of the motion during depart or approach uses the same joint
as the span motion. To avoid this error, reduce the acceleration/deceleration speed of the span motion using
Accel command for Jump3 or using AccelS command for Jump3CP. Depending on the motion and
orientation of the robot, it may also help to reduce the acceleration and deceleration of the depart motion
(approach motion) using the AccelS command.

See Also

Accel, Arc, Arch, Go, JS, JT, Point Expression, Pulse, Sense, Speed, Stat, Till

Jump3 Statement Example

' 6 axis robot (including N series) motion which works like Jump of SCARA robot
Jump3 Here :Z(100), P3 :Z(100), P3

' Depart and approach use Z tool coordinates
Jump3 Here -TLZ(100), P3 -TLZ(100), P3

' Depart uses base Z and approach uses tool Z
Jump3 Here +Z(100), P3 -TLZ(100), P3

Example for the depart motion from P1 in Tool 1 and the approach motion to P3 in Tool 2

Arch 0,20,20
Tool 1
Go P1

P2 = P1 -TLZ(100)
Tool 2
Jump3 P2, P3-TLZ(100), P3 C0

JumpTLZ Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 435

JumpTLZ Statement

3D gate motion.
JumpTLZ is a combination of two CP motions and one PTP motion.

Syntax
JumpTLZ destination, TLZ movement [, CarchNumber] [, CP] [, LJM [, orientationFlag]] [,

searchExpr] [, !...!] [, SYNC]

Parameters

destination The target destination of the motion using a point expression.
TLZ movement The amount of movement in Z direction in Tool coordinate system. The is unit is [mm].

The Tool coordinate system for the currently used Tool number is used.
archNumber Optional. The arch number (archNumber) specifies which Arch Table entry to use for the

Arch type motion caused by the JumpTLZ instruction. archNumber must always be
proceeded by the letter C. (Valid entries are C0 to C7.)

CP Optional. Specifies continuous path motion.
LJM Optional. Convert the target destination using LJM function.
orientationFlag Optional. Specifies a parameter that selects an orientation flag for LJM function.
searchExpr Optional. A Sense, Till or Find expression.
 Sense | Till | Find

Sense Sw(expr) = {On | Off}
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

!...! Optional. Parallel Processing statements can be added to the Jump3 and Jump3CP
instruction to cause I/O and other commands to execute during motion.

SYNC Reserves a motion command. The robot will not move until SyncRobots is executed.

JumpTLZ Statement

436 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Description
Moves the arm from the current position to the destination point with 3D gate motion. 3D gate motion
consists of depart motion, span motion, and approach motion. The depart motion form the current position
to the depart point is always CP motion. The span motion from the depart point to the start approach point
is PTP motion.
The depart point is a point moved from the current position with TLZ amount in the Z direction.
The robot posture at the depart point is same as the current position. (Posture may change if the robot passes
the singularity or singularity neighborhood.)
The approach point is a point moved from the depart point in X and Y direction of the Tool coordinate system
with move amount to approach to the destination point. The U, V, and W coordinates and the robot posture
at the depart point and are the same as the current position. (Posture may change if the robot passes the
singularity or singularity neighborhood)

 Span motion

PTP

Depart
motion
CP

Current position

Destination point

Depart point

Approach point

Approach motion
CP

Arch motion is achieved by specifying the arch number. For arch motion to occur, the Depart distance must
be greater than the arch upward distance and the Approach distance must be greater than the arch downward
distance.

Depart point

ARCH Upward

ARCH downward

Approach distance

Depart distance

 Start approach point

Notes
LimZ does not affect JumpTLZ

LimZ has no effect on JumpTLZ since the span motion is not necessarily perpendicular to the Z axis of the
coordinate system.

JumpTLZ span motion is PTP (point to point)
It is difficult to predict JumpTLZ span motion trajectory. Therefore, be careful that the robot doesn't collide
with peripheral equipment and that robot arms don’t collide with the robot.

Difference between JumpTLZ and Jump3
JumpTLZ and Jump3 are different in the following points.
JumpTLZ:

The depart point must be in the Z direction from the current position.
The approach point must be in the Z direction from the destination point. Also, the approach distance
cannot be specified.
Different Tool coordinate systems cannot be selected for the depart, approach, and destination points.
(It is not possible to execute the depart motion in Tool1, and execute the approach motion in Tool2.)

JumpTLZ Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 437

Jump3:
The depart point can be anywhere.
The approach point can be anywhere.
Different Tool coordinate systems can be selected for the depart, approach, and destination points.
(It is possible to execute the depart motion in Tool1, and execute the approach motion in Tool2.)

Applicable manipulators
JumpTLZ is only available for N series.

Caution for Arch motion

JumpTLZ motion trajectory is comprised of depart, span, and approach motions. It is not a continuous path
trajectory. The actual JumpTLZ trajectory of arch motion is not determined by Arch parameters alone. It
also depends on motion and speed.

Always use care when optimizing JumpTLZ trajectory in your applications. Execute JumpTLZ with the
desired motion and speed to verify the actual trajectory.

When speed is lower, the trajectory will be lower. If JumpTLZ is executed with high speed to verify an arch
motion trajectory, the end effector may crash into an obstacle with lower speed.

In a JumpTLZ trajectory, the depart distance increases and the approach distance decreases when the motion
speed is set high. When the approach distance of the trajectory is shorter than the expected, lower the speed
and/or the deceleration, or change the approach distance to be larger.

Even if JumpTLZ commands with the same distance and speed are executed, the trajectory is affected by
motion of the robot arms.

Potential acceleration errors
When the majority of depart (approach) motion uses the same joint as the span motion

An acceleration error may occur during an arch motion execution by the JumpTLZ command. This error is
issued frequently when the majority of the motion during depart or approach uses the same joint as the span
motion. To avoid this error, reduce the acceleration/deceleration speed of the span motion using Accel
command for JumpTLZ. Depending on the motion and orientation of the robot, it may also help to reduce
the acceleration and deceleration of the depart motion (approach motion) using the AccelS command.

See Also

Accel, Arc, Arch, Go, JS, JT, Point Expression, Pulse, Sense, Speed, Stat, Till

JumpTLZ Example

Move 100 mm upward from the current point in Z direction of the Tool coordinate system. Then, move to
the target point (P0):

JumpTLZ P0, -100

LatchEnable Statement

438 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

LatchEnable Statement

Enables / Disables the latch function for the robot position by the R-I/O input.

Syntax

LatchEnable { On | Off }

Parameters

On | Off On : Enables the latch function of the robot position.
Off : Disables the latch function of the robot position.

Result

When the parameter is omitted, displays that the current latch function is ON or OFF.

Description

Enables / Disables the latch function for the robot position using the trigger input signals connected to the R-
I/O. It latches the robot position with the first trigger input after you enable the latch function.
To repeatedly latch the robot position, execute LatchEnable Off and then execute LatchEnable On again. To
use the command repeatedly, it needs at least 60 ms interval for the each command processing time but you
do not need to consider the command executing time.

Note
Before enabling the latch function, set the trigger input port and trigger signal logic using SetLatch.

See Also

LatchPos Function, LatchState Function, SetLatch

LatchEnable Statement Example

Function main
 SetLatch 24, SETLATCH_TRIGGERMODE_LEADINGEDGE
 LatchEnable On 'Enables the latch function
 Go P1
 Wait LatchState = True 'Waits a trigger
 Print LatchPos 'Displays the latched position
 LatchEnable Off 'Disables the latch function
Fend

LatchState Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 439

LatchState Function

Returns the latch state of robot position using the R-I/O.

Syntax
LatchState

Return Values
Returns True when the robot position has been latched, False when the latch is not finished.
When confirmed the latch completion, acquires the latched position information by LatchPos Function.
When specified continuous latch times with SetLatch, returns “True” if specified latch times all complete.

See Also
LatchEnable, LatchPos Function, SetLatch, Wait

LatchState Function Example

Function main
 SetLatch 24, SETLATCH_TRIGGERMODE_LEADINGEDGE
 LatchEnable On 'Enables the latch function
 Go P1
 Wait LatchState = True 'Wait a trigger
 Print LatchPos 'Display the latched position
 LatchEnable Off 'Disable the latch function
Fend

LatchPos Function

440 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

LatchPos Function

Returns the robot position latched using the R-I/O input signal.

Syntax
LatchPos ([WithToolArm | WithoutToolArm], Latch Number)

Parameters
WithToolArm | WithoutToolArm Specifies whether to return positional data based on Tool and Arm

settings, or to return the Tool 0, Arm 0 position.
While optional, set this parameter when specifying a latch number.
If omitted, WithToolArm is used.

Constant Value
WithToolArm 0
WithoutToolArm 1

WithToolArm Constant value of 0.

Returns the position according to the Tool and Arm settings at
function call.

WithoutToolArm Constant value of 0.1
Returns the position of Tool 0 and Arm 0, regardless of the Tool
and Arm settings.

Latch number Specifies the R-I/O input signal used to return latched point data
after setting LatchEnable On.
Specify either 1, 2, 3, or 4.
Specify the continuous latch count with SetLatch to enable a latch
with point data produced from up to four R-I/O input signals after
setting LatchEnable On.
This parameter is optional. If omitted, point data latched using the
first R-I/O input signal will be returned.

Return Values

Returns the robot position latched by the R-I/O input signal in point data.
Executing this function needs approx. 15 msec for processing.
When WithToolArm is specified, returns the position according to the Tool and Arm settings at function call.
When WithoutToolArm is specified, returns the position of Tool 0 and Arm 0, regardless of the Tool and
Arm settings.

See Also
LatchEnable, LatchState Function, SetLatch

LatchPos Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 441

LatchPos Function Example

Function main
 SetLatch 24, SETLATCH_TRIGGERMODE_LEADINGEDGE
 LatchEnable On 'Enables the latch function
 Go P1
 Wait LatchState = True 'Wait a trigger
 Print LatchPos(WithoutToolArm, 1) 'Display the latched position 1
 Print LatchPos(WithoutToolArm, 2) 'Display the latched position 2
 Print LatchPos(WithoutToolArm, 3) 'Display the latched position 3
 Print LatchPos(WithoutToolArm, 4) 'Display the latched position 4
 LatchEnable Off 'Disable the latch function
Fend

To omit parameter:
Function main
 SetLatch 24, SETLATCH_TRIGGERMODE_LEADINGEDGE
 LatchEnable On ' Enables the latch function
 Go P1
 Wait LatchState = True ' Wait a trigger
 Print LatchPos ' Display the latched position 1
 LatchEnable Off ' Disable the latch function
Fend

To assign the return value of LatchPos to the point data:

P2 = LatchPos ' Assign the latched position 1. Omit parameter.

P2 = LatchPos(WithoutToolArm, 1) ‘Assign the latched position 1
P3 = LatchPos(WithoutToolArm, 2) ‘Assign the latched position 2
P4 = LatchPos(WithoutToolArm, 3) ‘Assign the latched position 3
P5 = LatchPos(WithoutToolArm, 4) ‘Assign the latched position 4

LCase$ Function

442 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

LCase$ Function

Returns a string that has been converted to lowercase.

Syntax

LCase$(string)

Parameters

string A valid string expression.

Return Values
The converted lower case string.

See Also
LTrim$, Trim$, RTrim$, UCase$

LCase$ Function Example

str$ = "Data"
str$ = LCase$(str$) ' str$ = "data"

Left$ Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 443

Left$ Function

Returns a substring from the left side of a string expression.

Syntax
Left$(string, count)

Parameters
string String expression from which the leftmost characters are copied.
count The number of characters to copy from string starting with the leftmost character.

Return Values

Returns a string of the leftmost number characters from the character string specified by the user.

Description
Left$ returns the leftmost number characters of a string specified by the user. Left$ can return up to as many
characters as are in the character string.

See Also
Asc, Chr$, InStr, Len, Mid$, Right$, Space$, Str$, Val

Left$ Function Example
The example shown below shows a program which takes a part data string as its input and parses out the part
number, part name, and part count.

Function ParsePartData(DataIn$ As String, ByRef PartNum$ As String,
ByRef PartName$ As String, ByRef PartCount As Integer)

 Integer pos
 String temp$

 pos = Instr(DataIn$, ",")
 PartNum$ = Left$(DataIn$, pos - 1)

 DataIn$ = Right$(datain$, Len(DataIn$) - pos)
 pos = Instr(DataIn$, ",")

 PartName$ = Left$(DataIn$, pos - 1)

 PartCount = Val(Right$(datain$, Len(DataIn$) - pos))

Fend

Some other example results from the Left$ instruction from the Command window.

> Print Left$("ABCDEFG", 2)
 AB

> Print Left$("ABC", 3)
 ABC

Len Function

444 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Len Function

Returns the number of characters in a character string.

Syntax

Len(string)

Parameters

string String expression.

Return Values

Returns an integer number representing the number of characters in the string which was given as an
argument to the Len instruction.

Description

Len returns an integer number representing the number of characters in a string specified by the user. Len
will return values between 0 and 255 (since a string can contain between 0 and 255 characters).

See Also

Asc, Chr$, InStr, Left$, Mid$, Right$, Space$, Str$, Val

Len Function Example

The example shown below shows a program which takes a part data string as its input and parses out the part
number, part name, and part count.

Function ParsePartData(DataIn$ As String, ByRef PartNum$ As String,
ByRef PartName$ As String, ByRef PartCount As Integer)

 Integer pos
 String temp$

 pos = Instr(DataIn$, ",")
 PartNum$ = Left$(DataIn$, pos - 1)

 DataIn$ = Right$(datain$, Len(DataIn$) - pos)
 pos = Instr(DataIn$, ",")

 PartName$ = Left$(DataIn$, pos - 1)

 PartCount = Val(Right$(datain$, Len(DataIn$) - pos))

Fend

Some other example results from the Len instruction from the command window.

> ? len("ABCDEFG")
7

> ? len("ABC")
3

> ? len("")
0
>

LimitTorque Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 445

LimitTorque Statement

Sets / returns the upper limit torque value in High power mode.

Syntax

(1) LimitTorque AllMax
(2) LimitTorque j1Max, j2Max, j3Max, j4Max
(3) LimitTorque j1Max, j2Max, j3Max, j4Max, j5Max, j6Max
(4) LimitTorque

Parameters

AllMax Specify the upper limit torque value for all axes in high power mode by an integer number
representing the percentage of the maximum momentary torque of each axis

j #n Max Specify the upper limit torque value for axis #n in high power mode by an integer number
representing the percentage of the maximum momentary torque of axis #n

Result

Returns the current LimitTorque value when the parameters are omitted.

Description

Sets the upper limit value of torque in high power mode. Normally, the maximum torque is set and there is
no need to change this setting value. This statement is useful to restrict the torque not to exceed which is
necessary for the specific motion in order to reduce damage to the manipulator and equipment caused by
collision with peripherals.
The upper limit value is a peak torque in specific motion measured by PTRQ with allowance considering the
variation added (approximately 10%).

The torque lower than the upper limit value in Low power mode cannot be set for this command. The
minimum values vary for models and joints. Obtain the setting value and confirm the actual upper limit value
after setting the value.

In any of the following cases, LimitTorque becomes the default value.

Controller startup
Motor On
SFree, SLock, or Brake is executed
Reset or Reset Error is executed
Task end by STOP switch or Quit All

Note
Too low LimitTorque setting

LimitTorque restricts the torque for the specific motion with the set torque restriction value as the upper limit
value, regardless of the size of torque necessary for the motion to be executed with the set
acceleration/deceleration. Therefore, if the motion requires larger torque than the set upper limit value, the
robot may not move properly and cause vibrational motion, noise, or position deviation error and overrun.
Make sure to measure PTRQ before using the torque restriction function. If the above problems occur, set
the upper limit value larger and adjust the value so that the manipulator can operate properly.

LimitTorque Statement

446 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

See Also
LimitTorque Function, Power, PTrq, RealTorque

LimitTorque Statement Example

Following is the example which operates the manipulator with the maximum torque of the Joint #1 at 80%.

Function main
 Motor On
 Power high
 Speed 100; Accel 100,100
 LimitTorque 80,100,100,100 'Restricts the maximum torque of Joint #1 to 80%
 Jump P1 'Executes the Jump motion
Fend

LimitTorque Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 447

LimitTorque Function

Returns the setting value of LimitTorque command.

Syntax

LimitTorque(jointNumber)

Parameters

jointNumber Integer expression ranging from 1 to 9.
Additional S axis is 8, and T axis is 9.

Return Values

Returns an integer number representing the setting value of LimitTorque command.

See Also

LimitTorque

LimitTorque Function Example

Print LimitTorque(1) 'Displays the LimitTorque value of the Joint #1.

LimitTorqueLP Statement

448 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

LimitTorqueLP Statement

Sets / returns the upper limit torque value in Low power mode.

Syntax
(1) LimitTorqueLP AllMax
(2) LimitTorqueLP j1Max, j2Max, j3Max, j4Max
(3) LimitTorqueLP j1Max, j2Max, j3Max, j4Max, j5Max, j6Max
(4) LimitTorqueLP

Parameters
AllMax Specify the upper limit torque value for all axes in low power mode by an integer number

representing the percentage of the maximum momentary torque of each axis
j #n Max Specify the upper limit torque value for axis #n in low power mode by an integer number

representing the percentage of the maximum momentary torque of axis #n

Result

Returns the current LimitTorqueLP value when the parameters are omitted.
Displays the default value when the values are not changed by this command.

Description
Sets the upper limit value of torque in low power mode. Normally, the maximum torque is set and there is
no need to change this setting value (the values vary depending on the robot models and axes. Approx. 15-
60%). This command is useful to restrict the torque not to exceed which is necessary for the normal motion
in order to reduce damage to the manipulator and equipment caused by collision with peripherals.
The upper limit value is a peak torque in the motion measured by PTRQ with allowance considering the
variation added (40% is recommended). To apply the same value to a different robot, add a further 10-20%
allowance.
The PTRQ value considers the default maximum torque in low power mode as 1.0. For example, when the
default value before change is 27% and the value measured by PTRQ is 0.43, the upper limit value is as
follows: 27% × 0.43 × 1.4 = 16.25. Then, round up the value and set 17.
The value lower than 5% or larger than the default value cannot be set for this command. If these values are
set, the setting values lower than 5 will be rounded up to 5, and the values exceeding the default value will
be rounded down to the default. For instance, when “LimitTorqueLP 100”, the values are returned to the
default for all joints because the default value is always less than 100.
Obtain the setting value and confirm the actual upper limit value after setting the value.
The LimitTorqueLP setting value is effective until the Controller is restarted.

Note
Too low LimitTorqueLP setting

LimitTorqueLP restricts the torque for the specific motion with the set torque restriction value as the upper
limit value, regardless of the size of torque necessary for the motion to be executed with the set
acceleration/deceleration. Therefore, if the motion requires larger torque than the set upper limit value, the
robot may not move properly and cause position deviation error. Make sure to measure PTRQ before using
the torque restriction function. If the above problem occurs, set the upper limit value larger and adjust the
value so that the manipulator can operate properly.

LimitTorqueLP Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 449

See Also
LimitTorqueLP Function, PTRQ

LimitTorqueLP Example
Following is the example which operates the manipulator with the maximum torque of the Joint #1 at 10%.

Function main
Motor On
Power low
LimitTorqueLP 10,27,31,42 ' Restricts the maximum torque of the Joint #1 to 10%

' Set the default value for other axes
Go P1 ' Executes the Go motion
Fend

LimitTorqueLP Function

450 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

LimitTorqueLP Function

Returns the setting value of LimitTorqueLP command.

Syntax

LimitTorqueLP(jointNumber)

Parameters

jointNumber Integer expression ranging from 1 to 9.
Additional S axis is 8, and T axis is 9.

Return Values

Returns an integer number representing the setting value of LimitTorqueLP command.

See Also

LimitTorqueLP

Len Function Example

Print LimitTorqueLP(1) 'Displays the LimitTorqueLP value of the Joint #1.

LimitTorqueStop Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 451

LimitTorqueStop Statement

Enables or disables the function to stop the robot when the upper limit torque is reached in High power mode.

Syntax
(1) LimitTorqueStop status
(2) LimitTorqueStop status, jointNumber
(3) LimitTorqueStop

Parameters
status On: Enables the function to stop the robot at the upper limit torque
 Off: Disables the function to stop the robot at the upper limit torque
jointNumber The joint number from 1 to 6.

(For SCARA robots, joint numbers are from 1 to 4)

Result
Returns the current LimitTorqueStop status if the parameter is omitted.

Description
LimitTorqueStop enables the function to stop the robot at the upper limit torque value in High power mode.
The robot immediately stops when it reaches the upper limit torque (default is 100%). Using this command
together with the torque restriction function of LimitTorque provides the effect to reduce damage on the
robot and peripherals at a collision in High power mode.
This function can be enabled or disabled for each joint or all joints. The default is “all joints off”.
The setting returns to the default at the Controller startup. In other cases, the setting does not change unless
otherwise configured by this command explicitly.
When the upper limit torque is reached, Error 5040 “Motor torque output failure in high power state.” will
be output and the robot will stop.

See Also
LimitTorque, LimitTorque Function

LimitTorqueStop Example
Following is the example which restricts the maximum torque of the Joint #1 at 30% and stops the robot
immediately.

Function main
Motor On
Power high
Speed 20
Accel 20,20
LimitTorque 30,100,100,100 ' Restricts the maximum torque of the Joint #1 to 30%
LimitTorqueStop On, 1 ' Joint #1 immediately stops at the maximum torque
Go P1 ' Executes the Go motion
Fend

LimitTorqueStop Function

452 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

LimitTorqueStop Function

Returns the setting value of LimitTorqueStop command.

Syntax
LimitTorqueStop(jointNumber)

Parameters
jointNumber Integer expression ranging from 1 to 6.

Return Values
Returns an integer number representing the setting value of LimitTorqueStop command.
0 = Off
1 = On

See Also
LimitTorqueStop

LimitTorqueStop Function Example
Print LimitTorqueStop(1) 'Displays the LimitTorqueStop value of the Joint #1.

LimitTorqueStopLP Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 453

LimitTorqueStopLP Statement

Enables or disables the function to stop the robot when the upper limit torque is reached in Low power
mode.

Syntax

(1) LimitTorqueStopLP status
(2) LimitTorqueStopLP status, jointNumber
(3) LimitTorqueStopLP

Parameters
status On: Enables the function to stop the robot at the upper limit torque
 Off: Disables the function to stop the robot at the upper limit torque
jointNumber The joint number from 1 to 6.

(For SCARA robots, joint numbers are from 1 to 4)

Result

Returns the current LimitTorqueStopLP status if the parameter is omitted.

Description
LimitTorqueStopLP enables the function to stop the robot at the upper limit torque value in Low power
mode. The robot immediately stops when it reaches the upper limit torque. Using this command together
with the torque restriction function of LimitTorqueLP provides the effect to reduce damage on the robot
and peripherals at a collision in Low power mode.
This function can be enabled or disabled for each joint or all joints. The default is “all joints off”.
The setting returns to the default at the Controller startup. In other cases, the setting does not change unless
otherwise configured by this command explicitly.
When the upper limit torque is reached, Error 5041 “Motor torque output failure in low power state.” will
be output and the robot will stop.

See Also
LimitTorqueLP, LimitTorqueLP Function

LimitTorqueStopLP Example

Following is the example which restricts the maximum torque of the Joint #3 at 15% and stops the robot
immediately.

Function main
Motor On
Power low
LimitTorqueLP 20,27,15,42 ' Restricts the maximum torque of the Joint #3 to 15%
 ' Set the default value for other axes
LimitTorqueStopLP On, 3 ' Joint #3 immediately stops at the maximum torque
Go P1 ' Executes the Go motion
Fend

LimitTorqueStopLP Function

454 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

LimitTorqueStopLP Function

Returns the setting value of LimitTorqueStopLP command.

Syntax
LimitTorqueStopLP(jointNumber)

Parameters
jointNumber Integer expression ranging from 1 to 6.

Return Values
Returns an integer number representing the setting value of LimitTorqueStopLP command.
0 = Off
1 = On

See Also
LimitTorqueStopLP

LimitTorqueStopLP Function Example
Print LimitTorqueStopLP(3) 'Displays the LimitTorqueStopLP value of the Joint #3.

LimZ Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 455

LimZ Statement

Determines the default value of the Z joint height for Jump commands.

Syntax

(1) LimZ zLimit
(2) LimZ

Parameters

zLimit A coordinate value within the movable range of the Z joint.

Return Values

Displays the current LimZ value when parameter is omitted.

Description
LimZ determines the maximum Z joint height which the arm move to when using the Jump instruction,
wherein the robot arm raises on the Z joint, moves in the X-Y plane, then lowers on the Z joint. LimZ is
simply a default Z joint value used to define the Z joint ceiling position for use during motion caused by the
Jump instruction. When a specific LimZ value is not specified in the Jump instruction, the last LimZ setting
is used for the Jump instruction.

Notes
Resetting LimZ to 0

Restarting the controller, or executing the SFree, SLock, Motor On commands will initialize LimZ to 0.
LimZ Value is Not Valid for Arm, Tool, or Local Coordinates:

LimZ Z joint height limit specification is the Z joint value for the robot coordinate system. It is not the Z
joint value for Arm, Tool, or Local coordinates. Therefore take the necessary precautions when using tools
or end effectors with different operating heights.

LimZ does not affect Jump3 and Jump3CP
LimZ has no effect on Jump3 or Jump3CP since the span motion is not necessarily perpendicular to the Z
axis of the coordinate system.

See Also

Jump

LimZ Statement Example
The example below shows the use of LimZ in Jump operations.

Function main
 LimZ -10 'Set the default LimZ value
 Jump P1 'Move up to Z=-10 position for Jump
 Jump P2 LimZ -20 'Move up to Z=-20 position for Jump
 Jump P3 'Move up to Z=-10 position for Jump
Fend

LimZ Function

456 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

LimZ Function

Returns the current LimZ setting.

Syntax

LimZ

Return Values

Real number containing the current LimZ setting.

See Also

LimZ Statement

LimZ Function Example

Real savLimz

savLimz = LimZ
LimZ -25
Go pick
LimZ savLimZ

LimZMargin Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 457

LimZMargin Statement

Sets and returns the setting value for error detection when operation starts at higher than the LimZ value.

Syntax

(1) LimZMargin LimZmargin
(2) LimZMargin

Parameters

LimZmargin a margin value for LimZ error detection

Return Values

If the parameter is omitted, current LimZMargin value will be returned.

Description

When Jump command is executed, Joint #3 lifts up to the position set by LimZ. However, if the start position
of the joint is above the LimZ position, an error will occur. LimZMargin sets a margin value for the error
detection. Default is 0.02 mm.

Note
Resetting LimZ to default

Restarting the controller, or executing the SFree, SLock, Motor On commands will initialize LimZ to the
default value.

See Also

LimZMargin Function, LimZ

LimZ Statement Example
Following is a usage example of LimZMargin in Jump operation.

Function main
 LimZ -10 'sets LimZ default value
 LimZMargin 0.03 'sets 0.03 mm for a margin of LimZ error detection
 Jump P1 'horizontal movement with -10 at Jump execution
 Jump P2 LimZ -20 'horizontal movement with -20 at Jump execution
 Jump P3 'horizontal movement with -10 at Jump execution
Fend

LimZMargin Function

458 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

LimZMargin Function

Returns the current LimZMargin setting.

Syntax

LimZMargin

Return Values

Real number containing the current LimZMargin setting.

See Also

LimZMargin Statement, LimZ Statement

LimZ Function Example

Real savLimzMargin

savLimzZMargin = LimZMargin
LimZMargin 0.03
Jump pick
LimZ savLimZMargin

Line Input Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 459

Line Input Statement

Reads input data of one line and assigns the data to a string variable.

Syntax

Line Input stringVar$

Parameters

stringVar$ A string variable name. (the string variable must end with the $ character.)

Description

Line Input reads input data of one line from the display device and assigns the data to the string variable used
in the Line Input instruction. When the Line Input instruction is ready to receive data from the user, it causes
a “?” prompt to be displayed on the display device. The input data line after the prompt is then received as
the value for the string variable. After inputting the line of data press the [ENTER] key.

See Also

Input, Input #, Line Input#, ParseStr

Line Input Statement Example

The example below shows the use of Line Input.

Function Main
 String A$
 Line Input A$ 'Read one line input data into A$
 Print A$
Fend

Run the program above using the F5 key or Run menu from EPSON RC+ main screen. A resulting run
session may be as follows:

?A, B, C
A, B, C

Line Input # Statement

460 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Line Input # Statement

Reads data of one line from a file, communication port, database, or the device.

Syntax

Line Input #portNumber, stringVar$

Parameters

portNumber ID number representing a file, communications port, database, or device.
File number can be specified in ROpen, WOpen, and AOpen statements.
Communications port number can be specified in OpenCom (RS232) and OpenNet
(TCP/IP) statements.
Database number can be specified in OpenDB statement.

 Device ID integers are as follows.
21 RC+
23 OP
24 TP (TP1 only)
20 TP3

stringVar$ A string variable. (string variables must end with a $ character.)

Description

Line Input # reads string data of one line from the device specified with the portNumber parameter, and
assigns the data to the string variable stringVar$.

Notes
About the Controllers to use

For T/VT series, an error will occur at operation when RS-232C port of the Controller is specified.

See Also

Input, Input #, Line Input

Line Input # Statement Example

This example receives the string data from the communication port number 1, and assigns the data to the
string variable A$.

Function lintest
 String a$
 Print #1, "Please input string to be sent to robot"
 Line Input #1, a$
 Print "Value entered = ", a$
Fend

LJM Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 461

LJM Function

Returns the point data with the orientation flags converted to enable least joint motion when moving
to a specified point based on the reference point.

Syntax

LJM (Point [, refPoint [, orientationFlag]])

Parameters
Point Specifies point data.
refPoint Specifies the reference point data. When this is omitted, the reference point is the

current position (Here).
orientationFlag

6-axis robot 1: Converts the wrist orientation (Wrist Flag), J4Flag, J6Flag or J1Flag so that
Joint #4 will be the shortest movement. This is the default setting when
“orientationFlag” is omitted.

 2: Converts the J4Flag or J6Flag.
 3: Converts the wrist orientation (Wrist Flag), J4Flag, J6Flag or J1Flag so that Joint

#5 will be the shortest movement.
 4: Converts the wrist orientation (Wrist Flag), J4Flag, J6Flag or J1Flag so that Joint

#6 will be the shortest movement.

“orientation
Flag”

Hand
orientation

Elbow
orientation

Wrist
orientation J1Flag J4Flag J6Flag

Priority order of
axis with the

shortest
movement

1 - - J4
2 - - - -
3 - - J5
4 - - J6

Note: Orientation of “-” is the same as the orientation specified by “refPoint”.

RS series 1: Converts the hand orientation (Hand Flag), J1Flag or J2Flag. This is the default
setting when “orientationFlag” is omitted.

 2: Converts the hand orientation (Hand Flag), J1Flag or J2Flag. Prevents the U
axis from moving out of motion range at “orientationFlag” convert.

N2 series 1: Converts to the posture with minimum joint movement in priority order of Joint
#1 and Joint #5. The target postures are hand orientation (Hand Flag), elbow
orientation (Elbow Flag), wrist orientation (Wrist Flag), J4Flag, and J6Flag.
The elbow orientation (Elbow Flag) is always above elbow orientation. This is
the default setting when “orientationFlag” is omitted.

 2: Converts to the posture with minimum joint movement in priority order of Joint
#1 and Joint #4. The target postures are hand orientation (Hand Flag), elbow
orientation (Elbow Flag), wrist orientation (Wrist Flag), J4Flag, and J6Flag.
The elbow orientation (Elbow Flag) is always above elbow orientation.

 3: Converts the wrist orientation (Wrist Flag), J4Flag, and J6Flag so that Joint #4
will be the shortest movement.

 4: Converts the J4Flag and J6Flag.

LJM Function

462 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

 5: Change the hand orientation specified by “refPoint” to different hand orientation
(Hand Flag). Converts the wrist orientation (Wrist Flag), J4Flag, J6Flag or
J1Flag so that Joint #5 will be the shortest movement. The target postures are
hand orientation (Hand Flag), elbow orientation (Elbow Flag), wrist orientation
(Wrist Flag), J4Flag, and J6Flag. The elbow orientation (Elbow Flag) is always
above elbow orientation.

 6: Change the hand orientation specified by “refPoint” to different hand orientation
(Hand Flag). Converts the wrist orientation (Wrist Flag), J4Flag, J6Flag or
J1Flag so that Joint #4 will be the shortest movement. The target postures are
hand orientation (Hand Flag), elbow orientation (Elbow Flag), wrist orientation
(Wrist Flag), J4Flag, and J6Flag. The elbow orientation (Elbow Flag) is always
above elbow orientation.

 7: Change the elbow orientation to the below elbow orientation (Elbow Flag). To
be the shortest movement, converts the wrist orientation (Wrist Flag), J4Flag,
and J6Flag in priority order of Joint #1 and Joint #5. The target postures are
hand orientation (Hand Flag), elbow orientation (Elbow Flag), wrist orientation
(Wrist Flag), J4Flag, and J6Flag.

 8: Change the elbow orientation to the below elbow orientation (Elbow Flag). To
be the shortest movement, converts the wrist orientation (Wrist Flag), J4Flag,
and J6Flag in priority order of Joint #1 and Joint #4. The target postures are
hand orientation (Hand Flag), elbow orientation (Elbow Flag), wrist orientation
(Wrist Flag), J4Flag, and J6Flag.

“orientation
Flag”

Hand
orientation

Elbow
orientation

Wrist
orientation J4Flag J6Flag

Priority order of axis
with the shortest

movement
1 *1 J1>J5
2 *1 J1>J4
3 - - J4
4 - - - -
5 *2 *1 J5
6 *2 *1 J4
7 *3 J1>J5
8 *3 J1>J4

Note: Orientation of “-” is the same as the orientation specified by “refPoint”.
*1: Above elbow orientation
*2: Hand orientation is different from the orientation specified by “refPoint”.
*3: Below elbow orientation

N6 series 1: Converts the wrist orientation (Wrist Flag), J4Flag, and J6Flag so that Joint #4
will be the shortest movement. This is the default setting when “orientationFlag”
is omitted.

 2: Converts the J4Flag and J6Flag.
 3: Converts the wrist orientation (Wrist Flag), J4Flag, J6Flag or J1Flag so that

Joint #5 will be the shortest movement.
 4: Converts the wrist orientation (Wrist Flag), J4Flag, J6Flag or J1Flag so that

Joint #6 will be the shortest movement.

Note: Orientation of “-” is the same as the orientation specified by “refPoint”.

“orientation
Flag”

Hand
orientation

Elbow
orientation

Wrist
orientation J1Flag J4Flag J6Flag Priority order of axis with

the shortest movement
1 - - J4
2 - - - -
3 - - J5
4 - - J6

LJM Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 463

Description
When the 6-axis or N series robot moves to a point calculated by such as pallet or relative offsets, the wrist
part may rotate to an unintended direction. The point calculation above does not depend on robot models
and results in motion without converting the required point flag.
LJM function can be used to convert the point flag to prevent the unintended wrist rotation.

For the N series robots, it is also possible to reduce the cycle time and omit teaching of the avoidance point,
which is necessary for the 6-axis robots, by changing the Hand Flag and Elbow Flag.

When the RS series robot moves to a point calculated by such as pallet or relative offsets, Arm #1 may rotate
to an unintended direction. LJM function can be used to convert the point flag to prevent the unintended
rotation of Arm #1.

In addition, the U axis of an RS series robot may go out of motion range when the orientation flag is converted,
which will cause an error.
To prevent this error, the LJM function adjusts the U axis target angle so that it is inside the motion range.
This is available when “2” is selected for orientationFlag.

Returns the specified point for all robots except the 6-axis, N series, and RS series robot.

Note
The reference point omission and Parallel Processing

You cannot use both of the parallel point omission and parallel processing in one motion command like this:
Go LJM(P10) ! D10; MemOn 1 !

Be sure to change the program like this:
P999 = Here
Go LJM(P10,P999) ! D10; MemOn 1 !

orientationFlag for N2 series
- orientationFlag 1, 2:

To shorten the cycle time, select orientationFlag 1 or 2.
Since the posture has minimum Joint #1 movement, the cycle time can be shortest in most motion.
To reduce the Joint #5 movement, select orientationFlag 1.
To reduce the Joint #4 movement, select orientationFlag 2.

- orientationFlag 3, 4:
Use these flags if you do not want to change the reference orientation, hand orientation, and elbow
orientation.
Use these flags if you want to use them in a same manner as the flags for vertical 6-axis robots.
orientationFlag 3 is same as orientationFlag 1 of the vertical 6-axis robots.
orientationFlag 4 is same as orientationFlag 2 of the vertical 6-axis robots.

- orientationFlag 5, 6:
If the hand collides with peripheral walls during the operation, select orientationFlag 5 or 6.
Since the hand passes the neighborhood of the robot’s origin point, the robot can move with less
possibility to collide with the obstacles.
To reduce the Joint #5 movement, select orientationFlag 5.
To reduce the Joint #4 movement, select orientationFlag 6.

- orientationFlag 7, 8:
To have a below elbow orientation, select orientationFlag 7 or 8.
Depending on motion, the robot passes the neighborhood of the origin like orientationFlag 5 and
orientationFlag 6. Therefore, the robot can move with less possibility to collide with the obstacles, if
these are located around the robot.
To reduce the Joint #5 movement, select orientationFlag 7.
To reduce the Joint #4 movement, select orientationFlag 8.

localNumber
Local numbers of the points returned by LJM function are the same as that of “Point Expression”.

LJM Function

464 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

See Also
Pallet

LJM Function Example

Function main
 Integer i, j

 P0 = XY(300, 300, 300, 90, 0, 180)
 P1 = XY(200, 280, 150, 90, 0, 180)
 P2 = XY(200, 330, 150, 90, 0, 180)
 P3 = XY(-200, 280, 150, 90, 0, 180)

 Pallet 1, P1, P2, P3, 10, 10

 Motor On
 Power High
 Speed 50; Accel 50, 50
 SpeedS 1000; AccelS 5000

 Go P0
 P11 = P0 -TLZ(50)

 For i = 1 To 10
 For j = 1 To 10
 'Specify points
 P10 = P11 'Depart point
 P12 = Pallet(1, i, j) 'Target point
 P11 = P12 -TLZ(50) 'Start approach point
 'Converting each point to LJM
 P10 = LJM(P10)
 P11 = LJM(P11, P10)
 P12 = LJM(P12, P11)
 'Execute motion
 Jump3 P10, P11, P12 C0
 Next
 Next
Fend

Function main2
 P0 = XY(300, 300, 300, 90, 0, 180)
 P1 = XY(400, 0, 150, 90, 0, 180)
 P2 = XY(400, 500, 150, 90, 0, 180)
 P3 = XY(-400, 0, 150, 90, 0, 180)
 Pallet 1, P1, P2, P3, 10, 10

 Motor On
 Power High
 Speed 50; Accel 50, 50
 SpeedS 1000; AccelS 5000

 Go P0

 Do
 ' Specify points
 P10 = Here -TLZ(50) 'Depart point
 P12 = Pallet(1, Int(Rnd(9)) + 1, Int(Rnd(9)) + 1) 'Target point
 P11 = P12 -TLZ(50) 'Start approach point

 If TargetOK(P11) And TargetOK(P12) Then 'Point check
 ' Converting each point to LJM
 P10 = LJM(P10)
 P11 = LJM(P11, P10)
 P12 = LJM(P12, P11)
 'Execute motion
 Jump3 P10, P11, P12 C0
 EndIf
 Loop
Fend

LoadPoints Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 465

LoadPoints Statement

Loads a point file into the point memory area for the current robot.

Syntax

LoadPoints fileName [, Merge]

Parameters

fileName String expression containing the specific file to load into the current robot's point
memory area. The extension must be .PTS. The file must exist in the current project
for the current robot.
You cannot specify a file path and fileName doesn’t have any effect from ChDisk.
See ChDisk for the details.

Merge Optional. If supplied, then the current points are not cleared before loading the new
points. Points in the file are added to the current points. If a point exists in the file, it
will overwrite the point in memory.

Description

LoadPoints loads point files from disk into the main memory area of the controller for the current robot.

Use Merge to combine point files. For example, you could have one main point file that includes common
points for locals, parking, etc. in the range from 0 to 100. Then use Merge to load other point files for each
part being run without clearing the common points. The range could be from 101 to 999.

Potential Errors
A Path Cannot be Specified

If fileName contains a path, an error will occur. Only a file name in the current project can be specified.
File Does Not Exist

If fileName does not exist, an error will occur.
Point file not for the current robot

If fileName is not a point file for the current robot, the following error will be issued: Point file not found
for current robot. To correct this, add the Point file to the robot in the Project editor, or execute SavePoints
or ImportPoints.

See Also

ImportPoints, Robot, SavePoints

LoadPoints Statement Example
Function main
 ' Load common points for the current robot
 LoadPoints "R1Common.pts"

 ' Merge points for part model 1
 LoadPoints "R1Model1.pts", Merge

 Robot 2
 ' Load point file for the robot 2
 LoadPoints "R2Model1.pts"

Fend

Local Statement

466 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Local Statement

Defines and displays local coordinate systems.

Syntax

(1) Local localNumber, (pLocal1 : pBase1), (pLocal2 : pBase2) [, { L | R }] [, BaseU]
(2) Local localNumber, pCoordinateData
(3) Local localNumber, pOrigin, [pXaxis], [pYaxis], [{ X | Y }]
(4) Local localNumber

Parameters
localNumber The local coordinate system number. A total of 15 local coordinate systems (of the

integer value from 1 to 15) may be defined.
pLocal1, pLocal2 Point variables with point data in the local coordinate system.
pBase1, pBase2 Point variables with point data in the base coordinate system.
L | R Optional. Align local origin to left (first) or right (second) base points.
BaseU Optional. When supplied, U axis coordinates are in the base coordinate system. When

omitted, U axis coordinates are in the local coordinate system.
pCoordinateData Point data representing the coordinate data of the origin and direction.

When it’s SCARA Robots (include RS series), specify V coordinate and W
coordinate to “0”.

pOrigin Integer expression representing the origin point using robot coordinate system.
pXaxis Optional. Integer expression representing a point along the X axis using robot

coordinate system if X alignment is specified.
pYaxis Optional. Integer expression representing a point along the Y axis using robot

coordinate system if Y alignment is specified.
X | Y If X alignment is specified, then pXaxis lies on the X axis of the local. The Y axis and

Z axis are calculated to be orthogonal to X in the plane that is created by the 3 local
points. If Y alignment is specified, then pYaxis lies on the Y axis of the local. The X
axis and Z axis are calculated to be orthogonal to Y in the plane that is created by the
3 local points.

Description

(1) Local defines a local coordinate system by specifying 2 points, pLocal1 and pLocal2, contained in it that
coincide with two points, pBase1 and pBase2, contained in the base coordinate system.

Example:
Local 1, (P1:P11), (P2:P12)

P1 and P2 are local coordinate system points. P11 and P12 are base coordinate system points.

If the distance between the two specified points in the local coordinate system is not equal to that between
the two specified points in the base coordinate system, the XY plane of the local coordinate system is
defined in the position where the midpoint between the two specified points in the local coordinate system
coincides with that between the two specified points in the base coordinate system.

Similarly, the Z axis of the local coordinate system is defined in the position where the midpoints coincide
with each other.

Local Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 467

(2) Defines a local coordinate system by specifying the origin and axis rotation angles with respect to the
base coordinate system.

Example:

Local 1, XY(x, y, z, u)
Local 1, XY(x, y, z, u, v, w)
Local 1, P1

(3) Defines a 3D local coordinate system by specifying the origin point, x axis point, and y axis point. Only

the X, Y, and Z coordinates of each point are used. The U, V, and W coordinates are ignored. When the
X alignment parameter is used, then pXaxis is on the X axis of the local and only the Z coordinate of
pYaxis is used. When the Y alignment parameter is used, then pYaxis is on the Y axis of the local and
only the Z coordinate of pXaxis is used.

Example:

Local 1, P1, P2, P3
Local 1, P1, P2, P3, X
Local 1, P1, P2, P3, Y

(4) Displays the specified local settings.

Using L and R parameters
While Local basically uses midpoints for positioning the axes of your local coordinate system as described
above, you can optionally specify left or right local by using the L and R parameters.

Left Local
Left local defines a local coordinate system by specifying point pLocal1 corresponding to point pBase1 in
the base coordinate system (Z axis direction is included.)

Right Local
Right local defines a local coordinate system by specifying point pLocal2 corresponding to point pBase2 in
the base coordinate system. (Z axis direction is included.)

Using the BaseU parameter
If the BaseU parameter is omitted, then the U axis of the local coordinate system is automatically corrected
in accordance with the X and Y coordinate values of the specified 4 points. Therefore, the 2 points in the
base coordinate system may initially have any U coordinate values.

It may be desired to correct the U axis of the local coordinate system based on the U coordinate values of the
two points in the base coordinate system, rather than having it automatically corrected (e.g. correct the
rotation axis through teaching). To do so, supply the BaseU parameter.

Robot parameter data is stored in compact flash in controller. Therefore, writing to command flash occurs
when executing this command. Frequent writing to compact flash affect to lifetime of compact flash. We
recommend to use this command minimally.

Local Statement

468 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Note
When it’s SCARA Robots, do not set for V and W.

When you use SCARA Robot, not to set value to V and W coordinate in base coordinate or input “0”. If you
set them, an error may occur out of the J4.

See Also

ArmSet, Base, ECPSet, LocalClr, TLSet, Where

Local Statement Examples

Here are some examples from the command window:

Left aligned local:

> p1 = 0, 0, 0, 0/1
> p2 = 100, 0, 0, 0/1
> p11 = 150, 150, 0, 0
> p12 = 300, 150, 0, 0
> local 1, (P1:P11), (P2:P12), L
> p21 = 50, 0, 0, 0/1
> go p21

Local defined with only the origin point:

> local 1, 100, 200, -20, 0

Local defined with only the origin point rotated 45 degrees about the X axis:

> local 2, 50, 200, 0, 0, 45, 0

3D Local with p2 aligned with the X axis of the local:

> local 3, p1, p2, p3, x

3D Local with p3 aligned with the Y axis of the local:

> local 4, p1, p2, p3, y

Local Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 469

Local Function

Returns the specified local coordinate system data as a point.

Syntax
Local(localNumber)

Parameters
localNumber local coordinate system number (integer from 1 to 15) using an expression or numeric

value.

Return Values
Specified local coordinate system data as point data.

See Also
Local Statement

Local Function Example

P1 = Local(1)

LocalClr Statement

470 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

LocalClr Statement

Clears (undefines) a local coordinate system.

Syntax

LocalClr localNumber

Parameters

localNumber Integer expression representing which of 15 locals (integer from 1 to 15) to clear
(undefine).

Description

Robot parameter data is stored in compact flash in controller. Therefore, writing to command flash occurs
when executing this command. Frequent writing to compact flash affect to lifetime of compact flash. We
recommend to use this command minimally.

See Also

Arm, ArmSet, ECPSet, Local, Tool, TLClr, TLSet

LocalClr Statement Example

LocalClr 1

LocalDef Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 471

LocalDef Function

Returns local definition status.

Syntax

LocalDef (localCoordinateNumber)

Parameters

localCoordinateNumber Integer expression representing which local coordinate to return status for.

Return Values

True if the specified local has been defined, otherwise False.

See Also

Arm, ArmClr, ArmSet, ECPSet, Local, LocalClr, Tool, TLClr, TLSet

LocalDef Function Example

Function DisplayLocalDef(localNum As Integer)

 If LocalDef(localNum) = False Then
 Print "Local ", localNum, "is not defined"
 Else
 Print "Local 1: ",
 Print Local(localNum)
 EndIf
Fend

Lof Function

472 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Lof Function

Checks whether the specified RS-232 or TCP/IP port has any lines of data in its buffer.

Syntax

Lof (fileNumber As Integer)

Parameters

fileNumber A number specified with OpenCom (RS-232C) or OpenNet (TCP/IP) statement.

Return Values

The number of lines of data in the buffer. If there is no data in the buffer, Lof returns “0”.

Description

Lof checks whether or not the specified port has received data lines. The data received is stored in the buffer
irrespective of the Input# instruction.
You can wait for the return value of Lof function by executing Wait.

Note
About the Controllers to use

For T/VT series, an error will occur at operation when RS-232C port of the Controller is specified.
When using PC COM port (1001 to 1008), you cannot use Lof function with Wait command.

See Also

ChkCom, ChkNet, Input#, Wait

Lof Function Example
This Command window example prints out the number of lines of data received through the communication
port number 1.

>print lof(1)
 5
>

LogIn Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 473

LogIn Statement

Log into EPSON RC+ 6.0 as another user.

Syntax

LogIn logID, password

Parameters

logID String expression that contains user login id.
password String expression that contains user password.

Description

You can utilize EPSON RC+ security in your application. For example, you can display a menu that
allows different users to log into the system. Each type of user can have its own security rights. For more
details on security, see the EPSON RC+ User's Guide.

When you are running programs in the development environment, the user before programs are started will
be restored after programs stop running.

When running the Operator Window in Auto Mode, the application is logged in as a guest user, unless
Auto LogIn is enabled, in which case the application is logged in as the current Windows user if such user
has been configured in the EPSON RC+ system.

Note
This command will only work if the Security option is active.

See Also

GetCurrentUser$ Function

LogIn Statement Example

Integer errCode
errCode = LogIn("operator", "oprpass")

Long Statement

474 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Long Statement

Declares variables of type long integer. (4 byte whole number).

Syntax

Long varName [(subscripts)] [, varName [(subscripts)]...]

Parameters

varName Variable name which the user wants to declare as type Long.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared. The

subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 and the available

number of array elements is the upper bound value + 1.
 When specifying the upper bound value, make sure the number of total elements is

within the range shown below:
Local variable 2,000
Global Preserve variable 4,000
Global variable and module variable 100,000

Description

Long is used to declare variables as type Long. Variables of type Long can contain whole numbers with
values between -2,147,483,648 to 2,147,483,647. Local variables should be declared at the top of a function.
Global and module variables must be declared outside of functions.

See Also
Boolean, Byte, Double, Global, Int32, Int64, Integer, Real, Short, String, UByte, UInt32, UInt64,
UShort

Long Statement Example

The following example shows a simple program which declares some variables as Longs using Long.

Function longtest
 Long A(10) 'Single dimension array of long
 Long B(10, 10) 'Two dimension array of long
 Long C(5, 5, 5) 'Three dimension array of long
 Long var1, arrayVar(10)
 Long i
 Print "Please enter a Long Number"
 Input var1
 Print "The Integer variable var1 = ", var1
 For i = 1 To 5
 Print "Please enter a Long Number"
 Input arrayVar(i)
 Print "Value Entered was ", arrayVar(i)
 Next I
Fend

LSet$ Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 475

LSet$ Function

Returns the specified string with trailing spaces appended up to the specified length.

Syntax

LSet$ (string, length)

Parameters

string String expression.
length Integer expression for the total length of the string returned.

Return Values

Specified string with trailing spaces appended.

See Also

RSet$, Space$

LSet$ Function Example

temp$ = "123"
temp$ = LSet$(temp$, 10) ' temp$ = "123 "

LShift Function

476 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

LShift Function

Shifts numeric data to the left by a user specified number of bits.

Syntax

LShift(number, shiftBits)

Parameters

number Integer expression to be shifted.
shiftBits The number of bits (integer from 0 to 31) to shift number to the left.

Return Values

Returns a numeric result which is equal to the value of number after shifting left shiftBits number of bits.

Description

LShift shifts the specified numeric data (number) to the left (toward a higher order digit) by the specified
number of bits (shiftBits). The low order bits shifted are replaced by 0.

The simplest explanation for LShift is that it simply returns the result of number * 2 shiftBits.

Note
Numeric Data Type:

The numeric data number may be any valid numeric data type. LShift works with data types: Byte, Double,
Int32, Integer, Long, Real, Short, UByte, UInt32, and UShort.

See Also

And, LShift64, Not, Or, RShift, RShift64, Xor

LShift Function Example

Function lshiftst
 Integer i
 Integer num, snum
 num = 1
 For i = 1 to 10
 Print "i =", i
 snum = LShift(num, i)
 Print "The shifted num is ", snum
 Next i
Fend

Some other example results from the LShift instruction from the command window.

> Print LShift(2,2)
8
> Print LShift(5,1)
10
> Print LShift(3,2)
12
>

LShift64 Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 477

LShift64 Function

Shifts numeric data to the left by a user specified number of bits.

Syntax

LShift64(number, shiftBits)

Parameters

number Integer expression to be shifted.
shiftBits The number of bits (integer from 0 to 63) to shift number to the left.

Return Values

Returns a numeric result which is equal to the value of number after shifting left shiftBits number of bits.

Description

LShift64 shifts the specified numeric data (number) to the left (toward a higher order digit) by the specified
number of bits (shiftBits). The low order bits shifted are replaced by 0.

The simplest explanation for LShift64 is that it simply returns the result of number * 2 shiftBits.

Note
Numeric Data Type:

The numeric data number may be any valid numeric data type. LShift64 works with data types: Int64 and
UInt64.

See Also

And, LShift, Not, Or, RShift, RShift64, Xor

LShift64 Function Example

Function lshiftst
 Int64 i
 Int64 num, snum
 num = 1
 For i = 1 to 10
 Print "i =", i
 snum = LShift64(num, i)
 Print "The shifted num is ", snum
 Next i
Fend

Some other example results from the LShift64 instruction from the command window.

> Print LShift64(2,2)
8
> Print LShift64(5,1)
10
> Print LShift64(3,2)
12
>

LTrim$ Function

478 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

LTrim$ Function

Returns a string equal to specified string without leading spaces.

Syntax

LTrim$ (string)

Parameters

string String expression.

Return Values

Specified string with leading spaces removed.

See Also
RTrim$, Trim$

LTrim$ Function Example

str$ = " data "
str$ = LTrim$(str$) ' str$ = "data "

Mask Operator

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 479

Mask Operator

Bitwise mask for Wait statement condition expression.

Syntax

Wait expr1 Mask exrp2

Parameters

expr1 Any valid expression input condition for Wait.
expr2 Any valid expression which returns a numeric result.

Description

The Mask operator is a bitwise And for Wait statement input condition expressions.

See Also

Wait

Mask Operator Example

' Wait for the lower 3 bits of input port 0 to equal 1
Wait In(0) Mask 7 = 1

MCal Statement

480 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

MCal Statement

Executes machine calibration for robots with incremental encoders.

Syntax

MCal

Description

It is necessary to calibrate robots which have incremental encoders. This calibration must be executed after
turning on the main power. If you attempt motion command execution, or any command which requires the
current position data without first executing machine calibration, an error will occur.

Machine calibration is executed according to the moving joint order which is specified with the MCordr
command. The default value of MCordr at the time of shipment differs from model to model, so please
refer to the proper manipulator manual for details.

Potential Errors
Attempt to Execution a Motion command without Executing Mcal First

If you attempt motion command execution, or any command which requires the current position data (e.g.
Plist* instruction) without first executing machine calibration, an error will occur.

Absolute encoder robots
Absolute encoder robots do not need MCAL.

Robot Installation Note
Z Joint Space Required for Homing

When the Z joint homes it first moves up and then moves down and settles into the home position. This
means it is very important to properly install the robot so that enough space is provided for the arm to home
the Z joint. It is recommended that a space of 6 mm be provided above the upper limit. (Do not install
tooling or fixtures within a 6 mm space above the robot so enough room is left for proper Z joint homing.)

See Also

Hofs, Home, Hordr, Mcorg, MCordr

Mcal Statement Example

The following example is done from the monitor window:

> Motor On
> Mcal
>

MCalComplete Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 481

MCalComplete Function

Returns status of MCal.

Syntax

MCalComplete

Return Values

True if MCal has been completed, otherwise False.

See Also

MCal

MCalComplete Function Example

If Not MCalComplete Then
 MCal
EndIf

MCordr Statement

482 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

MCordr Statement

Specifies and displays the moving joint order for machine calibration Mcal.
Required only for robots with incremental encoders.

Syntax

(1) MCordr Step1, Step2, Step3, Step4 [, Step5] [, Step6] [, Step7] [, Step8] [, Step9]
(2) MCordr

Parameters

Step1 Bit pattern that tells which axes should be calibrated during the 1st step of the Mcal process.
Any number of axes between 0 to all 4 axes may calibrate during the 1st step. (see below for
bit pattern definitions)

Step2 Bit pattern that tells which axes should be calibrated during the 2nd step of the Mcal process.
Any number of axes between 0 to all 4 axes may calibrate during the 2nd step. (see below for
bit pattern definitions)

Step3 Bit pattern that tells which axes should be calibrated during the 3rd step of the Mcal process.
Any number of axes between 0 to all 4 axes may calibrate during the 3rd step. (see below for
bit pattern definitions)

Step4 Bit pattern that tells which axes should be calibrated during the 4th step of the Mcal process.
Any number of axes between 0 to all 4 axes may calibrate during the 4th step. (see below for
bit pattern definitions)

Step5 Bit pattern that tells which axes should be calibrated during the 5th step of the Mcal process.
Any number of axes between 0 to all 4 axes may calibrate during the 5th step. (see below for
bit pattern definitions)

Step6 Bit pattern that tells which axes should be calibrated during the 6th step of the Mcal process.
Any number of axes between 0 to all 4 axes may calibrate during the 6th step. (see below for
bit pattern definitions)

Step7 Bit pattern that tells which axes should be calibrated during the 7th step of the Mcal process.
Any number of axes between 0 to all 4 axes may calibrate during the 7th step. (see below for
bit pattern definitions)

Step8 Bit pattern that tells which axes should be calibrated during the 8th step of the Mcal process.
Any number of axes between 0 to all 4 axes may calibrate during the 8th step. (see below for
bit pattern definitions)

Step9 Bit pattern that tells which axes should be calibrated during the 9th step of the Mcal process.
Any number of axes between 0 to all 4 axes may calibrate during the 9th step. (see below for
bit pattern definitions)

Return Values

Displays current Machine Calibration Order when parameters are omitted.

Description

After the system is powered on, Mcal instruction must be issued prior to any robot arm operation. When the
Mcal instruction is issued each of the 4 axes of the robot will move to their respective calibration positions.

Specifies joint motion order for the Mcal command. (i.e. Defines which joint will home 1st, which joint will
Mcal 2nd, 3rd, etc.)

The purpose of the MCordr instruction is to allow the user to change the homing order. The homing order is
broken into 9 separate steps. The user then uses MCordr to define the specific axes which will move to the
calibration position (done with the Mcal command) during each step. It is important to realize that more than
1 joint can be defined to move to the calibration position during a single step. This means that all four axes
can potentially be calibrated at the same time. However, it is recommended that the Z joint normally be

MCordr Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 483

defined to move to the calibration position first (in Step 1) and then allow the other Axes to follow in
subsequent steps. (See Notes below)

The MCordr instruction expects that a bit pattern be defined for each of the 9 steps. Since there are 4 axes,
each joint is assigned a specific bit. When the bit is high (1) (for a specific step), then the corresponding
joint will calibrate. When the bit is low (0), then the corresponding joint will not calibrate during that step.
The joint bit patterns are assigned as follows:

Joint: 1 2 3 4
Bit Number: bit 0 bit 1 bit 2 bit 3
Binary Code: &B000001 &B000010 &B000100 &B001000

Joint: 5 6 7 8 9
Bit Number: bit 4 bit 5 bit 6 bit 7 bit 8
Binary Code: &B010000 &B100000 &B1000000 &B10000000 &B100000000

Notes
Difference Between MCordr and Hordr

While at first glance the Hordr and MCordr commands may appear very similar there is one major difference
which is important to understand. MCordr is used to define the Robot Calibration joint order (used with
Mcal) while Hordr is used to define the Homing joint order (used with the Home command).

Default MCal Order (Factory Setting)
The default joint calibration order from the factory is that joint 3 will home in Step 1. Then joints 1, 2, and
4 joints will all home at the same time in step 2. (Steps 3 and 4 are not used in the default configuration.)
The default MCordr values are as follows:
 MCordr &B0100, &B1011, 0, 0

Z Joint should normally be calibrated first
The reason for moving the Z joint first (and by itself) is to allow the tooling to be moved above the work
surface before beginning any horizontal movement. This will help prevent the tooling from hitting something
in the work envelope during the homing process.

MCordr values are maintained
The MCordr Table values are permanently saved and are not changed until either the user changes them or
the robot is redefined.

See Also

Mcal

MCordr Statement Example

Following are some monitor window examples:

This example defines the calibration order as J3 in the first step, J1 in second step, J2 in third step, and J4
in the fourth step. The order is specified with binary values.

>mcordr &B0100, &B0001, &B0010, &B1000

This example defines the calibration order as J3 in the first step, then J1, J2 and J4 joints simultaneously in
the second step. The order is specified with decimal values.

>mcordr 4, 11, 0, 0

This example displays the current calibration order in decimal numbers.

>mcordr
4, 11, 0, 0
>

MCordr Function

484 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

MCordr Function

Returns an MCordr parameter setting.

Syntax

MCordr (paramNumber)

Parameters

paramNumber Specifies reference setting numbers (integers from 1 to 9) by an expression or
numeric value.

Return Values

Returns binary values (integers) representing the joint of the specified setting number to execute machine
calibration.

Description

Returns the joint motion order to execute machine calibration by Mcal.

See Also

Mcal

MCordr Function Example

This example uses the MCordr function in a program:

Integer a
a = MCordr(1)

MemIn Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 485

MemIn Function

Returns the status of the specified memory I/O port. Each port contains 8 memory bits.

Syntax

MemIn(portNumber)

Parameters

portNumber Integer expression representing memory I/O bytes.

Return Values

Returns an integer value between 0 and 255. The return value is 8 bits, with each bit corresponding to 1
memory I/O bit.

Description

MemIn provides the ability to look at the value of 8 memory I/O bits at the same time. The MemIn instruction
can be used to store the 8 memory I/O bit status into a variable or it can be used with the Wait instruction to
Wait until a specific condition which involves more than 1 memory I/O bit is met.

Since 8 bits are retrieved at a time, the return value ranges from 0 and 255. Please review the chart below to
see how the integer return values correspond to individual memory I/O bits.

Memory I/O Bit Result (Using Port #0)
Return Values 7 6 5 4 3 2 1 0

1 Off Off Off Off Off Off Off On
5 Off Off Off Off Off On Off On
15 Off Off Off Off On On On On
255 On On On On On On On On

Memory I/O Bit Result (Using Port #31)

Return Values 255 254 253 252 251 250 249 248
3 Off Off Off Off Off Off On On
7 Off Off Off Off Off On On On
32 Off Off On Off Off Off Off Off
255 On On On On On On On On

Note
Difference Between MemIn and MemSw

The MemSw instruction allows the user to read the value of 1 memory I/O bit. The return value from MemSw
is either a 1 or a 0 which indicates that the memory I/O bit is either On or Off. MemSw can check each of
the memory I/O bits individually. The MemIn instruction is very similar to the MemSw instruction in that it
also is used to check the status of the memory I/O bits. However there is 1 distinct difference. The MemIn
instruction checks 8 memory I/O bits at a time vs. the single bit checking functionality of the MemSw
instruction. MemIn returns a value between 0 and 255 which tells the user which of the 8 I/O bits are On and
which are Off.

See Also

In, InBCD, Off, MemOff, On, MemOn, OpBCD, Oport, Out, MemOut, Sw, MemSw, Wait

MemIn Function

486 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

MemIn Function Example
The program example below gets the current value of the first 8 memory I/O bits and then makes sure that
all 8 I/O are currently set to “0” before proceeding. If they are not “0” an error message is given to the
operator and the task is stopped.

Function main
 Integer var1

 var1 = MemIn(0) 'Get the 1st 8 memory I/O bit value
 If var1 = 0 Then
 Go P1
 Go P2
 Else
 Print "Error in initialization!"
 Print "First 8 memory I/O bits were not all set to 0"
 EndIf
Fend

Other simple examples from the Command window are as follows:

> memout 0, 1
> print MemIn(0)
1
> memon 1
> print MemIn(0)
3
> memout 31,3
> print MemIn(31)
3
> memoff 249
> print MemIn(31)
1
>

MemInW Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 487

MemInW Function

Returns the status of the specified memory I/O word port. Each word port contains 16 memory I/O bits.

Syntax

MemInW(WordPortNum)

Parameters

WordPortNum Integer expression representing the I/O word port.

Return Values

Returns the current status of the memory I/O (long integers from 0 to 65535).

See Also

MemIn, MemOut, MemOutW

MemInW Function Example

Long word0

word0 = MemInW(0)

MemOff Statement

488 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

MemOff Statement

Turns Off the specified bit of the memory I/O.

Syntax

MemOff { bitNumber | memIOLabel }

Parameters

bitNumber Integer expression representing memory I/O bits.
memIOLabel Memory I/O label.

Description

MemOff turns Off the specified bit of memory I/O. The 256 memory I/O bits are typically excellent choices
for use as status bits for uses such as On/Off, True/False, Done/Not Done, etc. The MemOn instruction turns
the memory bit On, the MemOff instruction turns it Off, and the MemSw instruction is used to check the
current state of the specified memory bit. The Wait instruction can also be used with the memory I/O bit to
cause the system to wait until a specified memory I/O status is set.

Note
Memory outputs off

All memory I/O bits are turned off when the controller are restarted. They are not turned off by Emergency
stop, safeguard open, program end, Reset command, or EPSON RC+ restart.

See Also

In, MemIn, InBCD, Off, On, MemOn, OpBCD, Oport, Out, MemOut, Sw, MemSw, Wait

MemOff Statement Example

The example shown below shows 2 tasks each with the ability to initiate motion instructions. However, a
locking mechanism is used between the 2 tasks to ensure that each task gains control of the robot motion
instructions only after the other task is finished using them. This allows 2 tasks to each execute motion
statements as required and in an orderly predictable fashion. MemSw is used in combination with the Wait
instruction to wait until the memory I/O #1 is the proper value before it is safe to move again. MemOn and
MemOff are used to turn on and turn off the memory I/O for proper synchronization.

Function main
 Integer I
 MemOff 1
 Xqt 2, task2
 For i = 1 to 100
 Wait MemSw(1) = Off
 Go P(i)
 MemOn 1
 Next I
Fend

Function task2
 Integer I
 For i = 101 to 200
 Wait MemSw(1) = On
 Go P(i)
 MemOff 1
 Next I
Fend

MemOff Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 489

Other simple examples from the command window are as follows:

> MemOn 1 'Switch memory I/O bit #1 on
> Print MemSw(1)
1
> MemOff 1 'Switch memory I/O bit #1 off
> Print MemSw(1)
0

MemOn Statement

490 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

MemOn Statement

Turns On the specified bit of the memory I/O.

Syntax

MemOn { bitNumber | memIOLabel }

Parameters

bitNumber Integer expression representing memory I/O bits.
memIOLabel Memory I/O label.

Description

MemOn turns on the specified bit of the robot memory I/O. The 256 memory I/O bits are typically used as
task communication status bits. The MemOn instruction turns the memory bit On, the MemOff instruction
turns it Off, and the MemSw instruction is used to check the current state of the specified memory bit. The
Wait instruction can also be used with the memory bit to cause the system to wait until a specified status is
set.

Note
Memory outputs off

All memory I/O bits are turned off when the controller are restarted. They are not turned off by Emergency
stop, safeguard open, program end, Reset command, or EPSON RC+ restart.

See Also

In, MemIn, InBCD, Off, MemOff, On, OpBCD, Oport, Out, MemOut, Sw, MemSw, Wait

MemOn Statement Example
The example shown below shows 2 tasks each with the ability to initiate motion instructions. However, a
locking mechanism is used between the 2 tasks to ensure that each task gains control of the robot motion
instructions only after the other task is finished using them. This allows 2 tasks to each execute motion
statements as required and in an orderly predictable fashion. MemSw is used in combination with the Wait
instruction to wait until the memory I/O #1 is the proper value before it is safe to move again. MemOn and
MemOff are used to turn on and turn off the memory I/O for proper synchronization.

Function main
 Integer I
 MemOff 1
 Xqt 2, task2
 For i = 1 to 100
 Wait MemSw(1) = Off
 Go P(i)
 MemOn 1
 Next I
Fend

Function task2
 Integer I
 For i = 101 to 200
 Wait MemSw(1) = On
 Go P(i)
 MemOff 1
 Next I
Fend

Other simple examples from the command window are as follows:

MemOn Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 491

> memon 1
> print memsw(1)
1
> memoff 1
> print memsw(1)
0

MemOut Statement

492 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

MemOut Statement

Simultaneously sets 8 memory I/O bits.

Syntax

MemOut portNumber, outData

Parameters
portNumber Integer expression representing memory I/O bit port number. The portNumber selection

corresponds to the following:
Port number Outputs

0 0-7
1 8-15
. .

outData Integer expression between 0 and 255 representing the output pattern for the output group
selected by portNumber. If represented in hexadecimal form the range is from &H0 to &HFF.
The lower digit represents the least significant digits (or the 1st 4 outputs) and the upper digit
represents the most significant digits (or the 2nd 4 outputs).

Description

MemOut simultaneously sets 8 memory I/O bits using the combination of the portNumber and outData
values specified by the user to determine which outputs will be set. The portNumber parameter specifies
which group of 8 outputs to use where portNumber = 0 means outputs 0 to 7, portNumber = 1 means outputs
8 to 15, etc.

Once a portNumber is selected, a specific output pattern must be defined. This is done using the outData
parameter. The outData parameter may have a value between 0 and 255 and may be represented in
hexadecimal or integer format. (i.e. &H0 to &HFF or 0 to 255)

The table below shows some of the possible I/O combinations and their associated outData values assuming
that portNumber is “0”, and “1” accordingly.

Output Settings When portNumber=0 (Output number)
OutData Value 7 6 5 4 3 2 1 0

01 Off Off Off Off Off Off Off On
02 Off Off Off Off Off Off On Off
03 Off Off Off Off Off Off On On
08 Off Off Off Off On Off Off Off
09 Off Off Off Off On Off Off On
10 Off Off Off On Off Off Off Off
11 Off Off Off On Off Off Off On
99 Off On On Off Off Off On On
255 On On On On On On On On

MemOut Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 493

Output Settings When portNumber=1 (Output number)
OutData Value 15 14 13 12 11 10 9 8

01 Off Off Off Off Off Off Off On
02 Off Off Off Off Off Off On Off
03 Off Off Off Off Off Off On On
08 Off Off Off Off On Off Off Off
09 Off Off Off Off On Off Off On
10 Off Off Off On Off Off Off Off
11 Off Off Off On Off Off Off On
99 Off On On Off Off Off On On
255 On On On On On On On On

See Also

In, MemIn, InBCD, MemOff, MemOn, MemSw, Off, On, OpBCD, Oport, Out, Sw, Wait

MemOut Statement Example

The example below shows main task starting a background task called “iotask”. The “iotask” is a simple
task to toggle memory I/O bits from 0 to 3 On and Off. The MemOut instruction makes this possible using
only 1 command rather than turning each memory I/O bit on and off individually.

Function main
 Xqt 2, iotask
 Go P1
 .
 .
Fend

Function iotask

 Do
 MemOut 0, &H

 Wait 1
 MemOut 0, &H0
 Wait 1
 Loop
Fend

Other simple examples from the command window are as follows:

> MemOut 1,6 'Turns on memory I/O bits 9 & 10
> MemOut 2,1 'Turns on memory I/O bit 8
> MemOut 3,91 'Turns on memory I/O bits 24, 25, 27, 28, and 30

MemOutW Statement

494 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

MemOutW Statement

Simultaneously sets 16 memory I/O bits.

Syntax

MemOutW wordPortNum, outputData

Parameters

wordPortNum Integer expression representing memory I/O words.
outputData Specifies output data (integers from 0 to 65535) using an expression or numeric value.

Description

Changes the current status of memory I/O port group specified by the word port number to the specified
output data.

See Also

MemIn, MemInW, MemOut

MemOutW Statement Example

MemOutW 0, 25

MemSw Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 495

MemSw Function

Returns the status of the specified memory I/O bit.

Syntax

MemSw(bitNumber)

Parameters
bitNumber Integer expression representing the memory I/O bit number.

Return Values
Returns “1” when the specified bit is On and “0” when the specified bit is Off.

Description
MemSw returns the status of one memory I/O bit. Valid entries for MemSw range from bit 0 to bit 511.
MemOn turns the specified bit on and MemOff turns the specified bit Off.

See Also
In, MemIn, InBCD, MemOff, MemOn, MemOut, Off, On, OpBCD, Oport, Out, Sw, Wait

MemSw Function Example

The example shown below shows 2 tasks each with the ability to initiate motion instructions. However, a
locking mechanism is used between the 2 tasks to ensure that each task gains control of the robot motion
instructions only after the other task is finished using them. This allows 2 tasks to each execute motion
statements as required and in an orderly predictable fashion. MemSw is used in combination with the Wait
instruction to wait until the memory I/O bit 1 is the proper value before it is safe to move again.

Function main
 Integer I
 MemOff 1
 Xqt 2, task2
 For i = 1 to 100
 Wait MemSw(1) = Off
 Go P(i)
 MemOn 1
 Next I
Fend

Function task2
 Integer I
 For i = 101 to 200
 Wait MemSw(1) = On
 Go P(i)
 MemOff 1
 Next I
Fend

Other simple examples from the Command window are as follows:
> memon 1
> print memsw(1)
1
> memoff 1
> print memsw(1)
0

MHour Function

496 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

MHour Function

Returns the accumulated MOTOR ON time of the robot motors.

Syntax

MHour ([robotNumber])

Parameters

robotNumber Specify the robot number to check the MOTOR ON time by an integer value.
 If omitted, currently selected robot will be used.

Return Values

Returns the accumulated MOTOR ON time of the motors by an integer value.

See Also

Time, Hour

MHour Function Example

Robot 2
Print MHour
Print MHour(1)

Mid$ Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 497

Mid$ Function

Returns a substring of a string starting from a specified position.

Syntax

Mid$(string, position [, count])

Parameters

string Source string expression.
position The starting position in the character string for copying count characters.
count Optional. The number of characters to copy from string starting with the character

defined by position. If omitted, then all characters from position to the end of the
string are returned.

Return Values

Returns a substring of characters from string.

Description

Mid$ returns a substring of as many as count characters starting with the position character in string.

See Also

Asc, Chr$, InStr, Left$, Len, Right$, Space$, Str$, Val

Mid$ Function Example

The example shown below shows a program that extracts the middle 2 characters from the string
“ABCDEFGHIJ” and the remainder of the string starting at position 5.

Function midtest
 String basestr$, m1$, m2$
 basestr$ = "ABCDEFGHIJ"
 m1$ = Mid$(basestr$, (Len(basestr$) / 2), 2)
 Print "The middle 2 characters are: ", m1$
 m2$ = Mid$(basestr$, 5)
 Print "The string starting at 5 is: ", m2$
Fend

MkDir Statement

498 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

MkDir Statement

Creates a subdirectory on a controller disk drive.

Syntax

MkDir dirName

Parameters

dirName String expression that defines the path and name of the directory to create.
See ChDisk for the details.

Description

Creates a subdirectory in the specified path. If omitted, a subdirectory is created in the current directory.

Note
- This statement is executable only with PC disk.

See Also

ChDir, ChDrive, RenDir, RmDir

MkDir Statement Example

The following examples are done from the command window:

> MkDir \Data

> MkDir \Data\PTS

> MkDir \TEST1 \TEST2

Mod Operator

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 499

Mod Operator

Returns the remainder obtained by dividing a numeric expression by another numeric expression.

Syntax

number Mod divisor

Parameters

number The number being divided (the dividend).
divisor The number which number is divided by.

Return Values

Returns the remainder after dividing number by divisor.

Description

Mod is used to get the remainder after dividing 2 numbers. The remainder is a whole number. One clever
use of the Mod instruction is to determine if a number is odd or even. The method in which the Mod
instruction works is as follows: number is divided by divisor. The remainder left over after this division is
then the return value for the Mod instruction.

See Also

Abs, Atan, Atan2, Cos, Int, Not, Sgn, Sin, Sqr, Str$, Tan, Val

Mod Operator Example

The example shown below determines if a number (var1) is even or odd. When the number is even the result
of the Mod instruction will return “0”. When the number is odd, the result of the Mod instruction will return
“1”.

Function modtest
....Integer var1, result

....Print "Enter an integer number:"
....Input var1
....result = var1 Mod 2
....Print "Result = ", result
....If result = 0 Then
........Print "The number is EVEN"
....Else
........Print "The number is ODD"
....EndIf
Fend

Some other example results from the Mod instruction from the Command window.

> Print 36 Mod 6
> 0

> Print 25 Mod 10
> 5
>

Motor Statement

500 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Motor Statement

Turns motor power for all axes on or off for the current robot.

Syntax

Motor ON | OFF

Parameters

ON | OFF The keyword ON is used to turn the Motor Power on. The keyword OFF is used to turn Motor
Power Off.

Description

The Motor On command is used to turn Motor Power On and release the brakes for all axes. Motor Off is
used to turn Motor Power Off and set the brakes.

In order to move the robot, motor power must be turned on.

After an emergency stop, or after an error has occurred that requires resetting with the Reset command,
execute Reset, and then execute Motor On.

Motor On sets the robot control parameter as below:

Speed, SpeedR, SpeedS Default values
Accel, AccelR, AccelS Default values
QPDecelR, QPDecelS Default values
LimZ 0
CP Off
SoftCP Off
Fine Default values
Power Low Low
PTPBoost Default values
TCLim, TCSpeed Default values
PgLSpeed Default values
PerformMode Standard mode

See Also
Brake, Power, Reset, SFree, SLock

Motor Statement Example

The following examples are done from the command window:

> Motor On

> Motor Off

Motor Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 501

Motor Function

Returns status of motor power for the specified robot.

Syntax

Motor [(robotNumber)]

Parameters

robotNumber Specify the robot number to check the status by an integer value.
 If omitted, currently selected robot will be used.

Return Values

0 = Motors off, 1 = Motors on.

See Also

Motor

Motor Function Example

If Motor = Off Then
 Motor On
EndIf

Move Statement

502 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Move Statement

Moves the arm from the current position to the specified point using linear interpolation (i.e. moving in a
straight line) at a constant tool center point velocity).

Syntax
Move destination [ROT] [ECP] [CP] [searchExpr] [!...!] [SYNC]

Parameters
destination The target destination of the motion using a point expression.
ROT Optional. Decides the speed/acceleration/deceleration in favor of tool rotation.
ECP Optional. External control point motion. This parameter is valid when the ECP

option is enabled.
CP Optional. Specifies continuous path motion.
searchExpr Optional. A Till or Find expression.

Till | Find
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

!...! Optional. Parallel Processing statements can be added to execute I/O and other
commands during motion.

SYNC Reserves a motion command. The robot will not move until SyncRobots is
executed.

Description

Move moves the arm from the current position to destination in a straight line. Move coordinates all axes to
start and stop at the same time. The coordinates of destination must be taught previously before executing
the Move instruction. Acceleration and deceleration for the Move is controlled by the AccelS instruction.
Speed for the move is controlled by the SpeedS instruction. If the SpeedS speed value exceeds the allowable
speed for any joint, power to all four joint motors will be turned off, and the robot will stop.

Move uses the SpeedS speed value and AccelS acceleration and deceleration values. Refer to Using Move
with CP below on the relation between the speed/acceleration and the acceleration/deceleration. If, however,
the ROT modifier parameter is used, Move uses the SpeedR speed value and AccelR acceleration and
deceleration values. In this case SpeedS speed value and AccelS acceleration and deceleration value have
no effect.

Usually, when the move distance is “0” and only the tool orientation is changed, an error will occur. However,
by using the ROT parameter and giving priority to the acceleration and the deceleration of the tool rotation,
it is possible to move without an error. When there is not an orientational change with the ROT modifier
parameter and movement distance is not “0”, an error will occur.

Also, when the tool rotation is large as compared to move distance, and when the rotation speed exceeds the
specified speed of the manipulator, an error will occur. In this case, please reduce the speed or append the
ROT modifier parameter to give priority to the rotational speed / acceleration / deceleration.

When ECP is used, the trajectory of the external control point coresponding to the ECP number specified by
ECP instruction moves straight with respect to the tool coordinate system. In this case, the trajectory of tool
center point does not follow a straight line.

Move Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 503

ECP

Work

TCP

The optional Till qualifier allows the user to specify a condition to cause the robot to decelerate to a stop
prior to completing the Move. The condition specified is simply a check against one of the inputs. This is
accomplished through using the Sw instruction. The user can check if the input is On or Off and cause the
arm to stop based on the condition specified. This feature works almost like an interrupt where the Move is
interrupted (stopped) once the Input condition is met. If the input condition is never met during the Move
then the arm successfully arrives on the point specified by destination. For more information about the Till
qualifier see the Till command.

Notes
Move Cannot

Move cannot execute range verification of the trajectory prior to starting the move itself. Therefore, even
for target positions that are within an allowable range, it is possible for the system to find a prohibited position
along the way to a target point. In this case, the arm may abruptly stop which may cause shock and a servo
out condition of the arm. To prevent this, be sure to perform range verifications at low speed prior to using
Move at high speeds. In summary, even though the target position is within the range of the arm, there are
some Moves which will not work because the arm cannot physically make it to some of the intermediate
positions required during the Move.

Using Move with CP
The CP parameter causes the arm to move to destination without decelerating or stopping at the point defined
by destination. This is done to allow the user to string a series of motion instructions together to cause the
arm to move along a continuous path while maintaining a specific speed throughout all the motion. The
Move instruction without CP always causes the arm to decelerate to a stop prior to reaching the point
destination.

Proper Speed and Acceleration Instructions with Move
The SpeedS and AccelS instructions are used to specify the speed and acceleration of the manipulator during
Move motion. Pay close attention to the fact that SpeedS and AccelS apply to linear and circular interpolated
motion while point to point motion uses the Speed and Accel instructions.

Potential Errors
Attempt to Change Only Tool Orientation

Changing only tool orientation during the move is impossible. If this is attempted, an error will occur. In
this case, use the ROT parameter.

Joint Overspeed Errors
When the motion requested results in the speed of one of the axes to exceed its maximum allowable speed
an overspeed error occurs. In the case of a motor overspeed error, the robot arm is brought to a stop and
servo power is turned off.

Move Statement

504 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Attempt to Pass the Original Point (RS series)
It is impossible to operate the arm of RS series to pass near an original point. If attempted this, an overspeed
error will occur. For the operation near an original point, take the following actions.

- Lower the speed of SpeedS
- Find a different path to prevent an original point
- Use PTP motion such as Go command instead of Move command.

See Also

AccelS, Arc, CP, Go, Jump, Jump3, Jump3CP, SpeedS, Sw, Till

Move Statement Example
The example shown below shows a simple point to point move between points P0 and P1 and then moves
back to P0 in a straight line. Later in the program the arm moves in a straight line toward point P2 until input
#2 turns on. If input #2 turns On during the Move, then the arm decelerates to a stop prior to arriving on
point P2 and the next program instruction is executed.

Function movetest
 Home
 Go P0
 Go P1
 Move P0
 Move P2 Till Sw(2) = On
 If Sw(2) = On Then
 Print "Input #2 came on during the move and"
 Print "the robot stopped prior to arriving on"
 Print "point P2."
 Else
 Print "The move to P2 completed successfully."
 Print "Input #2 never came on during the move."
 EndIf
Fend

This example uses Move with CP. The diagram below shows arc motion which originated at the point P100
and then moves in a straight line through P101, at which time the arm begins to form an arc. The arc is then
continued through P102 and on to P103. Next the arm moves in a straight line to P104 where it finally
decelerates to a stop. Note that the arm doesn't decelerate between each point until its final destination of
P104. The following function would generate such a motion.

P102

P100

P103 P104

P101

Function CornerArc
 Go P100
 Move P101 CP 'Do not stop at P101
 Arc P102, P103 CP 'Do not stop at P103
 Move P104 'Decelerate to stop at P104
Fend

MsgBox Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 505

MsgBox Statement

Displays a message in a dialog box and waits for the operator to choose a button.

Syntax

MsgBox message$ [, type] [, title$] [, answer]

Parameters

message$ The message that will be displayed.
type Optional. A numeric expression that is the sum of values specifying the number and type of

buttons to display, the icon style to use, the identity of the default button. EPSON RC+ 7.0
includes predefined constants that can be used for this parameter. The following table shows
the values that can be used.
Symbolic constant Value Meaning

 MB_OK 0 Display OK button only.
 MB_OKCANCEL 1 Display OK and cancel buttons.
 MB_ABORTRETRYIGNORE 2 Display Abort, Retry, and Ignore buttons.
 MB_YESNOCANCEL 3 Display Yes, No, and Cancel buttons.
 MB_YESNO 4 Display Yes and No buttons.
 MB_RETRYCANCEL 5 Display Retry and Cancel buttons.
 MB_ICONSTOP 16 Stop sign.
 MB_ICONQUESTION 32 Question mark.
 MB_ICONEXCLAMATION 64 Exclamation mark.
 MB_DEFBUTTON1 0 First button is default.
 MB_DEFBUTTON2 256 Second button is default.

title$ Optional. String expression that is displayed in the title bar of the message box.
answer Optional. An integer variable that receives a value indicating the action taken by the

operator. EPSON RC+ 6.0 includes predefined constants that can be used for this parameter.
The table below shows the values returned in answer.
Symbolic constant Value Meaning

 IDOK 1 OK button selected.
 IDCANCEL 2 Cancel button selected.
 IDABORT 3 Abort button selected.
 IDRETRY 4 Retry button selected.
 IDYES 6 Yes button selected.
 IDNO 7 No button selected.

Description

MsgBox automatically formats the message. If you want blank lines, use CRLF in the message. See the
example.

See Also
InputBox

MsgBox Statement

506 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

MsgBox Statement Example
This example displays a message box that asks the operator if he/she wants to continue or not. The message
box will display two buttons: Yes and No. A question mark icon will also be displayed. After MsgBox
returns (after the operator clicks a button), then the answer is examined. If it's no, then all tasks are stopped
with the Quit command.

Function msgtest
 String msg$, title$
 Integer mFlags, answer

 msg$ = Chr$(34) + "Operation complete" + Chr$(34) + CRLF
 msg$ = msg$ + "Ready to continue?"
 title$ = "Sample Application"
 mFlags = MB_YESNO + MB_ICONQUESTION
 MsgBox msg$, mFlags, title$, answer
 If answer = IDNO then
 Quit All
 EndIf
Fend

A picture of the message box that this code will create is shown below.

Restriction
If the message$ and title$ of parameter contain a half-width comma ",", the string cannot be displayed
correctly.
Use a string that does not contain a half-width comma.

MyTask Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 507

MyTask Function

Returns the task number of the current program.

Syntax

MyTask

Return Values

The task number of the current task. Valid entries are as below:
Normal task 1 to 32
Background tasks 65 to 80
Trap tasks 257 to 267

Description

MyTask returns the task number of the current program with a numeral. The MyTask instruction is inserted
inside a specific program and when that program runs the MyTask function will return the task number that
the program is running in.

See Also

Xqt

MyTask Function Example

The following program switches On and Off the I/O ports from 1 to 8.

Function main
 Xqt 2, task 'Execute task 2.
 Xqt 3, task 'Execute task 3.
 Xqt 4, task 'Execute task 4.
 Xqt 5, task 'Execute task 5.
 Xqt 6, task 'Execute task 6.
 Xqt 7, task 'Execute task 7.
 Xqt 8, task 'Execute task 8.
 Call task
Fend

Function task
 Do
 On MyTask 'Switch On I/O port which has the same number as
 'current task number
 Off MyTask 'Switch Off I/O port which has the same number as
 'current task number
 Loop
Fend

Next Statement

508 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Next Statement

The For/Next instructions are used together to create a loop where instructions located between the For and
Next instructions are executed multiple times as specified by the user.

Syntax

For var1 = initval To finalval [Step Increment]
statements

Next var1

Parameters

var1 The counting variable used with the For/Next loop. This variable is normally defined
as an integer but may also be defined as a Real variable.

initval The initial value for the counter var1.
finalval The final value of the counter var1. Once this value is met, the For/Next loop is

complete and execution continues starting with the statement following the Next
instruction.

Increment An optional parameter which defines the counting increment for each time the Next
statement is executed within the For/Next loop. This variable may be positive or
negative. However, if the value is negative, the initial value of the variable must be
larger than the final value of the variable. If the increment value is left out the system
automatically increments by 1.

statements Any valid SPEL+ statements can be inserted inside the For/Next loop.

Return Values

None

Description

For/Next executes a set of statements within a loop a specified number of times. The beginning of the loop
is the For statement. The end of the loop is the Next statement. A variable is used to count the number of
times the statements inside the loop are executed.

The first numeric expression (initval) is the initial value of the counter. This value may be positive or
negative as long as the finalval variable and Step increment correspond correctly.

The second numeric expression (finalval) is the final value of the counter. This is the value which once
reached causes the For/Next loop to terminate and control of the program is passed on to the next instruction
following the Next instruction.

Program statements after the For statement are executed until a Next instruction is reached. The counter
variable (var1) is then incremented by the Step value defined by the increment parameter. If the Step option
is not used, the counter is incremented by one.

The counter variable (var1) is then compared with the final value (finalval). If the counter is less than or
equal to the final value (finalval), the statements following the For instruction are executed again. If the
counter variable is greater than the final value (finalval), execution branches outside of the For/Next loop
and continues with the instruction immediately following the Next instruction.

Nesting of For/Next statements is supported up to 10 levels deep. This means that a For/Next Loop can be
put inside of another For/Next loop and so on and so on until there are 10 "nests" of For/Next loops.

Next Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 509

Note
Negative Step Values

If the value of the Step increment (increment) is negative, the counter variable (var1) is decremented
(decreased) each time through the loop and the initial value (initval) must be greater than the final value
(finalval) for the loop to work.

See Also

For

Next Statement Example

Function fornext
 Integer ctr
 For ctr = 1 to 10
 Go Pctr
 Next ctr
 '
 For ctr = 10 to 1 Step -1
 Go Pctr
 Next ctr
Fend

Not Operator

510 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Not Operator

Performs the bitwise complement on the value of the operand.

Syntax

Not operand

Parameters

operand Integer expression.

Return Values

1’s complement of the value of the operand.

Description

The Not function performs the bitwise complement on the value of the operand. Each bit of the result is the
complement of the corresponding bit in the operand, effectively changing 0 bits to 1, and 1 bits to 0.

See Also

Abs, And, Atan, Atan2, Cos, Int, LShift, Mod, Or, RShift, Sgn, Sin, Sqr, Str$, Tan, Val, Xor

Not Operator Example

This is a simple Command window example on the usage of the Not instruction.

>print not(1)
 -2
>

Off Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 511

Off Statement

Turns Off the specified output and after a specified time can turn it back on.

Syntax

Off { bitNumber | outputLabel }, [time], [parallel] [,Forced]

Parameters

bitNumber Integer expression representing which Output to turn Off.
outputLabel Output label.
time Optional. Specifies a time interval in seconds for the output to remain Off. After the time

interval expires, the Output is turned back on. The minimum time interval is 0.01 seconds and
maximum time interval is 10 seconds.

parallel Optional. When a timer is set, the parallel parameter may be used to specify when the next
command executes:

0 - immediately after the output is turned off
1 - after the specified time interval elapses. (default value)

Forced Optional. Usually omitted.

Description

Off turns off (sets to 0) the specified output.

If the time interval parameter is specified, the output bit specified by bitNumber is switched off, and then
switched back on after the time interval elapses. If prior to executing Off, the Output bit was already off,
then it is switched On after the time interval elapses.

The parallel parameter settings are applicable when the time interval is specified as follows:

1: Switches the output off, switches it back on after specified interval elapses, then executes the
next command. (This is also the default value for the parallel parameter. If this parameter is
omitted, this is the same as setting the parameter to “1”.)

0: Switches the output off, and simultaneously executes the next command.

Notes
Output bits Configured as Remote Control output

If an output bit which was set up as a system output is specified, an error will occur. Remote control output
bits are turned on or off automatically according to system status.

Outputs and When an Emergency Stop Occurs:
EPSON RC+ has a feature which causes all outputs to go off when an E-Stop occurs. If you want to keep
the settings even in case of the emergency stop, this feature can be reconfigured from the [Outputs Off during
emergency stop] checkbox in the [Setup]-[System Configuration]-[Controller]-[Preferences].

Forced Flag
This flag is used to turn Off the I/O output at Emergency Stop and Safety Door Open from NoPause task or
NoEmgAbort task (special task using NoPause or NoEmgAbort at Xqt).
Be sure that the I/O outputs change by Emergency Stop and Safety Door Open when designing the system.

Off Statement

512 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

See Also
In, InBCD, MemOn, MemOff, MemOut, MemSw, OpBCD, Oport, Out, Wait

Off Statement Example

The example shown below shows main task start a background task called “iotask”. The “iotask” is a simple
task to turn discrete output bits 1 and 2 on and then off, Wait 10 seconds and then do it again.

Function main
 Xqt 2, iotask
 Go P1
 .
 .
 .
Fend

Function iotask
 Do
 On 1
 On 2
 Off 1
 Off 2
 Wait 10
 Loop
Fend

Other simple examples from the Command window are as follows:

> on 1
> off 1, 10 'Turn Output 1 off, wait 10 seconds, turn on again
> on 2
> off 2

OLAccel Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 513

OLAccel Statement

Sets up the automatic adjustment of acceleration/deceleration that is adjusted according to the overload
rating.

Syntax

OLAccel {On | Off}

Parameters

On | Off On: Enables the automatic adjustment of acceleration/deceleration that is adjusted according
to the overload rating.

 Off: Disables the automatic adjustment of acceleration/deceleration that is adjusted
according to the overload rating.

Description

OLAccel can be used to enable the automatic adjustment function of acceleration and deceleration that is
adjusted according to the robot loading rate (OLRate). When OLAccel is On, the acceleration and
deceleration are automatically adjusted in accordance with the robot loading rate at PTP motion commands.
This is done to prevent the over load error by reducing the acceleration/deceleration automatically when the
loading rate is exceeding a certain value at PTP motion. Heretofore, when users were executing motion with
heavy duty that may cause over load error, users had to stop the robot by the program or adjust the speed and
acceleration to prevent the error. OLAccel statement lessens these measures. However, this statement do
not prevent over load error at all types of cycles. When the cycle has very heavy duty and load, the over load
error may occur. In this case, users need to stop the robot or adjust the speed and acceleration. In some
operation environment, the motor temperature may rise by operating the robot without over load error and
result in over heat error.

This statement is unnecessary at proper load operation.
Use OLRate in the test cycle to check whether the over load error may occur or not.

The OLAccel value initializes to the default values (low acceleration) when any one of the following
conditions occurs:

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

Note
If OLAccel On is executed to a robot that does not support the automatic adjustment function of acceleration
and deceleration, an error occurs.

See Also

OLAccel Function, OLRate

OLAccel Statement

514 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

OLAccel Statement Example

>olaccel on
>olaccel
OLACCEL is ON

Function main
Motor On
Power High
Speed 100
Accel 100, 100
OLAccel On
Xqt 2, MonitorOLRate
Do
Jump P0
Jump P1

Loop
Fend

Function MonitorOLRate
Do
'Displays OLRate
OLRate
Wait 1

Loop
Fend

OLAccel Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 515

OLAccel Function

Returns the automatic adjustment setting.

Syntax

OLAccel

Return Values

Off = Automatic adjustment of acceleration/deceleration that is adjusted according to the overload rating is
disabled.

On = Automatic adjustment of acceleration/deceleration that is adjusted according to the overload rating is
enabled.

See Also

OLAccel, OLRate

OLAccel Function Example

If OLAccel = Off Then
 Print “OLAccel is off”
EndIf

OLRate Statement

516 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

OLRate Statement

Display overload rating for one or all joints for the current robot.

Syntax

OLRate [jointNumber]

Parameters

jointNumber Integer expression from 1 to 9.
The additional S axis is 8 and T axis is 9.

Description

OLRate can be used to check whether a cycle is causing stress on the servo system. Factors such as
temperature and current can cause servo errors during applications with high duty cycles. OLRate can help
to check if the robot system is close to having a servo error.

During a cycle, run another task to command OLRate. If OLRate exceeds 1.0 for any joint, then a servo error
will occur.

Servo errors are more likely to occur with heavy payloads. By using OLRate during a test cycle, you can
help insure that the speed and acceleration settings will not cause a servo error during production cycling.

To get valid readings, you must execute OLRate while the robot is moving.

See Also

OLRate Function

OLRate Statement Example

>olrate
0.10000 0.20000
0.30000 0.40000
0.50000 0.60000

Function main
 Power High
 Speed 50
 Accel 50, 50
 Xqt 2, MonitorOLRate
 Do
 Jump P0
 Jump P1
 Loop
Fend

Function MonitorOLRate
 Do
 OLRate ' Display OLRate
 Wait 1
 Loop
Fend

OLRate Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 517

OLRate Function

Returns overload rating for one joint for the current robot.

Syntax

OLRate(jointNumber)

Parameters

jointNumber Integer expression from 1 to 9.
The additional S axis is 8 and T axis is 9.

Return Values

Returns the OLRate for the specified joint. Values are between 0.0 and 2.0.

Description

OLRate can be used to check whether a cycle is causing stress on the servo system. Factors such as
temperature and current can cause servo errors during applications with high duty cycles. OLRate can help
to check if the robot system is close to having a servo error.

During a cycle, run another task to command OLRate. If OLRate exceeds 1.0 for any joint, then a servo error
will occur.

Servo errors are more likely to occur with heavy payloads. By using OLRate during a test cycle, you can
help insure that the speed and acceleration settings will not cause a servo error during production cycling.

To get valid readings, you must execute OLRate while the robot is moving.

See Also

OLRate

OLRate Function Example

Function main
 Power High
 Speed 50
 Accel 50, 50
 Xqt 2, MonitorOLRate
 Do
 Jump P0
 Jump P1
 Loop
Fend

Function MonitorOLRate
 Integer i
 Real olRates(4)
 Do
 For i = 1 to 4
 olRates(i) = OLRate(i)
 If olRate(i) > .5 Then
 Print "Warning: OLRate(", i, ") is over .5"
 EndIf
 Next i
 Loop
Fend

On Statement

518 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

On Statement

Turns on the specified output and after a specified time can turn it back off.

Syntax

On { bitNumber | outputLabel }, [time], [parallel] [,Forced]

Parameters

bitNumber Integer expression representing which Output to turn On.
outputLabel Output label.
time Optional. Specifies a time interval in seconds for the output to remain On. After the time

interval expires, the Output is turned back off. (Minimum time interval is 0.01 seconds)
parallel Optional. When a timer is set, the parallel parameter may be used to specify when the next

command executes:
0 - immediately after the output is turned on
1 - after the specified time interval elapses. (default value)

Forced Optional. Usually omitted.

Description

On turns On (sets to 1) the specified output.
If the time interval parameter is specified, the output bit specified by outnum is switched On, and then
switched back Off after the time interval elapses.

The parallel parameter settings are applicable when the time interval is specified as follows:

1: Switches the output On, switches it back Off after specified interval elapses, then executes the next
command. (This is also the default value for the parallel parameter. If this parameter is omitted,
this is the same as setting the parameter to “1”.)

0: Switches the output On, and simultaneously executes the next command.

Notes
Output bits Configured as remote

If an output bit which was set up as remote is specified, an error will occur. Remote output bits are turned
ON or OFF automatically according to system status. For more information regarding remote, refer to
EPSON RC+ User’s Guide. The individual bits for the remote connector can be set as remote or I/O from
[Setup]-[System Configuration]-[Controller]-[Remote Control] panel.

Outputs and When an Emergency Stop Occurs
The Controller has a feature which causes all outputs to go off when an E-Stop occurs. If you want to keep
the settings even in case of the emergency stop, this feature can be reconfigured from the [Outputs Off during
emergency stop] checkbox in [Setup]-[System Configuration]-[Controller]-[Preferences].

Forced Flag
This flag is used to turn On the I/O output at Emergency Stop and Safety Door Open from NoPause task,
NoEmgAbort task (special task using NoPause or NoEmgAbort at Xqt), or background tasks.
Be sure that the I/O outputs change by Emergency Stop and Safety Door Open when designing the system.

On Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 519

See Also
In, InBCD, MemOff, MemOn, Off, OpBCD, Oport, Out, Wait

On Statement Example

The example shown below shows main task start a background task called “iotask”. The “iotask” is a simple
task to turn discrete output bits 1 and 2 on and then off, Wait 10 seconds and then do it again.

Function main
 Xqt iotask
 Go P1
 .
 .
 .
Fend

Function iotask
 Do
 On 1
 On 2
 Off 1
 Off 2
 Wait 10
 Loop
Fend

Other simple examples from the command window are as follows:

> on 1
> off 1, 10 'Turn Output 1 off, wait 10 seconds, turn on again
> on 2
> off 2

OnErr Statement

520 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

OnErr Statement

Sets up interrupt branching to cause control to transfer to an error handing subroutine when an error occurs.
Allows users to perform error handling.

Syntax

OnErr GoTo {label | 0}

Parameters

label Statement label to jump to when an error occurs.
0 Parameters used to clear OnErr setting.

Description

OnErr enables user error handling. When an error occurs without OnErr being used, the task is terminated
and the error is displayed. However, when OnErr is used it allows the user to "catch" the error and go to an
error handler to automatically recover from the error. Upon receiving an error, OnErr branches control to the
designated label specified in the EResume instruction. In this way the task is not terminated and the user is
given the capability to automatically handle the error. This makes work cells run much smoother since
potential problems are always handled and recovered from in the same fashion.

When the OnErr command is specified with the “0” parameter, the current OnErr setting is cleared. (i.e. After
executing OnErr 0, if an error occurs program execution will stop)

See Also
Err, EResume

OnErr Statement Example
The following example shows a simple utility program which checks whether points P0-P399 exist. If the
point does not exist, then a message is printed on the screen to let the user know this point does not exist.
The program uses the CX instruction to test each point for whether or not it has been defined. When a point
is not defined control is transferred to the error handler and a message is printed on the screen to tell the user
which point was undefined.

Function errDemo
 Integer i, errNum

 OnErr GoTo errHandler

 For i = 0 To 399
 temp = CX(P(i))
 Next i
 Exit Function
 '
 '
 '***
 '* Error Handler *
 '***
errHandler:
 errNum = Err
 ' Check if using undefined point
 If errNum = 7007 Then
 Print "Point number P", i, " is undefined!"
 Else
 Print "ERROR: Error number ", errNum, " occurred while"
 Print " trying to process point P", i, " !"
 EndIf
 EResume Next
Fend

OpBCD Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 521

OpBCD Statement

Simultaneously sets 8 output lines using BCD format. (Binary Coded Decimal)

Syntax

OpBCD portNumber, outData [, Forced]

Parameters

portNumber Integer expression representing I/O output bytes. Where the portNumber selection
corresponds to the following outputs:

Portnum Outputs
0 0-7
1 8-15
2 16-23
3 24-31
... ...

outData Integer expression between 0 and 99 representing the output pattern for the output group
selected by portNumber. The 2nd digit (called the 1's digit) represents the lower 4 outputs
in the selected group and the 1st digit (called the 10's digit) represents the upper 4 outputs in
the selected group.

Forced Optional. Usually omitted.

Description

OpBCD simultaneously sets 8 output lines using the BCD format. The standard and expansion user outputs
are broken into groups of 8. The portNumber parameter for the OpBCD instruction defines which group of
8 outputs to use where portNumber = 0 means outputs 0 to 7, portNumber = 1 means outputs 8 to 15, etc.

Once a port number is selected (i.e. a group of 8 outputs has be selected), a specific output pattern must be
defined. This is done in Binary Coded Decimal format using the outdata parameter. The outdata parameter
may have 1 or 2 digits. (Valid entries range from 0 to 99.) The 1st digit (or 10's digit) corresponds to the
upper 4 outputs of the group of 8 outputs selected by portNumber. The 2nd digit (or 1's digit) corresponds
to the lower 4 outputs of the group of 8 outputs selected by portNumber.

Since valid entries in BCD format range from 0 to 9 for each digit, every I/O combination cannot be met.
The table below shows some of the possible I/O combinations and their associated outnum values assuming
that portNumber is 0.

Output Settings (Output number)
Outnum Value 7 6 5 4 3 2 1 0

01 Off Off Off Off Off Off Off On
02 Off Off Off Off Off Off On Off
03 Off Off Off Off Off Off On On
08 Off Off Off Off On Off Off Off
09 Off Off Off Off On Off Off On
10 Off Off Off On Off Off Off Off
11 Off Off Off On Off Off Off On
99 On Off Off On On Off Off On

Note that the Binary Coded Decimal format only allows decimal values to be specified. This means that
through using Binary Coded Decimal format it is impossible to turn on all outputs with the OpBCD
instruction. Please note that the maximum value for either digit for outnum is “9”. This means that the
largest value possible to use with OpBCD is “99”. In the table above it is easy to see that “99” does not turn
all Outputs on. Instead it turns outputs 0, 3, 4, and 7 On and all the others off.

OpBCD Statement

522 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Notes
Difference between OpBCD and Out

The OpBCD and Out instructions are very similar in the SPEL+ language. However, there is one major
difference between the two. This difference is shown below:
- The OpBCD instruction uses the Binary Coded Decimal format for specifying an 8 bit value to use for

turning the outputs on or off. Since Binary Coded Decimal format precludes the values of &HA, &HB,
&HC, &HD, &HE or &HF from being used, all combinations for setting the 8 output group cannot be
satisfied.

- The Out instruction works very similarly to the OpBCD instruction except that Out allows the range for
the 8 bit value to use for turning outputs on or off to be between 0 and 255 (0 to 99 for OpBCD). This
allows all possible combinations for the 8 bit output groups to be initiated according to the users
specifications.

Output bits Configured as Remote:
If an output bit which was set up as remote is specified to be turned on by OpBCD, an error will occur.
Remote output bits are turned On or Off automatically according to system status. For more information
regarding remote, refer to EPSON RC+ User’s Guide. The individual bits for the remote connector can be
set as remote or I/O from [Setup]-[System Configuration]-[Controller]-[Remote Control] panel.

Outputs and When an Emergency Stop Occurs:
The Controller has a feature which causes all outputs to go off when an E-Stop occurs. This feature is set or
disabled from the [Outputs Off during emergency stop] checkbox in the [Setup]-[System Configuration]-
[Controller]-[Preferences].

Forced Flag
This flag is used to turn On the I/O output at Emergency Stop and Safety Door Open from NoPause task,
NoEmgAbort task (special task using NoPause or NoEmgAbort at Xqt), or background tasks.
Be sure that the I/O outputs change by Emergency Stop and Safety Door Open when designing the system.

See Also

In, InBCD, MemOff, MemOn, MemSw, Off, On, Oport, Out, Sw, Wait

OpBCD Function Example

The example shown below shows main task start a background task called “iotask”. The “iotask” is a simple
task to flip flop between turning outputs 1 & 2 on and then outputs 0 and 3 on. When 1 & 2 are turned on,
then 0 & 3 are also turned off and vice versa.

Function main
 Xqt 2, iotask
 Go P1
 .
 .
Fend

Function iotask
 Do
 OpBCD 0, 6
 OpBCD 0, 9
 Wait 10
 Loop
Fend

Other simple examples from the command window are as follows:

> OpBCD 1,6 'Turns on Outputs 1 and 2
> OpBCD 2,1 'Turns on Output 8
> OpBCD 3, 91 'Turns on Output 24, 28, and 31

OpenDB Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 523

OpenDB Statement

Opens a database or Excel workbook.

Syntax

OpenDB #fileNumber, { SQL | Accel | Eccel } [, DBserverName As String],
{DBname As String | filename As String }

Parameters

fileNumber Integer number from 501 to 508
SQL | Accel | Eccel Selects a database type you want to open from [SQL], [Access], and [Excel].
DBserverName If you select [SQL], the SQL server name is specified.

If omitted, LOCAL server is specified. The SQL server on the network cannot
be specified.
If you select [Access] or [Excel], the SQL server name is not specified.

DBname | filename If you select [SQL] as a database, a database name on the SQL server is
specified.
If you select [Access], Access file name is specified.
If omitted the path of Access file name, it searches in the current folder.
See ChDisk for the details.
If you select [Excel], Excel file name is specified.
You can specify Excel 2007 book or Excel 97-2003 book file as Excel file.
If you omitted Excel file name, it searches in the current folder.
See ChDisk for the details.

Description
Opens the specified database using the specified file number.
The specified database must exist on the disk of PC with installed RC+. Otherwise, it causes an error. The
specified file number can be used to identify the database while it is open, but cannot be used to refer to the
different database until you close the database with the CloseDB command. The file number is used with
the database operation commands (SelectDB, Print#, Input#, CloseDB).
Access and Excel files of Microsoft office 2010 64-bit cannot be used.

Note
- Connection of PC with installed RC+ is required.

See Also

SelectDB, CloseDB, UpdateDB, DeleteDB, Input #, Print #

OpenDB Statement Example

Using the SQL database
The following example uses the SQL server 2000 sample database, Northwind and loads the data from a
table.

Integer count, i, eid
String Lastname$, Firstname$, Title$

OpenDB #501, SQL, "(LOCAL)", "Northwind"
count = SelectDB(#501, "Employees")
For i = 0 To count - 1
 Input #501, eid, Lastname$, Firstname$, Title$
 Print eid, ",", Lastname$, ",", Firstname$, ",", Title$
Next
CloseDB #501

OpenDB Statement

524 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Using Access database
The following example uses Microsoft Access 2007 sample database “Students” and loads the data from a
table.

Integer count, i, eid
String Lastname$, Firstname$, dummy$

OpenDB #502, Access, "c:\MyDataBase\Students.accdb"
count = SelectDB(#502, "Students")
For i = 0 To count - 1
 Input #502, eid, dummy$, Lastname$, Firstname$
 Print eid, ",", Lastname$, ",", Firstname$

Next
CloseDB #502

Using Excel workbook
The following example uses Microsoft Excel workbook “StudentsList“ and loads the data from a sheet.

Integer count, i, eid
String Lastname$, Firstname$

OpenDB #503, Excel, "c:\MyDataBase\Students.xls"
count = SelectDB(#503, "[Students$]")
For i = 0 To count - 1
 Input #503, eid, Lastname$, Firstname$
 Print eid, ",", Lastname$, ",", Firstname$

Next
CloseDB #503

OpenCom Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 525

OpenCom Statement

Open an RS-232 communication port.

Syntax

OpenCom #portNumber

Parameters

portNumber Integer expression for RS-232C port number to open.
The range of port number is:
 Real Part 1 to 8
 Windows Part 1001 to 1008

Description

You need to connect the specified RS-232C port to the controller.

To use the SPEL+ real part ports, option I/O board must be installed to the Controller.
To use Windows part ports, RC+ setting must be done. For details, refer to the description about RC-232C
in the EPSON RC+ User’s Guide 5.13 [Setup] Menu.

See Also

ChkCom, CloseCom, SetCom

OpenCom Statement Example

Integer PortNo

PortNo = 1001
OpenCom #PortNo
Print #PortNo, "Data from COM1"
CloseCom #PortNo

OpenCom Function

526 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

OpenCom Function

Acquires the task number that executes OpenCom.

Syntax

OpenCom (portNumber)

Parameters

portNumber Integer expression for RS-232C port number.
The range of port number is:
 Real Part 1 to 8
 Windows Part 1001 to 1008

Description

Acquires the task number that executes OpenCom.

See Also

ChkCom, CloseCom, OpenCom, SetCom

OpenCom Function Example

Print OpenCom(PortNo)

OpenNet Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 527

OpenNet Statement

Open a TCP/IP network port.

Syntax

OpenNet #portNumber As { Client | Server }

Parameters

portNumber Integer expression for TCP/IP port number to open. Range is from 201 to 216.

Description

OpenNet opens a TCP/IP port for communication with another computer on the network.
One system should open as Server and the other as Client. It does not matter which one executes first.

See Also

ChkNet, CloseNet, SetNet

OpenNet Statement Example

For this example, two controllers have their TCP/IP settings configured as follows:

Controller #1:
Port: #201
Host Name: 192.168.0.2
TCP/IP Port: 1000

Function tcpip
 OpenNet #201 As Server
 WaitNet #201
 Print #201, "Data from host 1"
Fend

Controller #2:
Port: #201
Host Name: 192.168.0.1
TCP/IP Port: 1000

Function tcpip
 String data$
 OpenNet #201 As Client
 WaitNet #201
 Input #201, data$
 Print "received '", data$, "' from host 1"
Fend

OpenNet Function

528 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

OpenNet Function

Acquires the task number that executes OpenNet.

Syntax

OpenNet (portNumber)

Parameters

portNumber Integer expression for TCP/IP port number. Range is from 201 to 216.

Description

Acquires the task number that executes OpenNet.

See Also

ChkNet, CloseNet, OpenNet, SetNet

OpenNet Function Example

Print OpenNet(PortNo)

Oport Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 529

Oport Function

Returns the state of the specified output.

Syntax

Oport(outnum)

Parameters

outnum Integer expression representing I/O output bits.

Return Values

Returns the specified output bit status as either 0 or 1.
0: Off status
1: On status

Description

Oport provides a status check for the outputs. It functions much in the same way as the Sw instruction does
for inputs. Oport is most commonly used to check the status of one of the outputs which could be connected
to a feeder, conveyor, gripper solenoid, or a host of other devices which works via discrete I/O. Obviously
the output checked with the Oport instruction has 2 states (1 or 0). These indicate whether the specified
output is On or Off.

Note
Difference between Oport and Sw

It is very important for the user to understand the difference between the Oport and Sw instructions. Both
instructions are used to get the status of I/O. However, the type of I/O is different between the two. The Sw
instruction works inputs. The Oport instruction works with the standard and expansion hardware outputs.
These hardware ports are discrete outputs which interact with devices external to the controller.

See Also

In, InBCD, MemIn, MemOn, MemOff, MemOut, MemSw, Off, On, OpBCD, Out, Sw, Wait

Oport Function

530 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

OPort Function Example
The example shown below turns on output 5, then checks to make sure it is on before continuing.

Function main
 TMOut 10
 OnErr errchk
 Integer errnum
 On 5 'Turn on output 5
 Wait Oport(5)
 Call mkpart1
 Exit Function

errchk:
 errnum = Err(0)
 If errnum = 94 Then
 Print "TIME Out Error Occurred during period"
 Print "waiting for Oport to come on. Check"
 Print "Output #5 for proper operation. Then"
 Print "restart this program."
 Else
 Print "ERROR number ", errnum, "Occurred"
 Print "Program stopped due to errors!"
 EndIf
 Exit Function
Fend

Other simple examples are as follows from the command window:

> On 1
> Print Oport(1)
1
> Off 1
> Print Oport(1)
0
>

Or Operator

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 531

Or Operator

Performs a bitwise or logical OR operation on two operands.

Syntax

expr1 Or expr2

Parameters

expr1, exrp2 Integer or Boolean expressions.

Return Values

Bitwise OR value of the operands if the expressions are integers. Logical OR if the expressions are Boolean.

Description

For integer expressions, the Or operator performs the bitwise OR operation on the values of the operands.
Each bit of the result is 1 if one or both of the corresponding bits of the two operands is 1. For Boolean
expressions, the result is True if either of the expressions evaluates to True.

See Also

And, LShift, Mod, Not, RShift, Xor

Or Operator Example

Here is an example of a bitwise OR.

>print 1 or 2
 3

Here is an example of a logical OR.

If a = 1 Or b = 2 Then
c = 3

EndIf

Out Statement

532 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Out Statement

Simultaneously sets 8 output bits.

Syntax

Out portNumber, outData [, Forced]

Parameters

portNumber Integer expression representing I/O output bytes. The portnum selection corresponds to the
following outputs:

Portnum Outputs
0 0-7
1 8-15
... ...

outData Integer number between 0 and 255 representing the output pattern for the output group selected
by portNumber. If represented in hexadecimal form the range is from &H0 to &HFF. The
lower digit represents the least significant digits (or the 1st 4 outputs) and the upper digit
represents the most significant digits (or the 2nd 4 outputs).

Forced Optional. Usually omitted.

Description

Out simultaneously sets 8 output lines using the combination of the portNumber and outdata values specified
by the user to determine which outputs will be set. The portNumber parameter defines which group of 8
outputs to use where portNumber = 0 means outputs 0 to 7, portNumber = 1 means outputs 8 to 15, etc.

Once a portnum is selected (i.e. a group of 8 outputs has be selected), a specific output pattern must be
defined. This is done using the outData parameter. The outData parameter may have a value between 0 to
255 and may be represented in Hexadecimal or Integer format. (i.e. &H0 to &HFF or 0 to 255)

The table below shows some of the possible I/O combinations and their associated outData values assuming
that portNumber is “0”, and “1” accordingly.

Output Settings When portNumber=0 (Output number)
OutData Value 7 6 5 4 3 2 1 0

01 Off Off Off Off Off Off Off On
02 Off Off Off Off Off Off On Off
03 Off Off Off Off Off Off On On
08 Off Off Off Off On Off Off Off
09 Off Off Off Off On Off Off On
10 Off Off Off On Off Off Off Off
11 Off Off Off On Off Off Off On
99 Off On On Off Off Off On On
255 On On On On On On On On

Out Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 533

Output Settings When portNumber=1 (Output number)
OutData Value 15 14 13 12 11 10 9 8

01 Off Off Off Off Off Off Off On
02 Off Off Off Off Off Off On Off
03 Off Off Off Off Off Off On On
08 Off Off Off Off On Off Off Off
09 Off Off Off Off On Off Off On
10 Off Off Off On Off Off Off Off
11 Off Off Off On Off Off Off On
99 Off On On Off Off Off On On
255 On On On On On On On On

Notes
Difference between OpBCD and Out

The Out and OpBCD instructions are very similar in the SPEL+ language. However, there is one major
difference between the two. This difference is shown below:
- The OpBCD instruction uses the Binary Coded Decimal format for specifying 8 bit value to use for turning

the outputs on or off. Since Binary Coded Decimal format precludes the values of &HA, &HB, &HC,
&HD, &HE or &HF from being used, all combinations for setting the 8 output group cannot be satisfied.

- The Out instruction works very similarly to the OpBCD instruction except that Out allows the range for the
8 bit value to use for turning outputs on or off to be between 0 and 255 (0 to 99 for OpBCD). This allows
all possible combinations for the 8 bit output groups to be initiated according to the users specifications.

Forced Flag
This flag is used to turn On the I/O output at Emergency Stop and Safety Door Open from NoPause task,
NoEmgAbort task (special task using NoPause or NoEmgAbort at Xqt), or background tasks.
Be sure that the I/O outputs change by Emergency Stop and Safety Door Open when designing the system.

See Also

In, InBCD, MemOff, MemOn, MemOut, MemSw, Off, On, Oport, Sw, Wait

Out Statement Example

The example shown below shows main task start a background task called “iotask”. The “iotask” is a simple
task to flip flop between turning output bits 0 to 3 On and then Off. The Out instruction makes this possible
using only 1 command rather than turning each output On and Off individually.

Function main

 Xqt iotask
 Do
 Go P1
 Go P2
 Loop
Fend

Function iotask

 Do
 Out 0, &H0F
 Out 0, &H00
 Wait 10
 Loop
Fend

Out Statement

534 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Other simple examples from the command window are as follows:

> Out 1,6 'Turns on Outputs 9 & 10
> Out 2,1 'Turns on Output 8
> Out 3,91 'Turns on Outputs 24, 25, 27, 28, and 30

Out Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 535

Out Function

Returns the status of one byte of outputs.

Syntax

Out(portNumber)

Parameters

portNumber Integer expression representing I/O output bytes. Where the portNumber selection
corresponds to the following outputs:

Portnum Outputs
0 0-7
1 8-15
... ...

Return Values

The output status 8 bit value for the specified port.

See Also

Out Statement

Out Function Example

Print Out(0)

OutReal Statement

536 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

OutReal Statement

The output data of real value is the floating-point data (IEEE754 compliant) of 32 bits.
Set the status of output port 2 word (32 bits).

Syntax

OutReal WordPortNumber, OutputData [,Forced]

Parameters

WordPortNumber Integer expression representing I/O output words.
OutputData Specifies the integer expression representing the output data (Real type value).
Forced Optional. Normally omitted.

Description

Outputs the specified IEEE754 Real value to the output word port specified by word port number and the
following output word port.
Output word label can be used for the word port number parameter.

Note
Forced Flag

This flag is used to turn On the I/O output at Emergency Stop and Safety Door Open from NoPause task or
NoEmgAbort task (special task initiated by specifying NoPause or NoEmgAbort at Xqt).

Carefully design the system because the I/O output changes by Emergency Stop and Safety Door Open.

See Also

In, InW, InBCD, InReal, Out, OutW, OpBCD, OutReal Function

OutReal Statement Example

OutReal 32, 2.543

OutReal Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 537

OutReal Function

Retrieve the output port status as the 32 bits floating-point data (IEEE754 compliant).

Syntax

OutReal (WordPortNumber)

Parameters

WordPortNumber Integer expression representing I/O output words.

Return Values

Returns the specified output port status in 32 bits floating-point data (IEEE754 compliant).

See Also

In, InW, InBCD, InReal, Out, OutW, OpBCD, OutReal

OutReal Function Example

Real rdata01

rdata01 = OutReal(0)

OutW Statement

538 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

OutW Statement

Simultaneously sets 16 output bits.

Syntax

OutW wordPortNum, outputData [, Forced]

Parameters

wordPortNum Integer expression representing I/O output words.
outputData Specifies output data (integers from 0 to 65535) using an expression or numeric value.
Forced Optional. Usually omitted.

Description

Changes the current status of user I/O output port group specified by the word port number to the specified
output data.

Note
Forced Flag

This flag is used to turn On the I/O output at Emergency Stop and Safety Door Open from NoPause task,
NoEmgAbort task (special task using NoPause or NoEmgAbort at Xqt), or background tasks.
Be sure that the I/O outputs change by Emergency Stop and Safety Door Open when designing the system.

See Also

In, InW, Out

OutW Statement Example

OutW 0, 25

OutW Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 539

OutW Function

Returns the status of one word (2 bytes) of outputs.

Syntax

OutW(wordPortNum)

Parameters

wordPortNum Integer expression representing I/O output words.

Return Values

The output status 16 bit value for the specified port.

See Also

OutW Statement

OutW Function Example

OutW 0, &H1010

P# (1. Point Definition) Statement

540 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

P# (1. Point Definition) Statement

Defines a robot point by assigning it to a point expression.

Syntax

point = pointExpr
pointLabel = pointExpr

Parameters

point Expression including numeric number or () (parenthesis)
Pnumber
P(expr)

pointLabel Point label
pointExpr One of the following point data

P point number, Point label, Here, Pallet, Point data function
(Here function, XY function, JA function, Pulse function, etc..)
For details of pointExpr, refer to P# (2. Point Expression)

Description

Define a robot point by setting it equal to another point or point expression.

See Also

Local, Pallet, PDef, PDel, Plist

Point Definition Example

The following examples are done from the command window:

Assign coordinates to P1:

> P1 = 300,200,-50,100

Specify left arm posture:

> P2 = -400,200,-80,100/L

Add 20 to X coordinate of P2 and define resulting point as P3:

> P3 = P2 +X(20)
> plist 3
P3=-380,200,-80,100/L

Subtract 50 from Y coordinate of P2, substitute -30 for Z coordinate, and define the resulting point P4 as
right arm posture:

>P4=P2 -Y(50) :Z(-30) /R
> plist 4
P4 = XY(-450,200,-30,100)/R

Add 90 to U coordinate of Pallet(3, 5), and define resulting point as P6:

> P5 = Here
> P6 = pallet(3,5) +U(90)

P# (2. Point Expression) Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 541

P# (2. Point Expression) Statement

Specifies a robot point for assignment and motion commands.

Syntax

point [{ + | - } point] [local] [hand(arm)] [elbow] [wrist] [j4flag] [j6flag] [j1flag] [j2flag] [relativeOffsets]
[absoluteCoords]

Parameters

point The base point specification. This can be one of the following:
Pnumber
P(expr)
pointLabel
Pallet(palletNumber, palletIndex)
Here
XY(X, Y, Z, U, [V], [W])
JA(J1, J2, J3, J4, [J5], [J6])
Pulse(J1, J2, J3, J4, [J5], [J6])

local Optional. Local number from 1 to 15 preceded by a forward slash (/0 to /15) or at sign
(@0 to @15). The forward slash means that the coordinates will be in the local. The at
sign means that the coordinates will be translated into local coordinates.

hand(arm) Optional for SCARA robot (including RS series) and 6-axis robots (including N
series). Specify /L or /R for lefty or righty hand (arm) orientation.

elbow Optional for 6-axis robots (including N series).
Specify /A or /B for above or below orientation.

wrist Optional for 6-axis robots (including N series).
Specify /F or /NF for flip or no flip orientation.

j4flag Optional for 6-axis robots (including N series).
Specify /J4F0 or /J4F1.

j6flag Optional for 6-axis robots (including N series).
Specify /J6F0 - /J6F127.

j1flag Optional for RS series and 6-axis robots (excluding N series). Specify /J1F0 or /J1F1.
j2flag Optional for RS series. Specify /J2F0 - /J2F127.
j1angle Optional for RS and N series. Specify /J1A (real value).
j4angle Optional for N series. Specify /J4A (real value).
relativeOffsets Optional. One or more relative coordinate adjustments.

{+ | -} {X | Y | Z | U | V | W | RZ | RY | RX | R | S | T | ST } (expr)
The TL offsets are relative offsets in the current tool coordinate system.
{+ | -} {TLX | TLY | TLZ | TLU | TLV | TLW} (expr)

absoluteCoords Optional. One or more absolute coordinates.
: {X | Y | Z | U | V | W | R | S | T | ST } (expr)

Description

Point expressions are used in point assignment statements and motion commands.
Go P1 + P2
P1 = P2 + XY(100, 100, 0, 0)

P# (2. Point Expression) Statement

542 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Using relative offsets
You can offset one or more coordinates relative to the base point. For example, the following statement
moves the robot 20 mm in the positive X axis from the current position:

Go Here +X(20)

If you execute the same statement again, the robot will move an additional 20 mm along the X axis, because
this is a relative move.

To make a relative rotation around the coordinate axis of the 6-axis robots (including N series), execute the
statement as follows. The following statement rotates the tool 20 degrees in the X-axis positive direction
based on the current tool orientation.

Go Here +RX(20)

You can also use relative tool offsets:

Go Here +TLX(20) -TLY(5.5)

When the 6-axis robot (including N series) moves to a point calculated by such as pallet or relative offsets,
the wrist part may rotate to an unintended direction. The point calculation above does not depend on robot
models and results in motion without converting the required point flag.
LJM function prevents the unintended wrist rotation.

Go LJM(Here +X(20))

Using absolute coordinates

You can change one or more coordinates of the base point by using absolute coordinates. For example, the
following statement moves the robot to the 20 mm position on the X axis:

Go Here :X(20)

If you execute the same statement again, the robot will not move because it is already in the absolute position
for X from the previous move.

Relative offsets and absolute coordinates make is easy to temporarily modify a point. For example, this code
moves quickly above the pick point by 10 mm using a relative offset for Z or 10 mm, then moves slowly to
the pick point.

Speed fast
Jump pick +Z(10)
Speed slow
Go pick

This code moves straight up from the current position by specifying an absolute value of 0 for the Z joint:

LimZ 0
Jump Here :Z(0)

Using Locals

You can specify a local number using a forward slash or at sign. Each has a separate function.

Use the forward slash to mark the coordinates in a local. For example, adding a /1 in the following statement
says that P1 will be at location 0,0,0,0 in local 1.

P1 = XY(0, 0, 0, 0) /1

Use the at sign to translate the coordinates into local coordinates.
For example, here is how to set the current position to P1:

P1 = Here @1

P# (2. Point Expression) Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 543

See Also

Go, LJM, Local, Pallet, Pdel, Plist, Hand, Elbow, Wrist, J4Flag, J6Flag, J1Flag, J2Flag

Point Expression Example
Here are some examples of using point expressions in assignments statements and motion commands:

P1 = XY(300,200,-50,100)
P2 = P1 /R
P3 = pick /1
P4 = P5 + P6
P(i) = XY(100, 200, CZ(P100), 0)
Go P1 -X(20) :Z(-20) /R
Go Pallet(1, 1) -Y(25.5)
Move pick /R
Jump Here :Z(0)
Go Here :Z(-25.5)
Go JA(25, 0, -20, 180)
pick = XY(100, 100, -50, 0)

P1 = XY(300,200,-50,100, -90, 0)
P2 = P1 /F /B
P2 = P1 +TLV(25)

PAgl Function

544 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

PAgl Function

Returns a joint value from a specified point.

Syntax

PAgl (point, jointNumber)

Parameters

point Point expression.
jointNumber Specifies the joint number (integer from 1 to 9) using an expression or numeric value.

The additional S axis is 8 and T axis is 9.

Return Values

Returns the calculated joint position (real value, deg for rotary joint, mm for prismatic joint).

See Also

Agl, CX, CY, CZ, CU, CV, CW, CR, CS, CT, PPls

PAgl Function Example

Real joint1

joint1 = PAgl(P10, 1)

Pallet Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 545

Pallet Statement

Defines and displays pallets.

Syntax

(1) Pallet [Outside,] [palletNumber, P1, P2, P3 [, P4], columns, rows]
(2) Pallet [Outside,] palletNumber, coordinateData 1, coordinateData 2, coordinateData 3
 [, coordinateData 4], columns1, rows2
(3) Pallet

Parameters

Outside Optional. Allow row and column indexes outside of the range of the specified
rows and columns.

palletNumber Pallet number represented by an integer number from 0 to 15.
P1, P2, P3 Point variables which define standard 3 point pallet position.
P4 Optional. Point variable which is used with P1, P2 and P3 to define 4 point pallet.
columns Integer expression representing the number of points on the P1(coordinateData

1)-to-P2(coordinateData 2) side of the pallet. Range is from 1 to 32767.
rows Integer expression representing the number of points on the P1(coordinateData

1)-to-P3(coordinateData 3) side of the pallet. Range is from 1 to 32767.
coordinateData1, 2, 3 Point data which is used for pallet definition (standard 3-point definition)
coordinateData 4 Optional. Point data which is used with coordinateData 1 to 3 for 4-point pallet

definition.

Return Values

(3) Displays all defined pallets when parameters are omitted.

Description

Defines a pallet by teaching the robot, as a minimum, points P1 (coordinateData 1), P2 (coordinateData 2)
and P3 (coordinateData 3) and by specifying the number of points from P1 (coordinateData 1)to P2
(coordinateData 2) and from P1 (coordinateData 1) to P3 (coordinateData 3).

If the pallet is a well ordered rectangular shape, only 3 of the 4 corner points need to be specified. However,
in most situations it is better to use 4 corner points for defining a pallet.

To define a pallet, first teach the robot either 3 or 4 corner points, then define the pallet as follows:
A pallet defined with 4 points: P1, P2, P3 and P4 is shown below. There are 3 positions from P1-P2 and 4

positions from P1-P3. This makes a pallet which has 12 positions total. To
define this pallet the syntax is as follows:

Pallet Statement

546 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

 Pallet 1, P1, P2, P3, P4, 3, 4

P1

P3

P2

1 2 3

7 8 9

4 5 6

10 11 12

P4
2

-2,10

 1,5 2,5 3,5 4,5
 1,4 2,4 3,4 4,4
 1,3 2,3 3,3 4,3
 1,2 2,2 3,2 4,2
 1,1 2,1 3,1 4,1

Sample

 1,6 4,6

-1,4 1,4 2,4 3,4 4,4 6,4

 1,3 2,3 3,3 4,3

 1,2 2,2 3,2 4,2

-1,1 1,1 2,1 3,1 4,1 6,1

 1,-1 4,-1

Points that represent divisions of a pallet are automatically assigned division numbers, which, in this example,
begin at P1. These division numbers are also required by the Pallet Function.

When Outside is specified, row and column indexes outside of the range of rows and columns can be specified.

For example:

Pallet Outside 1, P1, P2, P3, 4, 5
Jump Pallet(1, -2, 10)

Notes
The Maximum Pallet Size

The total number of points defined by a specific pallet must be less than 32,767.
Incorrect Pallet Shape Definitions

Be aware that incorrect order of points or incorrect number of divisions between points will result in an
incorrect pallet shape definition.

Pallet Plane Definition
The pallet plane is defined by the Z axis coordinate values of the 3 corner points of the pallet. Therefore, a
vertical pallet could also be defined.

Pallet Definition for a Single Row Pallet
A single row pallet can be defined with a 3 point Pallet statement or command. Simply teach a point at each
end and define as follows: Specify 1 as the number of divisions between the same point.

> Pallet 2, P20, P21, P20, 5, 1 'Defines a 5×1 pallet
UVW Coordinate Values

When the UVW coordinate values of the 3 (or 4) points specified with the Pallet statement vary, the UVW
coordinate values of the point 1 and the coordinate system data 1 are used.
The UVW coordinate values of the point numbers from 2 to 4 and the coordinate system numbers from 2 to
4 are ignored.

Pallet Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 547

Additional Axes Coordinate Values
When the coordinate values of the 3 (or 4) points specified with the Pallet statement include the additional
ST axis coordinate values, Pallet includes these additional coordinates in the position calculations. In the
case where the additional axis is used as the running axis, the motion of the running axis is considered and
calculated with the Pallet definition. You need to define a pallet larger than the robot motion range
considering the position of the running axis. Even if you define additional axes that are not affected by the
pallet definition, be careful of the positions of additional axes when defining the pallet.

See Also

Pallet Function

Pallet Statement Example
The following instruction from the command window sets the pallet defined by P1, P2 and P3 points, and
divides the pallet plane into 15 equally distributed pallet point positions, with the pallet point number 1, the
pallet point number 2 and the pallet point number 3 sitting along the P1-to-P2 side.

> pallet 1, P1, P2, P3, 3, 5
> jump pallet(1, 2) 'Jump to position on pallet

The resulting Pallet is shown below:

 P3

13 14 15

10 11 12

7 8 9

4 5 6

1 2 3
 P1 P2

Pallet Function

548 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Pallet Function

Specifies a position in a previously defined pallet.

Syntax

(1) Pallet (palletNumber, palletPosition)
(2) Pallet (palletNumber, column, row)

Parameters

palletNumber Pallet number represented by integer expression from 0 to 15.
PalletPosition The pallet position represented by an integer from 1 to 32767.
column The pallet column represented by an integer expression from −32768 to 32767.
row The pallet row represented by an integer expression from −32768 to 32767.

Description

Pallet returns a position in a pallet which was previously defined by the Pallet statement. Use this function
with motion commands such as Go and Jump to cause the arm to move to the specified pallet position.

The pallet position number can be defined arithmetically or simply by using an integer.

Notes
Pallet Motion of 6-axis Robot (including N series)

When the 6-axis robot (including N series) moves to a point calculated by such as pallet or relative offsets,
the wrist part may rotate to an unintended direction. The point calculation above does not depend on robot
models and results in motion without converting the required point flag.
LJM function prevents the unintended wrist rotation.

Pallet Motion of RS series
In the same way as the 6-axis, when the RS series robot moves to a point calculated by such as pallet or
relative offsets, Arm #1 may rotate to an unintended direction. LJM function can be used to convert the point
flag to prevent the unintended rotation of Arm #1.
In addition, the U axis of RS series may go out of the motion range when the orientation flag is converted,
and it causes an error.
To prevent this error, LJM function adjusts the U axis target angle to inside the motion range. It is available
when the orientation flag “2” is selected.

UVW Coordinate Values
When the UVW coordinate values of the 3 (or 4) points specified with the Pallet statement vary, the UVW
coordinate values of the point 1 and the coordinate system data 1 are used.
The UVW coordinate values of the point numbers from 2 to 4 and the coordinate system numbers from 2 to
4 are ignored.

Additional Axes Coordinate Values
When the coordinate values of the 3 (or 4) points specified with the Pallet statement include the additional
ST axis coordinate values, Pallet includes these additional coordinates in the position calculations. In the
case where the additional axis is used as the running axis, the motion of the running axis is considered and
calculated with the Pallet definition. You need to define a pallet larger than the robot motion range
considering the position of the running axis. Even if you define additional axes that are not affected by the
pallet definition, be careful of the positions of additional axes when defining the pallet.

See Also

LJM, Pallet

Pallet Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 549

Pallet Function Example

The following program transfers parts from pallet 1 to pallet 2.

Function main
 Integer index
 Pallet 1, P1, P2, P3, 3, 5 'Define pallet 1
 Pallet 2, P12, P13, P11, 5, 3 'Define pallet 2
 For index = 1 To 15
 Jump Pallet(1, index) 'Move to point index on pallet 1
 On 1 'Hold the work piece
 Wait 0.5
 Jump Pallet(2, index) 'Move to point index on pallet 2
 Off 1 'Release the work piece
 Wait 0.5
 Next I
Fend

Function main
 Integer i, j

 P0 = XY(300, 300, 300, 90, 0, 180)
 P1 = XY(200, 280, 150, 90, 0, 180)
 P2 = XY(200, 330, 150, 90, 0, 180)
 P3 = XY(-200, 280, 150, 90, 0, 180)

 Pallet 1, P1, P2, P3, 10, 10

 Motor On
 Power High
 Speed 50; Accel 50, 50
 SpeedS 1000; AccelS 5000

 Go P0
 P11 = P0 -TLZ(50)

 For i = 1 To 10
 For j = 1 To 10
 'Specify points
 P10 = P11 'Depart point
 P12 = Pallet(1, i, j) 'Target point
 P11 = P12 -TLZ(50) 'Start approach point
 'Converting each point to LJM
 P10 = LJM(P10)
 P11 = LJM(P11, P10)
 P12 = LJM(P12, P11)
 'Execute motion
 Jump3 P10, P11, P12 C0
 Next
 Next
Fend

Pallet Function

550 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Function main2
 P0 = XY(300, 300, 300, 90, 0, 180)
 P1 = XY(400, 0, 150, 90, 0, 180)
 P2 = XY(400, 500, 150, 90, 0, 180)
 P3 = XY(-400, 0, 150, 90, 0, 180)
 Pallet 1, P1, P2, P3, 10, 10

 Motor On
 Power High
 Speed 50; Accel 50, 50
 SpeedS 1000; AccelS 5000

 Go P0

 Do
 ' Specify points
 P10 = Here -TLZ(50) 'Depart point
 P12 = Pallet(1, Int(Rnd(9)) + 1, Int(Rnd(9)) + 1)'Target point
 P11 = P12 -TLZ(50) 'Start approach point

 If TargetOK(P11) And TargetOK(P12) Then 'Point check
 ' Converting each point to LJM
 P10 = LJM(P10)
 P11 = LJM(P11, P10)
 P12 = LJM(P12, P11)
 'Execute motion
 Jump3 P10, P11, P12 C0
 EndIf
 Loop
Fend

PalletClr Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 551

PalletClr Statement

Clears a defined pallet.

Syntax

PalletClr palletNumber

Parameters

palletNumber Pallet number represented by integer expression from 0 to 15.

See Also

Pallet

PalletClr Example

PalletClr 1

ParseStr Statement / Function

552 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

ParseStr Statement / Function

Parses a string and return array of tokens.

Syntax

ParseStr inputString$, tokens$(), delimiters$
numTokens = ParseStr(inputString$, tokens$(), delimiters$)

Parameters

inputString$ String expression to be parsed.
tokens$() Output array of strings containing the tokens.

The array declared by ByRef cannot be specified.
delimiters$ String expression containing one or more token delimiters.

Return Values

When used as a function, the number of tokens parsed is returned.

See Also

Redim, String

ParseStr Statement Example

String toks$(0)
Integer i

ParseStr "1 2 3 4", toks$(), " "

For i = 0 To UBound(toks)
 Print "token ", i, " = ", toks$(i)
Next i

Pass Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 553

Pass Statement

Executes simultaneous four joint Point to Point motion, passing near but not through the specified points.

Syntax

Pass point [, {On | Off | MemOn | MemOff} bitNumber [, point ...]] [LJM [orientationFlag]]

Parameters

point Pnumber or P(expr) or point label.
When the point data is continued and in the ascending order or the descending order,
specify two point numbers binding with colon as P(1:5).

bitNumber The I/O output bit or memory I/O bit to turn on or off. Integer number between 0 - 511
or output label.

LJM Optional. Convert the depart point, approach point, and target destination using LJM
function.

orientationFlag Optional. Specifies a parameter that selects an orientation flag for LJM function.

Description

Pass moves the robot arm near but not through the specified point series.

To specify a point series, use points (P0,P1, ...) with commas between points.

To turn output bits on or off while executing motion, insert an On or Off command delimited with commas
between points. The On or Off is executed before the robot reaches the point immediately preceding the On
or Off.

If Pass is immediately followed by another Pass, control passes to the following Pass without the robot
stopping at the preceding Pass final specified point.

If Pass is immediately followed by a motion command other than another Pass, the robot stops at the
preceding Pass final specified point, but Fine positioning will not be executed.

If Pass is immediately followed by a command, statement, or function other than a motion command, the
immediately following command, statement or function will be executed prior to the robot reaching the final
point of the preceding Pass.

If Fine positioning at the target position is desired, follow the Pass with a Go, specifying the target position
as shown in the following example:

Pass P5; Go P5; On 1; Move P10

The larger the acceleration / deceleration values, the nearer the arm moves toward the specified point. The
Pass instruction can be used such that the robot arm avoids obstacles.

Pass Statement

554 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

With LJM parameter, the program using LJM function can be more simple.
For example, the following four-line program

P11 = LJM(P1, Here, 1)
P12 = LJM(P2, P11, 1)
P13 = LJM(P3, P12, 1)
Pass P11, P12, P13

can be… one-line program.
 Pass P1, P2, P3 LJM 1
LJM parameter is available for 6-axis (including N series) and RS series robots.
When using orientationFlag with the default value, it can be omitted.
 Pass P1, P2, P3 LJM

See Also

Accel, Go, Jump, Speed

Pass Statement Example
The example shows the robot arm manipulation by Pass instruction:

Function main
 Jump P1
 Pass P2 'Move the arm toward P2, and perform the next instruction before reaching P2.
 On 2
 Pass P3
 Pass P4
 Off 0
 Pass P5
Fend

Pause Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 555

Pause Statement

Temporarily stops program execution all tasks for which pause is enabled.

Syntax

Pause

Description
When the Pause is executed, program execution for all tasks with pause enabled (tasks that do not use
NoPause or NoEmgAbort in Xqt command) is suspended. Also, if any task is executing a motion statement,
it will be paused even if pause is not enabled for that task.
However, Pause cannot stop the background tasks.

Note
QP and its Effect on Pause

The QP instruction is used to cause the arm to stop immediately upon Pause or to complete the current move
and then Pause the program. See the QP instruction help for more information.

Pause Statement Example

The example below shows the use of the Pause instruction to temporarily stop execution. The task executes
program statements until the line containing the Pause command. At that point the task is paused. The user
can then click the Run Window Continue Button to resume execution.

Function main

 Xqt monitor
 Go P1
 On 1
 Jump P2
 Off 1
 Pause 'Suspend program execution
 Go P40
 Jump P50
Fend

PauseOn Function

556 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

PauseOn Function

Returns the pause status.

Syntax
PauseOn

Return Values

True if the status is pause, otherwise False.

Description

PuseOn function is used only for NoPause, NoEmgAbort task (special task using NoPause or NoEmgAbort
at Xqt), and background tasks.

See Also

ErrorOn, EstopOn, SafetyOn, Wait, Xqt

PauseOn Function Example
The following example shows a program that monitors the controller pause and switches the I/O On/Off
when pause occurs. However, when the status changes to pause by Safety Door open, the I/O does not turn
On/Off.
Function main

 Xqt PauseMonitor, NoPause
 :
 :
Fend

Function PauseMonitor
 Boolean IsPause
 IsPause = False
 Do
 Wait 0.1
 If SafetyOn = On Then
 If IsPause = False Then
 Print "Saftey On"
 IsPause = True
 EndIf
 ElseIf PauseOn = On Then
 If IsPause = False Then
 Print "InPause"
 If SafetyOn = Off Then
 Off 10
 On 12
 EndIf
 IsPause = True
 EndIf
 Else
 If IsPause = True Then
 Print "OutPause"
 On 10
 Off 12
 IsPause = False
 EndIf
 EndIf
 Loop

Fend

PDef Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 557

PDef Function

Returns the definition status of a specified point.

Syntax

PDef (point)

Parameters

point An integer value or Pnumber or P(expr) or point label.

Cautions for compatibility
No variables can be specified for point parameter
To use variables, write PDef(P(varName)).

Return Values

True if the point is defined, otherwise False.

See Also

Here Statement, Pdel

PDef Function Example

If Not PDef(1) Then
 Here P1
EndIf
Integer i
For i = 0 to 10
 If PDef (P(i)) Then
 Print “P(“;i;”) is defined”
 EndIf
Next

PDel Statement

558 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

PDel Statement

Deletes specified position data.

Syntax

PDel firstPointNum [, lastPointNum]

Parameters

firstPointNum The first point number in a sequence of points to delete. firstPointNum must be an
integer.

lastPointNum The last point number in a sequence of points to delete. lastPointNum must be an
integer.

Description

Deletes specified position data from the controller's point memory for the current robot. Deletes all position
data from firstPointNum up to and including lastPointNum. To prevent Error 2 from occurring,
firstPointNum must be less than lastPointNum.

PDel Statement Example

> p1=10,300,-10,0/L
> p2=0,300,-40,0
> p10=-50,350,0,0
> pdel 1,2 'Delete points 1 and 2
> plist
P10 = -50.000, 350.000, 0.000, 0.000 /R /0
> pdel 50 'Delete point 50
> pdel 100,200 'Delete from point 100 to point 200
>

PDescription Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 559

PDescription Statement

Define a comment of specified point data.

Syntax
PDescription point data, Newcomment

Parameters
Point data An integer value or Pnumber or P(expr) or point label.

No variables can be specified for point data parameter.
To use variables, write PDescription Statement (P(varName)), “new
comment”.

New comment String expression representing comment of specified point.

Description
PDescription save a description in specified point data of controller memory.
Description saved in memory of the controller is delated from memory when creating or executing a
program. Execute the “SavePoints” to save in point file if necessary.

See Also

PDef Function, PDescription$ Function, PLabel, PLabel$ Function

PDescription Statement Example

PDescription 1, "Comment"

PDescription$ Function

560 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

PDescription$ Function

Returns description of point that defined to the specified point number.

Syntax
PDescription$(pointData)

Parameters
pointData An integer value or Pnumber or P(expr) or point label.

No variables can be specified for point data parameter.
To use variables, write PDescription$(P(varName)).

Return Values

Returns descriptions of specified number as a string.

See Also
PDef Function, PDescription, PLabel, PLabel$ Function

PDescription$ Function Example

Print PDescription$(1)
Print PDescription$(P(i))

PeakSpeedClear Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 561

PeakSpeedClear Statement

Clears and initializes the peak speed for one or more joints.

Syntax
PeakSpeedClear [j1 [, j2 [, j3 [, j4 [, j5 [, j6 [, j7 [, j8 [, j9]]]]]]]]]

Parameters
j1 – j9 Integer expression representing the joint number. If no parameters are supplied, then the

peak speed values are cleared for all joints.
The additional S axis is 8 and T axis is 9. If non-existent joint number is supplied, an
error occurs.

Description

PeakSpeedClear clears the peak speed values for the specified joints.
You must execute PeakSpeedClear before executing PeakSpeed.

This command does not support the PG additional axes.

See Also
AvgSpeed, PeakSpeed

PeakSpeedClear Statement Example
<Example 1>

The following is the example to display the speed values of specified joints after clearing the peak speed
values of all joints.

> PeakSpeedClear
> Go P1
> PeakSpeed 1
 -0.273
> PeakSpeed
 -0.273 -0.164
 -0.080 0.258
 -0.005 0.401
 0.000 0.000
 0.000
>

<Example 2>
The following is the example to display the peak speed values of specified joints after clearing the peak speed
values of J1, J4, and J5 for the vertical multi-axis robots.

> PeakSpeedClear 4, 1, 5
> Go P1
> PeakSpeed 1
 -0.273
> PeakSpeed 4
 0.258

PeakSpeed Statement

562 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

PeakSpeed Statement

Displays the peak speed values for the specified joint.

Syntax
PeakSpeed [jointNumber]

Parameters
jointNumber Optional. Integer expression representing the joint number.

The additional S axis is 8 and T axis is 9.

Return Values
Displays current peak speed values for all joints.

Description
PeakSpeed statement displays the value of the maximum absolute speed for the joint with a sign. The peak
speed is a real number from -1 to 1 with 1 being the maximum speed.

Execute PeakSpeedClear first, and then execute PeakSpeed to display the peak speed value for the joint.

When using the virtual controller or conducting dry-run, the average of the absolute speed values is calculated
from the commanded speed instead of the actual speed.
This command does not support the PG additional axes.

See Also
AvgSpeed, PeakSpeedClear, PeakSpeed Function

PeakSpeed Statement Example

> PeakSpeedClear
> Go P1
> PeakSpeed 1
 -0.273
> PeakSpeed
 -0.273 0.163
 -0.080 0.258
 -0.005 -0.401
 0.000 0.000
 0.000
>

PeakSpeed Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 563

PeakSpeed Function

Returns the peak speed for the specified joint.

Syntax
PeakSpeed (jointNumber)

Parameters
jointNumber Integer expression representing the joint number.

The additional S axis is 8 and T axis is 9.

Return Values
Real value from -1 to 1.

Description
PeakSpeed function returns the value of the maximum absolute speed for the joint with a sign. The peak
speed is a real number from -1 to 1 with 1 being the maximum speed.

Execute PeakSpeedClear statement first, and then execute PeakSpeed statement to display the peak speed
value for the joint.

When using the virtual controller or conducting dry-run, the average of the absolute speed values is calculated
from the commanded speed instead of the actual speed.
This command does not support the PG additional axes.

See Also
AvgSpeed, PeakSpeedClear, PeakSpeed

PeakSpeed Function Example
This example uses the PeakSpeed function in a program:

Function DisplayPeakSpeed
 Integer i

 PeakSpeedClear
 Go P1
 Print "Peak Speeds:"
 For i = 1 To 6
 Print "Joint ", i, " = ", PeakSpeed (i)
 Next i
Fend

PerformMode Statement

564 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

PerformMode Statement

Sets the mode of the robot.

Syntax

(1) PerformMode [modeNumber] [, robotNumber]
(2) PerformMode

Parameters

modeNumber Specify the operation mode with an integer value (0 to 2) or with the following constant.
This parameter is optional only when the statement is executed from the command
window.
Constant Value Description
MODE_STANDARD 0 Sets the Standard mode
MODE_BOOST 1 Sets the Boost mode
MODE_LOW_VIBRATION 2 Sets the Low-oscillation mode

robotNumber Specify the robot number by an integer value.
 If omitted, currently selected robot will be used.

Result
When specified by the syntax (1), the mode will be set by the mode number that is specified.
When specified by the syntax (2), the mode number of the currently selected robot will be displayed.

Description
PerformMode is a function to change the preference of manipulator performance (mode) according to the
intended use. For details of mode, refer to each manipulator manual.

Standard
The cycle time, the motion duty, and the oscillation at the motion stop are balanced.
This mode is available for any kind of application.

BOOST
This mode is specialized to reduce the operating time of a task.
Although this mode aggravates the motion duty and oscillation at the motion stop compared to the standard
mode, it can reduce operation time.
Recommended application: Transportation

Low-oscillation
This mode is specialized to reduce the oscillation at the motion stop.
Although this mode increases the operating time compared to the standard mode, it can reduce the
oscillation at the motion stop.
Recommended application: Transportation and assembly of precision components

PerformMode Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 565

Performance comparison

Mode
Comparison item

Operating time (*1) Oscillation Motion Duty (*2)
Standard Normal Normal Normal

Boost Improved Decreased Decreased
Low-oscillation Decreased Improved Normal

(*1) Traveling time of the manipulator moving from the current position to the target point.

(*2) Rate of operation time in maximum acceleration without overload error.

Note

- When it’s not supported products, an error may occur to change mode to boost or low-oscillation.

- Target motion commands: PTP motion commands (Go, BGo, TGo, Jump, JTran, PTran, Pulse)

* Following performance of the CP motion are not affected by Precede statement.

Trajectory accuracy

Upper limit values of AccelS, AccelR, SpeedS, SpeedR

Frequency of the acceleration setting error and the speed setting error

Conditions that automatically initialize the mode (to the Standard mode)

The table below shows the conditions which automatically initializes the mode.

 Change of the Mode
Controller power ON Changes to the standard mode
Controller reboot Changes to the standard mode
Motor ON Changes to the standard mode
Build / Rebuild Mode does not change
Reset Mode does not change
SFree Changes to the standard mode

See Also

Bo, Go, Jump, JTran, PerformMode Function, TGo

PerformMode Statement Example

PerformMode MODE_STANDARD
Go P1
PerformMode 2
Go P2

PerformMode Function

566 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

PerformMode Function

Returns the status of the robot operation mode.

Syntax

PerformMode ([robotNumber])

Parameters

robotNumber Specify the robot number to check the status by an integer value.
 If omitted, currently selected robot will be used.

Return Values

Returns the integer value representing the currently set operation mode.
0 = Standard mode
1 = Boost mode
2 = Low-oscillation mode

See Also

PerformMode

PerformMode Function Example

Print PerformMode(1)

PG_FastStop Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 567

PG_FastStop Statement

Stop the PG axes immediately.

Syntax

PG_FastStop

Description

The PG_FastStop stops the current PG robot immediately with no deceleration.
To stop normally, use the PG_SlowStop statement.

See Also

PG_Scan, PG_SlowStop

PG_FastStop Statement Example

The following program moves the PG axis for 10 seconds and stops it.

Function main
 Motor On
 PG_Scan 0
 Wait 10
 PG_FastStop ' Immediately stops the continuous motion
Fend

PG_LSpeed Statement

568 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

PG_LSpeed Statement

Sets the pulse speed of the time when the PG axis starts accelerating and
fishishes decelerating.

Syntax

PG_LSpeed accelSpeed As Integer [, decelSpeed As Integer],

Parameters

speed Integer expression that contains the pulse speed (1 to 32767 pulse/second)
decalSpeed Integer expression that contains the pulse speed (1 to 32767 pulse/second)

Description

PG_LSpeed specifies the pulse speed when the PG axis starts accelerating and finishes decelerating. It is
useful when setting the initial/ending speed of a stepping motor to higher within the range of max starting
frequency to offer the best performance of motor, or setting the speed to lower to prevent the stepping motor
from stepping out. The default is 300 pulse/second and do not change to use.

Time

Speed

Start of acceleration
Finish of deceleration

If omitted the finishing speed of deceleration, the speed set value is used.

The PG_LSpeed value initializes to the default values when any one of the following conditions occurs:

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

See Also

PG_LSpeed function

PG_LSpeed Statement Example
You can use the PG_LSpeed in the command window or in the program. The following examples show the
both cases.

Function pglspeedtst
 Motor On
 Power High

Speed 30;Accel 30,30
PG_LSpeed 1000
Go P0

Fend

To set the PG_LSpeed value from the command window.

> PG_LSpeed 1000,1100
>

PG_LSpeed Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 569

PG_LSpeed Function

Returns the pulse speed at the time when the current PG axis starts accelerating and finishes decelerating.

Syntax

PG_LSpeed [(paramNumber)]

Parameters

paramNumber One of the numbers below that specifies the number of set value.
 If omitted, 1 is used.
 1: Pulse speed at acceleration starts
 2: Pulse speed at deceleration finishes

Return Values

Integer value from 1 to 32767 in units of pulse/second.

See Also

PG_LSpeed

PG_LSpeed Function Example

Integer savPGLSpeed

savPGLSpeed = PG_LSpeed(1)

PG_Scan Statement

570 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

PG_Scan Statement

Starts the continuous spinning motion of the PG robot axes.

Syntax

PG_Scan direction As Integer

Parameters

direction Spinning direction
 0: + (CW) direction
 1: − (CCW) direction

Description

The PG_Scan starts the continuous spinning motion of the current PG robot.
To execute the continuous spinning motion, you need to enable the PG parameter continuous spinning by the
robot configuration.
When the program execution task is completed, the continuous spinning stops.

See Also

PG_FastStop

PG_Scan Statement Example

The following example spins the PG axis for 10 seconds and stops it suddenly.

Function main
 Motor On
 Power High
 Speed 10; Accel 10,10
 PG_Scan 0
 Wait 10
 PG_SlowStop
Fend

PG_SlowStop Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 571

PG_SlowStop Statement

Stops slowly the PG axis spinning continuously.

Syntax

PG_SlowStop

Description

PG_SlowStop decelerates the continuous spinning motion of the current PG robot and bring it to a stop.

See Also

PG_Scan, PG_FastStop

PG_SlowStop Statement Example

The following example spins the PG axis for 10 seconds and stop it suddenly.

Function main
 Motor On
 PG_Scan 0
 Wait 10
 PG_SlowStop ' Stops suddenly the continuous spinning motion
Fend

PLabel Statement

572 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

PLabel Statement

Defines a label for a specified point.

Syntax

PLabel pointNumber, newLabel

Parameters

pointNumber An integer expression representing a point number.
newLabel A string expression representing the label to use for the specified point.

See Also

PDef Function, PDescription, PDescription$ Function, PLabel$ Function, PNumber Function

PLabel Statement Example

PLabel 1, "pick"

PLabel$ Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 573

PLabel$ Function

Returns the point label associated with a point number.

Syntax

PLabel$(point)

Parameters

point An integer value or Pnumber or P(expr) or point label.

Cautions for compatibility
No variables can be specified for point parameter
To use variables, write PLabel$(P(varName)).

See Also

PDef Function, PDescription, PDescription$ Function,PLabel, PNumber Function

PLabel$ Function Example

Print PLabel$(1)
Print PLabel$(P(i))

Plane Statement

574 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Plane Statement

Specifies and displays the approach check plane.

Syntax

(1) Plane PlaneNum [, robotNumber], pCoordinateData
(2) Plane PlaneNum [, robotNumber], pOrigin, pXaxis, pYaxis
(3) Plane PlaneNum [, robotNumber]
(4) Plane

Parameters

PlaneNum Integer value representing the plane number from 1 to 15.
robotNumber Integer values representing the robot number

If omitted, the current robot is used.
pCoordinateData Point data representing the coordinate data of the approach check plane.
pOrigin Integer expression representing the origin point using the robot coordinate

system.
pXaxis Integer expression representing a point along the X axis using the robot coordinate

system if X alignment is specified.
pYaxis Integer expression representing a point along the Y axis using the robot coordinate

system if Y alignment is specified.

Return Values

When using syntax (3), the setting of the specified plane is displayed.
When using syntax (4), the settings of all plane numbers for the current robot are displayed.

Description

Plane is used to set the approach check plane. The approach check plane is for checking whether the robot
end effector is in one of the two areas divided by the specified approach check plane. The position of the
end effector is calculated by the current tool. The approach check plane is set using the XY plane of the base
coordinate system. The approach check plane detects the end effector when it approaches the area on the +
Z side of the approach check plane.

When the approach check plane is used, the system detects approaches in any motor power status during the
controller is ON.

The details of each syntax are as follows.

(1) Specifies a coordinate system to create the approach check plane using the point data representing the

translation and rotation based on the base coordinate system, and sets the approach check plane.

Example:

Plane 1, XY(x, y, z, u, v, w)
Plane 1, P1

(2) Defines the approach check plane (XP coordinate) by specifying the origin point, point along the X axis,
and point along the Y axis. Uses the X, Y, Z coordinates and ignores U, V, W coordinates. Calculates
the Z axis in righty and sets the approach checking direction.

Example:
Plane 1, P1, P2, P3

(3) Displays the setting of the specified approach check plane.

(4) Displays all the approach check plane.

Plane Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 575

You can use the GetRobotInsidePlane function and the InsidePlane function to get the result of the approach
check plane. The GetRobotInsidePlane function can be used as the condition for a Wait command. You can
provide the detection result to the I/O by setting the remote output setting.

To use one plane with more than one robot, you need to define planes from each robot coordinate system.

Robot 1 Robot 2

Coordinate system of
approach check plane

Approach check plane

Robot parameter data is stored in compact flash in controller. Therefore, writing to command flash occurs
when executing this command. Frequent writing to compact flash affect to lifetime of compact flash. We
recommend to use this command minimally.

Notes
Tool Selection

The approach check is executed for the current tool. When you change the tool, the approach check may
display the tool approach from inside to outside of the plane or the other way although the robot is not
operating.

Additional axis
For the robot which has the additional ST axes (including the running axis), the approach check plane to set
doesn’t depend on the position of an additional axis, but is based on the robot base coordinate system.

See Also

Box, GetRobotInsidePlane, InsidePlane, PlaneClr, PlaneDef

Tip
Set Plane statement from Robot Manager

EPSON RC+ has a point and click dialog box for defining the approach check plane. The simplest method
to set the Plane values is by using the Plane page on the Robot Manager.

Plane Statement Example

These are examples to set the approach check plane using Plane statement.

Check direction is the lower side of the horizontal plane that is −20 mm in Z axis direction in the robot
coordinate system:

> plane 1, xy(100, 200, -20, 90, 0, 180)

Approach check plane is the XY coordinate created by moving 50 mm in X axis and 200 mm in Y axis,
rotating 45 degrees around Y axis:

> plane 2, xy(50, 200, 0, 0, 45, 0)

Set the approach check plane using the tool coordinate system of the robot. (6-axis robot)

> plane 3, here

Plane Function

576 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Plane Function

Returns the specified approach check plane.

Syntax

Plane(PlaneNum [, robotNumber])

Parameters

PlaneNum Integer expression representing the plane number from 1 to 15.
robotNumber Integer values representing the robot number

If omitted, the current robot is used.

Return Values

Returns coordinate data for specified approach check plane.

See Also

GetRobotInsidePlane, InsidePlane, Plane, PlaneClr, PlaneDef

Plane Function Example

P1 = Plane(1)

PlaneClr Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 577

PlaneClr Statement

Clears (undefines) a Plane definition.

Syntax

PlaneClr PlaneNum [, robotNumber]

Parameters

PlaneNum Integer expression representing the plane number from 1 to 15.
robotNumber Integer value representing the robot number

If omitted, the current robot is used.
Description

Robot parameter data is stored in compact flash in controller. Therefore, writing to command flash occurs
when executing this command. Frequent writing to compact flash affect to lifetime of compact flash. We
recommend to use this command minimally.

See Also

GetRobotInsidePlane, InsidePlane, Plane, PlaneDef

PlaneClr Statement Example

PlaneClr 1

PlaneDef Function

578 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

PlaneDef Function

Returns the setting of the approach check plane.

Syntax

PlaneDef (PlaneNum [, robotNumber])

Parameters

PlaneNum Integer expression representing the plane number from 1 to 15.
robotNumber Integer value representing the robot number

If omitted, the current robot is used.

Return Values

True if approach detection plane is defined for the specified plane number, otherwise False.

See Also

GetRobotInsidePlane, Box, InsidePlane, Plane, PlaneClr

PlaneDef Function Example

Function DisplayPlaneDef(planeNum As Integer)

 If PlaneDef(planeNum) = False Then
 Print "Plane ", planeNum, "is not defined"
 Else
 Print "Plane 1: ",
 Print Plane(PlaneNum)
 EndIf
Fend

PList Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 579

PList Statement

Displays point data in memory for the current robot.

Syntax

(1) PList
(2) PList pointNumber
(3) PList startPoint,
(4) PList startPoint, endpoint

Parameters
pointNumber The number range is 0 to 999.
startPoint The start point number. The number range is 0 to 999.
endPoint The end point index. The number range is 0 to 999.

Return Values

Point data.

Description

Plist displays point data in memory for the current robot.

When there is no point data within the specified range of points, no data will be displayed.
When a start point number is specified larger than the end point number, then an error occurs.

(1) PList

Displays the coordinate data for all points.
(2) PList pointNumber

Displays the coordinate data for the specified point.
(3) PList startPoint,

Displays the coordinate data for all points starting with startPoint.
(4) PList startPoint, endPoint

Displays the coordinate data for all points starting with startPoint and ending with endPoint.

PList Statement

580 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

PList Statement Example

Display type depends on the robot type and existence of additional axes.
The following examples are for a Scara robot without additional axes.

Displays the specified point data:

> plist 1
P1 = XY(200.000, 0.000, -20.000, 0.000) /R /0
>

Displays the point data within the range of 10 and 20. In this example, only three points are found in this
range.

> plist 10, 20
P10 = XY(290.000, 0.000, -20.000, 0.000) /R /0
P12 = XY(300.000, 0.000, 0.000, 0.000) /R /0
P20 = XY(285.000, 10.000, -30.000, 45.000) /R /0
>
Displays the point data starting with point number 10.

> plist 10,
P10 = XY(290.000, 0.000, -20.000, 0.000) /R /0
P12 = XY(300.000, 0.000, 0.000, 0.000) /R /0
P20 = XY(285.000, 10.000, -30.000, 45.000) /R /0
P30 = XY(310.000, 20.000, -50.000, 90.000) /R /0

PLocal Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 581

PLocal Statement

Sets the local attribute for a point.

Syntax

PLocal(point) = localNumber

Parameters

point An integer value or Pnumber or P(expr) or point label.

Cautions for compatibility
No variables can be specified for point parameter
To use variables, write PLocal(P(varName)).

localNumber An integer expression representing the new local number. Range is 0 to 15.

See Also

PLocal Function

PLocal Statement Example

PLocal(pick) = 1

PLocal Function

582 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

PLocal Function

Returns the local number for a specified point.

Syntax

PLocal(point)

Parameters

point An integer value or Pnumber or P(expr) or point label.

Cautions for compatibility
No variables can be specified for point parameter
To use variables, write PLocal(P(varName)).

Return Values

Local number for specified point.

See Also

PLocal

PLocal Function Example

Integer localNum

localNum = PLocal(pick)

Pls Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 583

Pls Function

Returns the current encoder pulse count for each joint at the current position.

Syntax

Pls(jointNumber)

Parameters

jointNumber The specific joint for which to get the current encoder pulse count.
The additional S axis is 8 and T axis is 9.

Return Values

Returns a number value representing the current encoder pulse count for the joint specified by jointNumber.

Description

Pls is used to read the current encoder position (or Pulse Count) of each joint. These values can be saved
and then used later with the Pulse command.

See Also

CX, CY, CZ, CU, CV, CW, Pulse

Pls Function Example
Shown below is a simple example to get the pulse values for each joint and print them.

Function plstest
 Real t1, t2, z, u
 t1 = pls(1)
 t2 = pls(2)
 z = pls(3)
 u = pls(4)
 Print "T1 joint current Pulse Value: ", t1
 Print "T2 joint current Pulse Value: ", t2
 Print "Z joint current Pulse Value: ", z
 Print "U joint current Pulse Value: ", u
Fend

PNumber Function

584 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

PNumber Function

Returns the point number associated with a point label.

Syntax

PNumber(pointLabel)

Parameters

pointLabel A point label used in the current point file or string expression containing a point label.

See Also

PDef Function, PLabel$ Function

PNumber Function Example

Integer pNum
String pointName$

pNum = PNumber(pick)

pNum = PNumber("pick")

pointName$ = "place"
pNum = PNumber(pointName$)

PosFound Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 585

PosFound Function

Returns status of Find operation.

Syntax

PosFound

Return Values

True if position was found during move, False if not.

See Also

Find

PosFound Function Example

Find Sw(5) = ON
Go P10 Find
If PosFound Then
 Go FindPos
Else
 Print "Error: Cannot find the sensor signal."
EndIf

Power Statement

586 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Power Statement

Switches Power Mode to high or low and displays the current status.

Syntax

(1) Power { High | Low } [, Forced]
(2) Power

Parameters

High | Low The setting can be High or Low. The default is Low.
Forced Optional. This parameter is usually omitted.

Return Values

Displays the current Power status when parameter is omitted.

Description

Switches Power Mode to High or Low. It also displays the current mode status.

Low - When Power is set to Low, Low Power Mode is On. This means that the robot will run slow (below

250 mm/sec) and the servo stiffness is set light so as to remove servo power if the robot bumps into
an object.

High - When Power is set to High, Low Power Mode is Off. This means that the robot can run at full speed

with the full servo stiffness.

The following operations will switch to low power mode. In this case, speed and acceleration settings will
be limited to the default value. The default value is described in the each manipulator specification table.
See also the EPSON RC+ Users Guide: 2. Sefety.

Conditions to cause Power Low:
Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

Settings limited to the default value
Speed
Accel
SpeedS
AccelS

Power Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 587

Notes
Low Power Mode (Power Low) and Its Effect on Max Speed:

In low power mode, motor power is limited, and effective motion speed setting is lower than the default
value. If, when in Low Power mode, a higher speed is specified from the Command window (directly) or in
a program, the speed is set to the default value. If a higher speed motion is required, set Power High.
If you switched to low power mode while the manipulator operating in high power mode, overspeed error or
low power torque error may occur.

High Power Mode (Power High) and Its Effect on Max Speed:
In high power mode, higher speeds than the default value can be set.

Forced Flag
The power mode can be changed during robot operation (including the pause state).
If the mode is switched to high power mode while the robot is moving in low power mode, the subsequent
motion will be changed to high speed with the specified speed.
If the mode is switched to low power mode while the robot is moving in high power mode, the overspeed
error or low power torque error may occur.
Stop the robot and specify the Forced flag to switch to low power mode.

See Also

Accel, AccelS, Speed, SpeedS

Power Statement Example

The following examples are executed from the command window:

> Speed 50 'Specifies high speed in Low Power mode

> Accel 100, 100 'Specifies high accel

> Jump P1 'Moves in low speed and low accel

> Speed 'Displays current speed values
Low Power Mode
 50
 50 50

> Accel 'Displays current accel values
Low Power Mode
 100 100
 100 100
 100 100

> Power High 'Sets high power mode

> Jump P2 'Moves robot at high speed

Power Function

588 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Power Function

Returns status of power.

Syntax

Power [(robotNumber)]

Parameters

robotNumber Specify the robot number to check the status by an integer value.
 If omitted, currently selected robot will be used.

Return Values

0 = Power Low, 1 = Power High.

See Also

Power Statement

Power Function Example

If Power = 0 Then
 Print "Low Power Mode"
EndIf

PPls Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 589

PPls Function

Return the pulse position of a specified joint value from a specified point.

Syntax

PPls (point, jointNumber)

Parameters

point Point expression.
jointNumber Expression or numeric value specifying the joint number (integer from 1 to 9)

The additional S axis is 8 and T axis is 9.

Return Values

Returns the calculated joint position (long value, in pulses).

See Also

Agl, CX, CY, CZ, CU, CV, CW, Pagl

PPls Function Example

Long pulses1

pulses1 = PPls(P10, 1)

Print Statement

590 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Print Statement

Outputs data to the current display window, including the Run window, Operator window, Command
window, and Macro window.

Syntax
Print expression [,expression...] [,]
Print

Parameters
expression Optional. A number or string expression.
, (comma) Optional. If a comma is provided at the end of the statement, then a CRLF will not

be added.

Return Values

Variable data or the specified character string.

Description

Print displays variable data or the character string on the display device.

An end of line CRLF (carriage return and line feed) is automatically appended to each output unless a comma
is used at the end of the statement.

Note
This command can handle up to 256 bytes.

Make Sure Print is used with Wait or a motion within a loop
The Controller may freeze up if only Print is used in loop (loops with no Wait or no motion).
Be sure to use Print with Wait command or a motion command within a loop.
Bad example

Do
 Print "1234"
Loop

Good example
Do
 Print "1234"
 Wait 0.1
Loop

See Also

Print #

Print Statement Example

The following example extracts the U Axis coordinate value from a Point P100 and puts the coordinate value
in the variable uvar. The value is then printed to the current display window.

Function test
 Real uvar
 uvar = CU(P100)
 Print "The U Axis Coordinate of " + Chr$(34) + "P100" + Chr$(34) +
" is ", uvar
Fend

Print # Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 591

Print # Statement

Outputs data to the specified file, communications port, database, or device.

Syntax

Print #portNumber, expression [,expression...] [,]

Parameters

portNumber ID number representing a file, communications port, database, or device.
File number can be specified in ROpen, WOpen, and AOpen statements.
Communications port number can be specified in OpenCom (RS232) and OpenNet
(TCP/IP) statements.
Database number can be specified in OpenDB statement.

 Device ID integers are as follows.
21 RC+
24 TP (TP1 only)
20 TP3

expression A numeric or string expression.
, (comma) Optional. If a comma is provided at the end of the statement, then a CRLF will not be

added.

Description

Print # outputs variable data, numerical values, or character strings to the communication port or the device
specified by portNumber.

Notes
About the Controllers to use

For T/VT series, an error will occur at operation when RS-232C port of the Controller is specified.
Maximum data length

This command can handle up to 256 bytes.
However, if the target is a database, it can handle up to 4096 bytes.
If the target is the communications port (TCP/IP), it can handle up to 1024 bytes.

Exchange variable data with other controller
- When more than one string variable or both of numeric variable and string variable is specified, a comma

(“,”) character has to be added expressly to the string data.
The following programs are examples to exchange the string variable and numeric variable between the
Controllers using a communication port.

Sending end (Either pattern is OK.)
Print #PortNum, "$Status,", InData, OutData
Print #PortNum, "$Status", ",",InData, OutData

Receiving end
Input #PortNum, Response$, InData, OutData

File write buffering

File writing is buffered. The buffered data can be written with Flush statement. Also, when closing a file
with Close statement, the buffered data can be written.

Print # Statement

592 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Be sure to use Print # with Wait command or a motion command within a loop
Do not use only Print # in a loop

The Controller may freeze up if only Print # is used in loop (loops with no Wait or no motion).

Depending on the Controller status, information may not be displayed properly even if the Wait command
or a motion command is used. If the output is TP1, set Wait time to 1 (seconds) or more. In other cases,
set Wait time to 0.1 (seconds) or more.

Bad example
Do
 Print #24，"1234"
Loop

Good example
Do
 Print #24,"1234"
 Wait 1
Loop

See Also

Input#, Print, Write, WriteBin

Print # Statement Example

The following are some simple Print # examples:

Function printex
 String temp$
 Print #1, "5" 'send the character "5" to serial port 1 temp$ = "hello"
 Print #1, temp$
 Print #2, temp$
 Print #1 " Next message for " + Chr$(34) + "port 1" + Chr$(34)
 Print #2 " Next message for " + Chr$(34) + "port 2" + Chr$(34)
Fend

PTCLR Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 593

PTCLR Statement

Clears and initializes the peak torque for one or more joints.

Syntax

PTCLR [j1 [, j2 [, j3 [, j4 [, j5 [, j6 [, j7 [, j8 [, j9]]]]]]]]]

Parameters

j1 – j9 Integer expression representing the joint number. If no parameters are supplied, then the
peak torque values are cleared for all joints.
The additional S axis is 8 and T axis is 9. If non-existent joint number is supplied, an
error occurs.

Description

PTCLR clears the peak torque values for the specified joints.
You must execute PTCLR before executing PTRQ.

See Also

ATRQ, PTRQ

PTCLR Statement Example
<Example 1>

The following is the example to display the torque values of specified joints after clearing the peak torque
values of all joints.

> ptclr
> go p1
> ptrq 1
 0.227
> ptrq
 0.227 0.118
 0.249 0.083
 0.000 0.000
>

<Example 2>
The following is the example to display the torque values of specified joints after clearing the peak torque
values of J1, J4, and J5 for the vertical multi-axis robots.

> ptclr 4, 1, 5
> go p1
> ptrq 1
 0.227
> ptrq 4
 0.083

PTPBoost Statement

594 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

PTPBoost Statement

Specifies or displays the acceleration, deceleration and speed algorithmic boost parameter for small
distance PTP (point to point) motion.

Syntax

(1) PTPBoost boost [, departBoost] [, approBoost]
(2) PTPBoost

Parameters

boost Integer expression from 0 to 100.
departBoost Optional. Jump depart boost value. Integer expression from 0 to 100.
approBoost Optional. Jump approach boost value. Integer expression from 0 to 100.

Return Values

When parameters are omitted, the current PTPBoost settings are displayed.

Description

PTPBoost sets the acceleration, deceleration and speed for small distance PTP motion. It is effective only
when the motion distance is small. The PTPBoostOK function can be used to confirm whether or not a
specific motion distance to the destination is small enough to be affected by PTPBoost or not.

PTPBoost does not need modification under normal circumstances. Use PTPBoost only when you need to
shorten the cycle time even if vibration becomes larger, or conversely when you need to reduce vibration
even if cycle time becomes longer.

When the PTPBoost value is large, cycle time becomes shorter, but the positioning vibration increases. When
PTPBoost is small, the positioning vibration becomes smaller, but cycle time becomes longer. Specifying
inappropriate PTPBoost causes errors or can damage the manipulator. This may degrade the robot, or
sometimes cause the manipulator life to shorten.

The PTPBoost value initializes to its default value when any one of the following is performed:

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

See Also

PTPBoost Function, PTPBoostOK

PTPBoost Statement Example

PTPBoost 50, 30, 30

PTPBoost Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 595

PTPBoost Function

Returns the specified PTPBoost value.

Syntax

PTPBoost(paramNumber)

Parameters

paramNumber Integer expression which can have the following values:
 1: boost value
 2: jump depart boost value
 3: jump approach boost value

Return Values

Integer value from 0 to 100.

See Also

PTPBoost Statement, PTPBoostOK

PTPBoost Function Example

Print PTPBoost(1)

PTPBoostOK Function

596 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

PTPBoostOK Function

Returns whether or not the PTP (Point to Point) motion from a current position to a target position is a
small travel distance.

Syntax

PTPBoostOK(targetPos)

Parameters

targetPos Point expression for the target position.

Return Values

True if is it possible to move to the target position from the current position using PTP motion, otherwise
False.

Description

Use PTPBoostOK to the distance from the current position to the target position is small enough for
PTPBoost to be effective.

See Also

PTPBoost

PTPBoostOK Function Example

If PTPBoostOK(P1) Then
 PTPBoost 50
EndIf
Go P1

PTPTime Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 597

PTPTime Function

Returns the estimated time for a point to point motion command without executing it.

Syntax

(1) PTPTime(destination, destArm, destTool)
(2) PTPTime(start, startArm, startTool, destination, destArm, destTool)

Parameters

start Point expression for the starting position.
destination Point expression for the destination position.
destArm Integer expression for the destination arm number.
destTool Integer expression for the destination tool number.
startArm Integer expression for the starting point arm number.
startTool Integer expression for the starting point tool number.

Return Values

Real value in seconds.

Description

Use PTPTime to calculate the time it would take for a point to point motion command (Go). Use syntax 1
to calculate time from the current position to the destination. Use syntax 2 to calculate time from a start point
to a destination point.

The actual motion operation is not performed when this function is executed. The current position, arm, and
tool settings do not change.

If the position is one that cannot be arrived at or if the arm or tool settings are incorrect, 0 is returned.

If a robot includes an additional axis and it is the servo axis, the function will consider the motion time of the
additional axis.
If the additional axis is a PG axis, the motion time of the robot will be returned.

See Also

ATRQ, Go, PTRQ

PTPTime Function Example

Real secs

secs = PTPTime(P1, 0, 0, P2, 0, 1)
Print "Time to go from P1 to P2 is:", secs

Go P1
secs = PTPTime(P2, 0, 1)
Print "Time to go from P1 to P2 is:", secs

PTran Statement

598 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

PTran Statement

Perform a relative move of one joint in pulses.

Syntax

PTran joint, pulses

Parameters

joint Integer expression representing which joint to move.
The additional S axis is 8 and T axis is 9.

pulses Integer expression representing the number of pulses to move.

Description

Use PTran to move one joint a specified number of pulses from the current position.

See Also

Go, JTran, Jump, Move

PTran Statement Example

PTran 1, 2000

PTRQ Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 599

PTRQ Statement

Displays the peak torque for the specified joint.

Syntax

PTRQ [jointNumber]

Parameters

jointNumber Optional. Integer expression representing the joint number.
The additional S axis is 8 and T axis is 9.

Return Values

Displays current peak torque values for all joints.

Description

Use PTRQ to display the peak torque value for one or all joints since the PTCLR statement was executed.

Peak torque is a real number from 0 to 1.

See Also

ATRQ, PTCLR, PTRQ Function

PTRQ Statement Example

> ptclr
> go p1
> ptrq 1
 0.227
> ptrq
 0.227 0.118
 0.249 0.083
 0.000 0.000
>

PTRQ Function

600 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

PTRQ Function

Returns the peak torque for the specified joint.

Syntax

PTRQ(jointNumber)

Parameters

jointNumber Integer expression representing the joint number.
The additional S axis is 8 and T axis is 9.

Return Values

Real value from 0 to 1.

See Also

ATRQ, PTCLR, PTRQ Statement

PTRQ Function Example

This example uses the PTRQ function in a program:

Function DisplayPeakTorque
 Integer i

 Print "Peak torques:"
 For i = 1 To 4
 Print "Joint ", i, " = ", PTRQ(i)
 Next i
Fend

Pulse Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 601

Pulse Statement

Moves the robot arm using point to point motion to the point specified by the pulse values for each joint.

Syntax

(1) Pulse J1, J2, J3, J4 , [J5, J6] , [J7] , [J8, J9]
(2) Pulse

Parameters
J1 ~ J4 The pulse value for each of the first four joints. The pulse value has to be within the

range defined by the Range instruction and should be an integer or long expression.
J5, J6 Optional. For 6-axis robots (including N series) and Joint type 6-axis robots.
J7 Optional. For Joint type 7-axis robots.
J8, J9 Optional. For the additional axis.

Return Values

When parameters are omitted, the pulse values for the current robot position are displayed.

Description

Pulse uses the joint pulse value from the zero pulse position to represent the robot arm position, rather than
the orthogonal coordinate system. The Pulse instruction moves the robot arm using Point to Point motion.

The Range instruction sets the upper and lower limits used in the Pulse instruction.

Note
Make Sure Path is Obstacle Free Before Using Pulse

Unlike Jump, Pulse moves all axes simultaneously, including Z joint raising and lowering in traveling to the
target position. Therefore, when using Pulse, take extreme care so that the hand can move through an obstacle
free path.

Potential Error
Pulse value exceeds limit:

If the pulse value specified in Pulse instruction exceeds the limit set by the Range instruction, an error will
occur.

See Also

Go, Accel, Range, Speed, Pls, Pulse Function

Pulse Statement Example

Following are examples on the Command window:

This example moves the robot arm to the position which is defined by each joint pulse.

> pulse 16000, 10000, -100, 10

This example displays the pulse numbers of 1st to 4th axes of the current robot arm position.

> pulse
PULSE: 1: 27306 pls 2: 11378 pls 3: -3072 pls 4: 1297 pls
>

Pulse Function

602 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Pulse Function

Returns a robot point whose coordinates are specified in pulses for each joint.

Syntax

Pulse (J1, J2, J3, J4 [, J5 , J6] [, J7] [, J8 , J9])

Parameters

J1 ~ J4 The pulse value for joints 1 to 4. The pulse value must be within the range defined by
the Range instruction and should be an integer or long expression.

J5, J6 Optional. For 6-axis robots (including N series) and Joint type 6-axis robots.
J7 Optional. For Joint type 7-axis robots.
J8, J9 Optional. For the additional axis.

Return Values

A robot point using the specified pulse values.

See Also

Go, JA, Jump, Move, Pulse Statement, XY

Pulse Function Example

Jump Pulse(1000, 2000, 0, 0)

QP Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 603

QP Statement

Switches Quick Pause Mode On or Off and displays the current mode status.

Syntax

(1) QP { On | Off }
(2) QP

Parameters

On | Off Quick Pause can be either On or Off.

Return Values
Displays the current QP mode setting when parameter is omitted.

Description
If during motion command execution either the Pause switch is pressed, or a pause signal is input to the
controller, quick pause mode determines whether the robot will stop immediately, or will Pause after having
executed the motion command.

Immediately decelerating and stopping is referred to as a “Quick Pause”.

With the On parameter specified, QP turns the Quick Pause mode On.
With the Off parameter specified, QP turns the Quick Pause mode Off.

QP displays the current setting of whether the robot arm is to respond to the Pause input by stopping
immediately or after the current arm operation is completed. QP is simply a status instruction used to display
whether Quick Pause mode is on or off.

Notes
Quick pause mode defaults to on after power is turned on:

The Quick Pause mode set by the QP instruction remains in effect after the Reset instruction. However, when
the PC power or Drive Unit power is turned off and then back on, Quick Pause mode defaults to On.

QP and the Safe Guard Input:
Even if QP mode is set to Off, if the Safe Guard Input becomes open the robot will pause immediately.

See Also

Pause

QP Statement Example

This Command window example displays the current setting of whether the robot arm is to stop immediately
on the Pause input. (i.e. is QP mode set On or Off)

> qp
QP ON

> qp on 'Sets QP to Quick Pause Mode
>

QPDecelR Statement

604 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

QPDecelR Statement

Sets the deceleration speed of quick pause for the change of tool orientation during the CP motion.

Syntax

(1) QPDecelR QPDecelR
(2) QPDecelR

Parameters
QPDecelR Real value representing the deceleration speed of quick pause during the CP motion

(deg/sec2).

Result

If omitted the parameter, the current QPDecelR set value will be displayed.

Description
QPDecelR statement is enabled when the ROT parameter is used in the Move, Arc, Arc3, BMove, TMove,
and Jump3CP statements.
While quick pause is executed in these statements, a joint acceleration error may occur. This is because the
deceleration speed of quick pause that is automatically set in a normal quick pause is over the joint allowable
deceleration speed. Specifically, the error is likely to occur when the AccelR value in the CP motion is too
high or jogging the robot near a singularity. In these cases, use the QPDecelR and set a lower quick pause
deceleration speed. But if the setting is too low, the distance for quick pause will increase. Therefore, set
the possible value. Normally, you don’t need to set QPDecelR.

You cannot use values lower than the deceleration speed of orientation change in the CP motion set with
QPDecelR and AccelR. If you do, a parameter out of range error occurs.
Also, after you set QPDecelR, if a higher value than the set QP deceleration speed is set with the AccelR, the
QPDecelR will automatically set the QP deceleration speed same as the deceleration speed set with the
AccelR.

The QPDecelR Statement value initializes to the default max deceleration speed when any one of the
following conditions occurs:

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

See Also

QPDecelR Function, QPDecelS, AccelR

QPDecelR Statement Example

The following program sets the QPDecelR of the Move statement.

Function QPDecelTest
 AccelR 3000

QPDecelR 4000
 SpeedR 100
 Move P1 ROT
 . . .
Fend

QPDecelR Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 605

QPDecelR Function

Returns the set deceleration speed of quick pause for the change of tool orientation during the CP motion.

Syntax

QPDecelR

Return Values

Real value that contains the set deceleration speed of quick pause for the tool orientation change in the CP
motion (deg/s2).

See Also

QPDecelR, QPDecelS Function

QPDecelR Function Example

Real savQPDecelR

savQPDecelR = QPDecelR

QPDecelS Statement

606 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

QPDecelS Statement

Sets the deceleration speed of quick pause in the CP motion.

Syntax

(1) QPDecelS QPDecelS [, departDecel, approDecel]
(2) QPDecelS

Parameters

QPDecelS Real value that specifies the deceleration speed of quick pause in the CP motion.
(mm/sec2)

departDecel Real value that specifies the deceleration speed of quick pause in the Jump3
depart motion (mm/sec2)

approDecel Real value that specifies the deceleration speed of quick pause in the Jump3
approach motion (mm/sec2)

Return Values

If omitted the parameter, the current QPDecelS set value is displayed.

Description

While quick pause is executed in the CP motion, a joint acceleration error may occur. This is because the
deceleration speed of quick pause that is automatically set in a normal quick pause is over the joint allowable
deceleration speed. Specifically, the error is likely to occur when the AccelS value in the CP motion is too
high or jogging the robot near a singularity. In these cases, use the QPDecelS and set a lower quick pause
deceleration speed. But if the setting is too low, the distance for quick pause will increase. Therefore, set
the possible value. Normally, you don’t need to set QPDecelS.

You cannot use values lower than the deceleration speed of the CP motion set with AccelS. If you do, a
parameter out of range error occurs.
Also, after you set QPDecelS, if a higher value than the set QP deceleration speed is set with the AccelS, the
QPDecelS will automatically set the QP deceleration speed same as the deceleration speed set with the
AccelS.
The QPDecelS Statement value initializes to the default max deceleration speed when any one of the
following conditions occurs:

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

See Also

QPDecelS Function, QPDecelR, AccelS

QPDecelS Statement Example

The following program sets the QPDecelS of the Move statement.
Function QPDecelTest
 AccelS 3000

QPDecelS 4000
 SpeedS 100
 Move P1
 .
 .
 .

Fend

QPDecelS Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 607

QPDecelS Function

Returns the set deceleration speed of quick pause during the CP motion.

Syntax

QPDecelS (paramNumber)

Parameters

paramNumber Integer expression specifying the one of the following values.
 1: Quick pause deceleration speed during the CP motion
 2: Quick pause deceleration speed in depart motion during the Jump3 and Jump3CP
 3: Quick pause deceleration speed in approach motion during the Jump3 and Jump3CP

Return Values

Real value representing the quick pause deceleration speed (mm/s2).

See Also

QPDecelS, QPDecelR Function

QPDecelS Function Example

Real savQPDecelS

savQPDecelS = QPDecelS(1)

Quit Statement

608 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Quit Statement

Terminates execution of a specified task or all tasks.

Syntax

Quit { taskIdentifier | All }

Parameters

taskIdentifier Task name or integer expression representing the task number.
Task name is a function name used in an Xqt statement or a function started from the
Run window or Operator window.

Task number range is:
Normal tasks : 1 to 32
Background task : 65 to 80
Trap tasks : 257 to 267

All Specifies this parameter if all tasks except the background task should be terminated.

Description

Quit stops the tasks that are currently being executed, or that have been temporarily suspended with Halt.

Quit also stops the task when the specified task is NoPause task, NoEmgAbort task (special task using
NoPause or NoEmgAbort at Xqt), or the background tasks.
Quit All stops all tasks including the tasks above other than the background tasks.

Quit All sets the robot control parameter as below:

Robot Control parameter

Current robot Speed, SpeedR, SpeedS (Initialized to default values)
Current robot QPDecelR , QPDecelS (Initialized to default values)
Current robot LimZ parameter (Initialized to 0)
Current robot CP parameter (Initialized to Off)
Current robot SoftCP parameter (Initialized to Off)
Current robot Fine (Initialized to default values)
Current robot Power Low (Low Power Mode set to On)
Current robot PTPBoost (Initialized to default values)
Current robot TCLim, TCSpeed (Initialized to default values)
Current robot PgLSpeed (Initialized to default values)

See Also

Exit, Halt, Resume, Xqt

Quit Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 609

Quit Statement Example
This example shows two tasks that are terminated after 10 seconds.

Function main
 Xqt winc1 'Start winc1 function
 Xqt winc2 'Start winc2 function
 Wait 10
 Quit winc1 'Terminate task winc1
 Quit winc2 'Terminate task winc2
Fend

Function winc1
 Do
 On 1; Wait 0.2
 Off 1; Wait 0.2
 Loop
Fend

Function winc2
 Do
 On 2; Wait 0.5
 Off 2; Wait 0.5
 Loop
Fend

RadToDeg Function

610 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

RadToDeg Function

Converts radians to degrees.

Syntax

RadToDeg(radians)

Parameters

radians Real expression representing the radians to convert to degrees.

Return Values

A double value containing the number of degrees.

See Also

ATan, ATan2, DegToRad Function

RadToDeg Function Example

s = Cos(RadToDeg(x))

Randomize Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 611

Randomize Statement

Initializes the random-number generator.

Syntax

(1) Randomize seedValue
(2) Randomize

Parameters

seedValue Specify a real value (0 or more) to be basis to retrieve a random number.

See Also

Rnd Function

Randomize Statement Example

Function main
 Real r
 Randomize
 Integer randNum

 randNum = Int(Rnd(10)) + 1
 Print "Random number is:", randNum
Fend

Range Statement

612 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Range Statement

Specifies and displays the motion limits for each of the servo joints.

Syntax

(1) Range j1Min, j1Max, j2Min, j2Max, j3Min, j3Max, j4Min, j4Max
[, j5Min, j5Max, j6Min, j6Max]
[, j7Min, j7Max]
[, j8Min, j8Max, j9Min, j9Max]

(2) Range

Parameters

j1Min The lower limit for joint 1 specified in pulses.
j1Max The upper limit for joint 1 specified in pulses.
j2Min The lower limit for joint 2 specified in pulses.
j2Max The upper limit for joint 2 specified in pulses.
j3Min The lower limit for joint 3 specified in pulses.
j3Max The upper limit for joint 3 specified in pulses.
j4Min The lower limit for joint 4 specified in pulses.
j4Max The upper limit for joint 4 specified in pulses.
j5Min Optional for 6-Axis robots (including N series) and Joint type 6-axis robots.

The lower limit for joint 5 specified in pulses.
j5Max Optional for 6-Axis robots (including N series) and Joint type 6-axis robots.

The upper limit for joint 5 specified in pulses.
j6Min Optional for 6-Axis robots (including N series) and Joint type 6-axis robots.

The lower limit for joint 6 specified in pulses.
j6Max Optional for 6-Axis robots (including N series) and Joint type 6-axis robots.

The upper limit for joint 6 specified in pulses.
j7Min Optional for Joint type 7-axis robots. The lower limit for joint 7 specified in pulses.
j7Max Optional for Joint type 7-axis robots. The upper limit for joint 7 specified in pulses.
j8Min Optional for the additional S axis. The lower limit for joint 8 specified in pulses.
j8Max Optional for the additional S axis. The upper limit for joint 8 specified in pulses.
j9Min Optional for the additional T axis. The lower limit for joint 9 specified in pulses.
j9Max Optional for the additional T axis. The upper limit for joint 9 specified in pulses.

Return Values

Displays the current Range values when Range is entered without parameters

Description

Range specifies the lower and upper limits of each motor joint in pulse counts. These joint limits are specified
in pulse units. This allows the user to define a maximum and minimum joint motion range for each of the
individual joints. XY coordinate limits can also be set using the XYLim instruction.

The initial Range values are different for each robot. The values specified by this instruction remain in effect
even after the power is switched off.
When parameters are omitted, the current Range values are displayed.

Robot parameter data is stored in compact flash in controller. Therefore, writing to command flash occurs
when executing this command. Frequent writing to compact flash affect to lifetime of compact flash. We
recommend to use this command minimally.

Range Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 613

Potential Errors
Attempt to Move Out of Acceptable Range

If the robot arm attempts to move through one of the joint limits error will occur.
Axis Does Not Move

If the lower limit pulse is equal to or greater than the upper limit pulse, the joint does not move.

Note
Range of the lower/upper limits of Joint #6 in pulse differs depending on manipulator model

C4 : −419430399 to 419430399
C8, C12, N2, N6 : −26847955 to 26847955

See Also

JRange, SysConfig, XYLim

Range Statement Example

This simple example from the command window displays the current range configurations and then changes
them.

> range
-18205, 182045, -82489, 82489, -36864, 0, -46695, 46695
>
> range 0, 32000, 0, 32224, -10000, 0, -40000, 40000
>

Read Statement

614 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Read Statement

Reads characters from a file or communications port.

Syntax

Read #portNumber, stringVar$, count

Parameters

portNumber ID number representing a file or communications port to read from.
File number can be specified in ROpen, WOpen, and AOpen statements.
Communication port number can be specified in OpenCom (RS-232C) or OpenNet
(TCP/IP) statements.

stringVar$ Name of a string variable that will receive the character string.
count Maximum number of bytes to read.

Notes
About the Controllers to use

For T/VT series, an error will occur at operation when RS-232C port of the Controller is specified.

See Also

ChkCom, ChkNet, OpenCom, OpenNet, Write, ReadBin

Read Statement Example

Integer numOfChars
String data$

numOfChars = ChkCom(1)

If numOfChars > 0 Then
 Read #1, data$, numOfChars
EndIf

ReadBin Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 615

ReadBin Statement

Reads binary data from a file or communications port.

Syntax

ReadBin #portNumber, var
ReadBin #portNumber, array(), count

Parameters

portNumber ID number representing a file or communications port to read from.
File number can be specified in BOpen statement.
Communication port number can be specified in OpenCom (RS-232C) or OpenNet
(TCP/IP) statements.

var Name of a byte, integer, or long variable that will receive the data.
array() Name of a byte, integer, or long array variable that will receive the data. Specify a

one dimension array variable.
count Specify the number of bytes to read.

The specified count has to be less than or equal to the number of array elements and
also smaller than 256 bytes.
If the communication port (TCP/IP) is the subject, the count has to be less than or
equal to the number of array and also smaller than 1024 bytes.

Notes
About the Controllers to use

For T/VT series, an error will occur at operation when RS-232C port of the Controller is specified.

See Also

Write, WriteBin, Read

ReadBin Statement Example

Integer data
Integer dataArray(10)

numOfChars = ChkCom(1)

If numOfChars > 0 Then
 ReadBin #1, data
EndIf

NumOfChars = ChkCom(1)
 If numOfChars > 10 Then
 ReadBin #1, dataArray(), 10
EndIf

Real Statement

616 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Real Statement

Declares variables of type Real (4 byte real number).

Syntax

Real varName [(subscripts)] [, varName [(subscripts)]...]

Parameters

varName Variable name which the user wants to declare as type Real.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared. The

subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 and the available

number of array elements is the upper bound value + 1.
 When specifying the upper bound value, make sure the number of total elements is

within the range shown below:
Local variable 2,000
Global Preserve variable 4,000
Global variable and module variable 100,000

Description

Real is used to declare variables as type Real. Local variables should be declared at the top of a function.
Global and module variables must be declared outside functions.
Number of valid digits are six digits for Real type.

See Also

Boolean, Byte, Double, Global, Int32, Int64, Integer, Long, Short, String, UByte, UInt32, UInt64,
UShort

Real Statement Example

The following example shows a simple program which declares some variables using Real.

Function realtest
 Real var1
 Real A(10) 'Single dimension array of real
 Real B(10, 10) 'Two dimension array of real
 Real C(5, 5, 5) 'Three dimension array of real
 Real arrayVar(10)
 Integer i
 Print "Please enter a Real Number:"
 Input var1
 Print "The Real variable var1 = ", var1
 For i = 1 To 5
 Print "Please enter a Real Number:"
 Input arrayVar(i)
 Print "Value Entered was ", arrayVar(i)
 Next i
Fend

RealAccel Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 617

RealAccel Function

Returns the Accel value adjusted by OLAccel.

Syntax

RealAccel(paramNumber)

Parameters

paramNumber Integer expression which can have the following values:
 1: acceleration specification value
 2: deceleration specification value
 3: depart acceleration specification value for Jump
 4: depart deceleration specification value for Jump
 5: approach acceleration specification value for Jump
 6: approach deceleration specification value for Jump

Return Values

Integer 1% or more

Usage

By using RealAccel, the maximum acceleration speed with which the robot can operate continuously can be
acquired.
Steps are as follows:
(1) Operate the robot with the OLAccel command On.
(2) Execute the OLRate command and check if the overload ratio rises.
(3) If the overload ratio rises, auto adjustment begins when the overload ratio exceeds 0.5.
(4) After a certain period of time has passed, execute the OLRate command and check that the overload ratio

does not rise.
(5) After checking that the overload ratio does not rises, execute the RealAccel function.
(6) The value returned by the RealAccel function is the maximum acceleration speed that the robot can

operate continuously in the step (1).
* If the RealAccel function is executed while the overload ratio is rising, maximum acceleration speed of

continuous motion cannot be acquired.
* If the overheat error occurs, maximum acceleration speed of continuous motion cannot be acquired by

the above procedure.

See Also

Accel, OLAccel, OLRate

RealAccel Function Example

Following is the example of the RealAccel function used in the program.

Integer RealAccel1, RealDecel1

Accel 100, 100
OLAccel on

'Acquire the current acceleration speed.
RealAccel1 = RealAccel (1)
RealDecel1 = RealAccel (2)

Display the current acceleration speed
Print RealAccel1
Display the current deceleration speed
Print RealDecel1

RealPls Function

618 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

RealPls Function

Returns the pulse value of the specified joint.

Syntax

RealPls(jointNumber)

Parameters

jointNumber The specific joint for which to get the current pulse count.
The additional S axis is 8 and T axis is 9.

Return Values

Returns an integer value representing the current encoder pulse count for the joint specified by jointNumber.

Description

RealPls is used to read the current encoder position (or Pulse Count) of each joint. These values can be saved
and then used later with the Pulse command.

See Also

CX, CY, CZ, CU, CV, CW, Pulse

RealPls Function Example

Function DisplayPulses

 Long joint1Pulses

 joint1Pulses = RealPls(1)
 Print "Joint 1 Current Pulse Value: ", joint1Pulses
Fend

RealPos Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 619

RealPos Function

Returns the current position of the specified robot.

Syntax

RealPos

Return Values

A robot point representing the current position of the specified robot.

Description

RealPos is used to read the current position of the robot.

See Also

CurPos, CX, CY, CZ, CU, CV, CW, RealPls

RealPos Function Example

Function ShowRealPos

 Print RealPos
Fend

P1 = RealPos

RealTorque Function

620 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

RealTorque Function

Returns the current torque instruction value of the specified joint.

Syntax

RealTorque(jointNumber)

Parameters

jointNumber Specifies the joint number to acquire the torque instruction value using an expression or
numeric value.
The additional S axis is 8 and T axis is 9.

Return Values

Returns the real value (-1 to 1) representing the proportion in the maximum torque on current power mode.
The positive value means the positive direction of the joint angle and the negative value means the negative
direction.

See also

TC, TCSpeed, TCLim

RealTorque Function Example

Print "Current Z axis torque instruction value (SCARA):",
RealTorque(3)

Recover Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 621

Recover Statement

Executes safeguard position recovery and returns status.
This is for the experienced user and you need to understand the command specification before use.

Syntax

(1) Recover robotNumber | All
(2) Recover robotNumber | All , WithMove | WithoutMove

Parameters

robotNumber Robot number that you want to execute recovery for.
If omitted, all robots are executed recovery.

All All robots execute recovery
If omitted, same as All.

WithMove A constant whose value is 0.
Turns motor on and executes safeguard position recovery.
If omitted, same as WithMove.

WithoutMove A constant whose value is 1.
Turns the robot motor on. Not usually used.
Realizes the special recovery with AbortMotion.

Return Values

Boolean value. True if recover was completed, False if not.

Description

To execute Recover statement from a program, you need to set the [Enable advanced task commands]
checkbox in the [Setup] menu-[System Configuration]-[Controller]-[Preferences] page of the EPSON RC+.

Recover can be used after the safeguard is closed to turn on the robot motors and move the robot back to
the position it was in when the safeguard was open with low power PTP motion. After Recover has
completed successfully, you can execute the Cont method to continue the cycle.

When more than one robot is used in the controller and All is specified, all robots are recovered.

See Also
AbortMotion, Cont, Recover Function, RecoverPos

Recover Statement

622 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Recover Statement Example

CAUTION

■ When executing the Recover command from a program, you must understand the
command specification and confirm that the system has the proper conditions for
this command. Improper use such as continuous execution of a command within
a loop may deteriorate the system safety.

Function main
 Xqt 2, monitor, NoPause
 Do
 Jump P1
 Jump P2
 Loop
Fend

Function monitor
 Do
 If Sw(SGOpenSwitch) = On then
 Wait Sw(SGOpenSwitch) = Off and Sw(RecoverSwitch) = On
 Recover All
 EndIf
 Loop
Fend

Recover Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 623

Recover Function

Executes safeguard position recovery and returns status.
This is for the experienced user and you need to understand the command specification before use.

Syntax

(1) Recover
(2) Recover (robotNumber | All)
(3) Recover (robotNumber | All , WithMove | WithoutMove)

Parameters

robotNumber Robot number that you want to execute recovery for.
If omitted, all robots are executed recovery.

All All robots execute recovery
If omitted, same as All.

WithMove A constant whose value is 0.
Turns motor on and executes safeguard position recovery.
If omitted, same as WithMove.

WithoutMove A constant whose value is 1.
Turns the robot motor on. Not usually used.
Realizes the special recovery with AbortMotion.

Return Values

Boolean value. True if recover was completed, False if not.

Description

To execute Recover statement from a program, you need to select the [Enable advanced task commands]
checkbox in the EPSON RC+ [Setup]-[System Configuration]-[Controller]-[Preferences].

Recover can be used after the safeguard is closed to turn on the robot motors and move the robot back to the
position it was in when the safeguard was open with low power PTP motion. After Recover has completed
successfully, you can execute the Cont method to continue the cycle.

When more than one robot is used in the controller and All is specified, all robots are recovered.

CAUTION

■ When executing the Recover command from a program, you must understand the
command specification and confirm that the system has the proper conditions for
this command. Improper use such as continuous execution of a command within
a loop may deteriorate the system safety.

See Also

AbortMotion, Cont, Recover Statement, RecoverPos

Recover Function

624 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Recover Function Example
Boolean sts
Integer answer

sts = Recover
If sts = True Then
MsgBox "Ready to continue", MB_ICONQUESTION + MB_YESNO,

"MyProject", answer
If answer = IDYES Then
 Cont
EndIf

EndIf

RecoverPos Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 625

RecoverPos Function

Returns the position where a robot was in when safeguard was open.
This is for the experienced and you need to understand the command specification before use.

Syntax

RecoverPos ([robotNumber])

Parameters

robotNumber Integer value that specifies a robot number
If omitted, the current robot number is used.

Return Values

Returns the position the specified robot was in when the safeguard was open.
In the case where the safeguard was not open or the robot has completed the recovery, the coordinates of
the returned point data are 0.

Description

This function returns the robot recovery position when using the Cont or Recover commands.

See Also

AbortMotion, Cont, Recover, Recover Function, RealPos

RecoverPos Function Example

If the straight distance of recovery is less than 10 mm, it executes recovery. If more than 10 mm, it finishes
the program.

If Dist(RecoverPos, RealPos) < 10 Then

Recover All
Else

Quit All
EndIf

Redim Statement

626 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Redim Statement

Redimension an array at run-time.

Syntax

Redim [Preserve] arrayName (subscripts)

Parameters

Preserve Optional. Specifies to preserve the previous contents of the array. If omitted, the array
will be cleared.

arrayName Name of the array variable; follows standard variable naming conventions. The array
must have already been declared.

subscripts Optional. New dimensions of an array variable may be declared. You must supply
the same number of dimensions as when the variable was declared. The subscripts
syntax is as follows

 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 and the available

number of array elements is the upper bound value + 1.
 When specifying the upper bound value, make sure the number of total elements is

within the range shown below:

Others than

String
String

Local variable 2,000 200
Global Preserve variable 4,000 400
Global variable and module
variable

100,000 10,000

Description

Use Redim to change an array’s dimensions at run time. Use Preserve to retain previous values.
The array variable declared by Byref cannot use Redim.

Frequent Redim will decrease the speed of program execution. Especially, we recommend using the
minimum of Redim for the global preserve variables.

See Also

UBound

Redim Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 627

Redim Statement Example

Integer i, numParts, a(0)

Print "Enter number of parts "
Input numParts

Redim a(numParts)

For i=0 to UBound(a)
 a(i) = i
Next

' Redimension the array with 20 more elements
Redim Preserve a(numParts + 20)

' The first element values are retained
For i = 0 to UBound(a)
 Print a(i)
Next

Rename Statement

628 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Rename Statement

Renames a file.

Syntax

Rename oldFileName, newFileName

Parameters

oldFileName String expression containing the path and name of the file to rename.
See ChDisk for the details.

newFileName The new name to be given to the file specified by oldFileName.
See ChDisk for the details.

Description

Changes name of specified file oldFileName to newFileName.

If path is omitted, Rename searches for oldFileName in the current directory.

Rename is only enabled when oldFileName and newFileName are specified in the same drive.

A file may not be renamed to a filename that already exists in the same path.

Wildcard characters are not allowed in either oldFileName or newFileName.

See Also

Copy

Rename Statement Example

Example from the command window:

> Rename A.PRG B.PRG

RenDir Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 629

RenDir Statement

Rename a directory.

Syntax

Rendir oldDirName As String, newDirName As String

Parameters

oldDirName A string expression specifying the path and name of the directory to rename.
newDirName A string expression specifying the path and new name to be given to the directory

specified by oldDir.
See ChDisk for the details of path.

Description

The same path used for oldDirName must be included for newDirName.

If both paths of the parameters above are omitted and directory name is only specified, the current directory
is specified.

Wildcard characters are not allowed in either oldDirName or newDirName.

Note

- This statement is executable only with the PC disk.

See Also

MkDir

RenDir Statement Example

RenDir "c:\mydata", "c:\mydata1"

Reset Statement

630 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Reset Statement

Resets the controller into an initialized state.

Syntax

(1) Reset
(2) Reset Error

Description

Reset resets the items shown below.
Reset Error finishes all non-background tasks and resets the error status and robot control parameters.
To execute the Reset Error statement from programs you need to set the [Enable advanced task commands]
preference in the [Setup]-[System Configuration]-[Controller]-[Preference] page of the EPSON RC+.

Emergency Stop Status (reset by Reset only)
Error status
Output Bits (reset by Reset only)

All Output Bits output set to Off except the I/O for Remote and the I/O for hand.
User can set Option Switch to turn this feature off.

Robot Control parameter
Speed, SpeedR, SpeedS (Initialized to default values)
Accel, AccelR, AccelS (Initialized to default values)
QPDecelR , QPDecelS (Initialized to default values)
LimZ parameter (Initialized to 0)
CP parameter (Initialized to Off)
SoftCP parameter (Initialized to Off)
Fine (Initialized to default values)
Power Low (Low Power Mode set to On)
PTPBoost (Initialized to default values)
TCLim, TCSpeed (Initialized to default values)
PgLSpeed (Initialized to default values)

For servo related errors, Emergency Stop status, and any other conditions requiring a Reset, no command
other than Reset will be accepted. In this case first execute Reset, then execute other processing as necessary.
For example, after an emergency stop, first verify safe operating conditions, execute Reset, and then execute
Motor On.
Critical error state will not be canceled by Reset.
When critical error occurs, turn Off the controller and solve the cause of the error.
The Reset Statement cannot be executed from a background task or tasks started with the Trap Emergency
or Trap Error. Emergency Stop status cannot be reset from programs.

Note
Reset Outputs Preference

([Setup]-[System Configuration]-[Controller]-[Preferences]) If the [Reset command turns off outputs]
checkbox is selected, all outputs except bit for hand will be turned OFF when the Reset command is issued.
This is important to remember when wiring the system such that turning the outputs off should not cause
tooling to drop or similar situations.
For details of hand, refer to Hand Function Manual.

See Also

Accel, AccelS, Fine, LimZ, Motor, Off, On, PTPBoost, SFree, SLock, Speed, SpeedS

Reset Statement Example

Example from the command window.
>reset
>

ResetElapsedTime Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 631

ResetElapsedTime Statement

Resets the takt time measurement timer used in ElapsedTime Function.

Syntax

ResetElapsedTime

Description

Resets and starts the takt time measurement timer.

See Also

ElapsedTime Function

ResetElapsedTime Statement Example

ResetElapsedTime 'Resets the takt time measurement timer
For i = 1 To 10 'Executes 10 times
 GoSub Cycle
Next
Print ElapsedTime / 10 'Measures a takt time and displays it

Restart Statement

632 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Restart Statement

Restarts the current main program group.
This command is for the experienced user and you should understand the command specification before
use.

Syntax

Restart

Description

Restart stops all tasks and re-executes the last main program group that was running. Background tasks
continue to run.
All Trap settings are reset and even if Restart stops tasks, it doesn’t execute Trap Abort.
Restart resets the Pause status.
If you execute Restart during error status, reset the error first using a method such as the Reset Error
statement.
Restart cannot be used during Emergency Stop status as it causes an error. Emergency Stop status cannot
be reset from programs.

CAUTION

■ When executing the Restart command from a program, you must understand the
command specification and confirm that the system has the proper conditions for
this command. Improper use such as continuous execution of a command within
a loop may deteriorate the system safety.

Note
When using remote control I/O system, do not execute the Restart command of the SPEL+ program and
the Start signal of the remote input at the same time. Error 2503 may occur when the programs are executed
at the same time.

参照

See Also
Quit, Reset, Trap, Xqt

Restart Statement Example

Function main
 Trap Error Xqt eTrap
 Motor On
 Call PickPlac
Fend

Function eTrap

Wait Sw(ERresetSwitch)
Reset Error
Wait Sw(RestartSwitch)
Restart

Fend

Resume Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 633

Resume Statement

Continues a task which was suspended by the Halt instruction.

Syntax

Resume { taskIdentifier | All }

Parameters

taskIdentifier Task name or integer expression representing the task number.
Task name is a function name used in an Xqt statement or a function started from the
Run window or Operator window.

Task number range is:
Normal tasks : 1 to 32
Background task : 65 to 80
Trap tasks : 257 to 267

All Specifies that all tasks should be resumed.

Description

Resume continues the execution of the tasks suspended by the Halt instruction.

See Also

Halt, Quit, Xqt

Resume Statement Example
This shows the use of Resume instruction after the Halt instruction.

Function main
 Xqt 2, flicker 'Execute flicker as task 2

 Do
 Wait 3 'Allow flicker to execute for 3 seconds
 Halt flicker 'Halt the flicker task
 Wait 3
 Resume flicker 'Resume the flicker task
 Loop
Fend

Function flicker
 Do
 On 1
 Wait 0.2
 Off 1
 Wait 0.2
 Loop
Fend

Return Statement

634 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Return Statement

The Return statement is used with the GoSub statement. GoSub transfers program control to a subroutine.
Once the subroutine is complete, Return causes program execution to continue at the line following the
GoSub instruction which initiated the subroutine.

Syntax

Return

Description

The Return statement is used with the GoSub statement. The primary purpose of the Return statement is to
return program control back to the instruction following the GoSub instruction which initiated the subroutine
in the first place.

The GoSub instruction causes program control to branch to the user specified statement line number or label.
The program then executes the statement on that line and continues execution through subsequent line
numbers until a Return instruction is encountered. The Return instruction then causes program control to
transfer back to the line which immediately follows the line which initiated the GoSub in the first place. (i.e.
the GoSub instruction causes the execution of a subroutine and then execution Returns to the statement
following the GoSub instruction.)

Potential Error
Return Found Without GoSub

A Return instruction is used to "return" from a subroutine back to the original program which issued the
GoSub instruction. If a Return instruction is encountered without a GoSub having first been issued then an
error will occur. A standalone Return instruction has no meaning because the system doesn't know where to
Return to.

See Also

OnErr, GoSub, GoTo

Return Statement Example

The following example shows a simple function which uses a GoSub instruction to branch to a label called
checkio and check the first 16 user inputs. Then the subroutine returns back to the main program.

Function main
 Integer var1, var2
 GoSub checkio
 On 1
 On 2
 Exit Function

checkio: 'Subroutine starts here
 var1 = In(0)
 var2 = In(1)
 If var1 <> 0 Or var2 <> 0 Then
 Print "Message to Operator here"
 EndIf
finished:
 Return 'Subroutine ends here and returns to line 40
Fend

Right$ Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 635

Right$ Function

Returns a substring of the rightmost characters of a string.

Syntax

Right$(string, count)

Parameters

string String variable or character string of up to 255 characters from which the rightmost
characters are copied.

count The number of characters to copy from string starting with the rightmost character.

Return Values

Returns a string of the rightmost count characters from the character string specified by the user.

Description

Right$ returns the rightmost count characters of a string specified by the user. Right$ can return up to as
many characters as are in the character string.

See Also

Asc, Chr$, InStr, Left$, Len, Mid$, Space$, Str$, Val

Right$ Function Example

The example shown below shows a program which takes a part data string as its input and splits out the part
number, part name, and part count.

Function SplitPartData(DataIn$ As String, ByRef PartNum$ As String,
ByRef PartName$ As String, ByRef PartCount As Integer)

 PartNum$ = Left$(DataIn$, 10)

 DataIn$ = Right$(datain$, Len(DataIn$) - pos)
 pos = Instr(DataIn$, ",")

 PartName$ = Mid$(DataIn$, 11, 10)

 PartCount = Val(Right$(dataIn$, 5))

Fend

Some other example results from the Right$ instruction from the Command window.
> Print Right$("ABCDEFG", 2)
 FG

> Print Right$("ABC", 3)
 ABC

RmDir Statement

636 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

RmDir Statement

Removes an empty subdirectory from a controller disk drive.

Syntax

Rmdir dirName

Parameters

dirName String expression for the path and name of the directory to remove.
If the directory name is specified without a path, then the subdirectory in the current
directory is specified.
See ChDisk for the details of path.

Description

Removes the specified subdirectory. Prior to executing Rmdir all of the subdirectory's files must be
deleted.

The current directory or parent directory cannot be removed.

When executed from the Command window, quotes may be omitted.

Note

- This statement is executable only with the PC disk.

Rmdir Statement Example

Example from the command window:

> RmDir \mydata

Rnd Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 637

Rnd Function

Returns a random number.

Syntax

Rnd(maxValue)

Parameters

maxValue Real expression that represents the maximum return value.

Return Values

Random real number from 0 to range.

Description

Use Rnd to generate random number values.

See Also

Int, Randomize

Rnd Function Example

Here's a Rnd example that generates a random number between 1 and 10.

Function main
 Real r
 Integer randNum

 Randomize
 randNum = Int(Rnd(9)) + 1
 Print "Random number is:", randNum
Fend

Robot Statement

638 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Robot Statement

Selects the current robot.

Syntax

Robot number

Parameters

number Number of the desired robot. The value ranges from 1 to the number of installed robots.

Description

Robot allows the user to select the default robot for subsequent motion instructions.

On a system with one robot, the Robot statement does not need to be used.

See Also

Accel, AccelS, Arm, ArmSet, Go, Hofs, Home, HOrdr, Local, Move, Pulse, Robot Function,
Speed, SpeedS

Robot Statement Example

Function main
 Integer I
 For I = 1 to 100
 Robot 1
 Go P(i)
 Robot 2
 Go P(i)
 Next I
Fend

Robot Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 639

Robot Function

Returns the current robot number.

Syntax

Robot

Return Values

Integer containing the current robot number.

See Also

Robot Statement

Robot Function Example

Print "The current robot is: ", Robot

RobotInfo Function

640 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

RobotInfo Function

Returns status information for the robot.

Syntax

RobotInfo(index)

Parameters
index Integer expression that represents the index of the information to retrieve.

Return Values
The specified information is returned as an integer.

Description
The information for each bit of the returned value is shown in the table below:

Index Bit Value Description

0

0 &H1 Undefined
1 &H2 Resettable error has occurred
2 &H4 Non-resettable error has occurred
3 &H8 Motors are on
4 &H10 Current power is high
5 &H20 Undefined
6 &H40 Undefined
7 &H80 Undefined
8 &H100 Robot is halted
9 &H200 Robot not halted (executing motion or in quick pause)
10 &H400 Robot stopped by pause or safeguard
11 Undefined
12 Undefined
13 Undefined
14 &H4000 TILL condition was satisfied by preceding motion command
15 &H8000 SENSE condition was satisfied by preceding motion command

16-31 Undefined

1

0 &H1 Robot is tracking (Conveyor tracking)
1 &H2 Robot is waiting for recovery motion (WaitRecover status)
2 &H4 Robot is being recovered

3-31 Undefined

2 0 &H1 Robot is at home position
1-31 Undefined

3

0 &H1 Joint 1 servo is engaged
1 &H2 Joint 2 servo is engaged
2 &H4 Joint 3 servo is engaged
3 &H8 Joint 4 servo is engaged
4 &H10 Joint 5 servo is engaged
5 &H20 Joint 6 servo is engaged
6 &H40 Joint 7 servo is engaged
7 &H80 S axis servo is engaged
8 &H100 T axis servo is engaged

9-31 Undefined

4

N/A 0 - 32
−1

Number of tasks executing robot commands
0 = command executing from command window or macro
−1 = no task is using the manipulator

RobotInfo Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 641

Index Bit Value Description

5

0 &H1 Joint 1 brake is on
1 &H2 Joint 2 brake is on
2 &H4 Joint 3 brake is on
3 &H8 Joint 4 brake is on
4 &H10 Joint 5 brake is on
5 &H20 Joint 6 brake is on
6 &H40 Joint 7 brake is on
7 &H80 S axis brake is on
8 &H100 T axis brake is on

9-31 Undefined

See Also
CtrlInfo, RobotInfo$, TaskInfo

RobotInfo Function Example

If (RobotInfo(3) And &H1) = &H1 Then
 Print "Joint 1 is locked"
Else
 Print "Joint 1 is free"
EndIf

RobotInfo$ Function

642 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

RobotInfo$ Function

Returns text information for the robot.

Syntax

RobotInfo$(index)

Parameters

index Integer expression that represents the index of the information to retrieve.

Return Values

A string containing the specified information.

Description

Index Description
0 Robot name
1 Model name
2 Default point file name
3 Undefined
4 Serial number of robot

See Also

CtrlInfo, RobotInfo, TaskInfo

RobotInfo$ Function Example

Print "Robot Name: ", RobotInfo$(0)

RobotModel$ Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 643

RobotModel$ Function

Returns the robot model name.

Syntax

RobotModel$

Return Values

A string containing the model name. This is the name that is shown on the rear panel of the robot.

See Also

RobotType

RobotModel$ Function Example

Print "The robot model is ", RobotModel$

RobotName$ Function

644 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

RobotName$ Function

Returns the robot name.

Syntax

RobotName$

Return Values

A string containing the robot name.

See Also

RobotInfo, RobotModel$

RobotName$ Function Example

Print "The robot name is ", RobotName$

RobotSerial$ Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 645

RobotSerial$ Function

Returns the robot serial number.

Syntax

RobotSerial$

Return Values

A string containing the robot serial number.

See Also

RobotInfo, RobotName$, RobotModel$

RobotSerial$ Function Example

Print "The robot serial number is ", RobotSerial$

RobotType Function

646 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

RobotType Function

Returns the robot type.

Syntax

RobotType

Return Values

1: Joint

2: Cartesian

3: SCARA

5: 6-AXIS

6: RS series

7: N series

See Also

RobotModel$

RobotType Function Example

If RobotType = 3 Then
 Print "Robot type is SCARA"
EndIf

ROpen Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 647

ROpen Statement

Opens a file for reading.

Syntax

ROpen fileName As #fileNumber
 .
 .
Close #fileNumber

Parameters

fileName A string expression containing the file name to read from including the path.
If only file name is specified, a file in the current directory is specified.
See ChDisk for the details.

fileNumber Integer expression from 30 to 63

Description

Opens the specified fileName for reading and identifies it by the specified fileNumber. This statement is
used to open and read data from the specified file.

Notes
 PC disk only
 A network path is available.

The fileNumber identifies the file as long as the file is open and until it is closed the same file number
cannot be used to the other files.
The fileNumber is used for the file operation commands (Input#, Read, Seek, Eof, Close)

Close statement closes the file and releases the file number.

It is recommended that you use the FreeFile function to obtain the file number so that more than one task
are not using the same number.

See Also

Close, Input #, AOpen, BOpen, UOpen, WOpen, FreeFile

ROpen Statement Example

Integer fileNum, i, j

fileNum = FreeFile
WOpen "TEST.DAT" As #fileNum
For i = 0 To 100
 Print #fileNum, i
Next i
Close #fileNum

fileNum = FreeFile
ROpen "TEST.DAT" As #fileNum
For i = 0 to 100
 Input #fileNum, j
 Print "data = ", j
Next i
Close #fileNum

ROTOK Function

648 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

ROTOK Function

Returns whether an ROT modifier parameter can be added when issuing a motion command to a
destination.

Syntax
ROTOK (destination coordinates)
ROTOK (reference coordinates, destination coordinates)

Parameters
destination coordinates Specifies the destination coordinates in point data to check whether an ROT

 modifier parameter can be added.
reference coordinates Specifies the reference coordinates in point data to check whether an ROT

modifier parameter can be added.

Return Values
Returns “True” if an ROT modifier parameter can be added, and “False” if not.

Description
Checks whether an ROT modifier parameter can be added before actually moving the robot.
An ROT modifier parameter is a parameter that can be added to Move and other linear interpolation motion
commands to prioritize acceleration/deceleration in favor of tool rotation.
The ROTOK function determines whether an error will occur when adding an ROT parameter to Move and
other linear interpolation motion commands from the reference coordinates to the destination before
moving the robot.
If the reference coordinates are omitted, the result returned will be determined based on the current position
(Here).
An error will occur when adding an ROT modifier parameter with a rotation angle of “0”, or a small
rotation angle. This function determines such an error. Note, however, that it cannot determine whether the
robot joint speed and joint acceleration limits have been exceeded during motion (error 4242, etc.). If this
occurs, reduce values for SpeedS, SpeedR, AccelS, and AccelR.

Notes
About the Controllers to use

It cannot be used with T/VT series.

See Also

Move

ROTOK Function Example

If ROTOK(P1) = True Then
 Move P1 ROT
Else
 Move P1
EndIf

RSet$ Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 649

RSet$ Function

Returns the specified string with leading spaces added up to the specified length.

Syntax

RSet$ (string, length)

Parameters

string String expression.
length Integer expression for the total length of the string returned.

Return Values

Specified string with leading spaces appended.

See Also

LSet$, Space$

RSet$ Function Example

temp$ = "123"
temp$ = RSet$(temp$, 10) ' temp$ = " 123"

RShift Function

650 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

RShift Function

Shifts numeric data to the right by a user specified number of bits.

Syntax

RShift(number, shiftBits)

Parameters

number Numeric expression to be shifted.
shiftBits The number of bits (integer from 0 to 31) to shift number to the right.

Return Values

Returns a numeric result which is equal to the value of number after shifting right shiftbits number of bits.

Description

RShift shifts the specified numeric data (number) to the right (toward a lower order digit) by the specified
number of bits (shiftBits). The high order bits shifted are replaced by 0.

The simplest explanation for RShift is that it simply returns the result of number / 2shiftBits. (Number is
divided by 2 shiftBit times.)

Note
Numeric Data Type:

The numeric data (number) may be any valid numeric data type. RShift works with data types: Byte, Double,
Int32, Integer, Long, Real, Short, UByte, UInt32, and UShort.

See Also

And, LShift, LShift64, Not, Or, RShift64, Xor

RShift Function Example

The example shown below shows a program which shows all the possible RShift values for an Integer data
type starting with the integer set to “0”.

Function rshiftst
 Integer num, snum, i
 num = 32767
 For i = 1 to 16
 Print "i =", i
 snum = RShift(num, 1)
 Print "RShift(32767, ", i, ") = ", snum
 Next i
Fend

Some other example results from the RShift instruction from the command window.

> Print RShift(10,1)
5
> Print RShift(8,3)
1
> Print RShift(16,2)
4

RShift64 Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 651

RShift64 Function

Shifts numeric data to the right by a user specified number of bits.

Syntax

RShift64(number, shiftBits)

Parameters

number Numeric expression to be shifted.
shiftBits The number of bits (integer from 0 to 63) to shift number to the right.

Return Values

Returns a numeric result which is equal to the value of number after shifting right shiftbits number of bits.

Description

RShift64 shifts the specified numeric data (number) to the right (toward a lower order digit) by the specified
number of bits (shiftBits). The high order bits shifted are replaced by 0.

The simplest explanation for RShift64 is that it simply returns the result of number / 2shiftBits. (Number is
divided by 2 shiftBit times.)

Note
Numeric Data Type:

The numeric data (number) may be any valid numeric data type. RShift64 works with Int64 and UInt64 data
types.

See Also

And, LShift, LShift64, Not, Or, RShift, Xor

RShift64 Function Example

The example shown below shows a program which shows all the possible RShift64 values for an Integer
data type starting with the integer set to “0”.

Function rshif64tst
 UInt64 num, snum, i
 num = 18446744073709551615
 For i = 1 to 63
 Print "i =", i
 snum = RShift64(num, i)
 Print "RShift64(18446744073709551615, ", i, ") = ", snum
 Next i
Fend

Some other example results from the RShift64 instruction from the command window.

> Print RShift64(10,1)
5
> Print RShift64(8,3)
1
> Print RShift64(16,2)
4

RTrim$ Function

652 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

RTrim$ Function

Returns a string equal to specified string without trailing spaces.

Syntax

RTrim$(string)

Parameters

string String expression.

Return Values

Specified string with trailing spaces removed.

See Also

LTrim$, Trim$

RTrim$ Function Example

str$ = " data "
str$ = RTrim$(str$) ' str$ = "..data"

RunDialog Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 653

RunDialog Statement

Runs an EPSON RC+ dialog from a SPEL+ program.

Syntax

(1) RunDialog dialogID
(2) RunDialog DLG_ROBOTMNG [, robotAllowed]

Parameters

dialogID Integer expression containing a valid dialog ID. These values are predefined
constants as shown below.
DLG_ROBOTMNG 100 Run the Robot Manager dialog
DLG_IOMON 102 Run I/O Monitor
DLG_VGUIDE 110 Run Vision Guide dialog

robotAllowed This parameter is only available when DLG_ROBOTMNG is specified as dialog ID.
Specifies a robot that is available in the Robot Manager in bit value.

Example Set value bit15 bit14 ... bit2 bit1 bit0
Robot 1 &H0001 Off Off Off Off On
Robot 2 &H0002 Off Off Off On Off
Robot 1 and 2 &H0003 Off Off Off On On

:
Robot 16 &H1000 On Off Off Off Off

Description

Use RunDialog to run EPSON RC+ dialogs from a SPEL+ task. The task will be suspended until the operator
closes the dialog.

When running dialogs that execute robot commands, you should ensure that no other tasks will be controlling
the robot while the dialog is displayed, otherwise errors could occur.

See Also

InputBox, MsgBox

RunDialog Statement Example

If Motor = Off Then
 RunDialog DLG_ROBOTMNG
 If Motor = Off Then
 Print "Motors are off, aborting program"
 Quit All
 EndIf
EndIf

SafetyOn Function

654 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

SafetyOn Function

Return the Safety Door open status.

Syntax

SafetyOn

Return Values

True if the Safety Door is Open, otherwise False.

Description

SafetyOn function is used only for NoPause task, NoEmgAbort task (special task using NoPause or
NoEmgAbort at Xqt), and background tasks.

See Also

ErrorOn, EstopOn, PauseOn, Wait, Xqt

SafetyOn Function Example

The following example shows a program that monitors the Safety Door open and switches the I/O On/Off
when Safety Door open occurs.

Note
Forced Flag

This program example uses Forced flag for On/Off command.
Be sure that the I/O outputs change during error, or at Emergency Stop or Safety Door Open when designing
the system.

Function main

 Xqt SafetyOnOffMonitor, NoPause
 :
 :
Fend

Function SafetyOnOffMonitor
 Do
 Wait SafetyOn = On
 Print "Saftey Open"
 Off 10, Forced
 On 12, Forced

 Wait SafetyOn = Off
 Print "Saftey Close"
 On 10, Forced
 Off 12, Forced
 Loop
Fend

SavePoints Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 655

SavePoints Statement

Saves point data in main memory to a disk file for the current robot.

Syntax

SavePoints filename

Parameters

fileName String expression containing the file into which points will be stored. The extension
must be “.pts”.
You cannot specify a file path and fileName doesn’t have any effect from ChDisk.
See ChDisk for the details.

Description

SavePoints saves points for the current robot to the specified file in the current project directory. A “.pts”
extension must always be specified.
The SavePoints command will also add the point file to the project for the current robot if it did not already
exist.

The point data is stored in the Compact Flash inside of the controller. Therefore, SavePoints starts writing
into the Compact Flash. Frequent writing into the Compact Flash will shorten the Compact Flash lifetime.
We recommend using SavePoints only for saving the point data.

Potential Errors
Out of Disk Space

If there is no space remaining an error will occur.
Point file for another robot.

If fileName is a point file for another robot, an error will occur.
A Path Cannot be Specified

If fileName contains a path, an error will occur. Only a file name in the current project can be specified.
Bad File name

If a file name is entered which has spaces in the name, or other bad file name characteristics an error will
occur.

See Also

ImportPoints, LoadPoints

SavePoints Statement Example

ClearPoints
For i = 1 To 10
 P(i) = XY(i, 100, 0, 0)
Next i
SavePoints "TEST.PTS"

Seek Statement

656 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Seek Statement

Changes position of file pointer for a specified file.

Syntax

Seek #fileNumber, pointer

Parameters

fileNumber Integer expression from 30 to 63
pointer Integer expression for the desired position to seek, starting from 0 to the length of the file.

See Also

BOpen, Read, ROpen, UOpen, Write, WOpen

Seek Statement Example

Integer fileNum
String data$

fileNumber = FreeFile
UOpen "TEST.DAT" As #fileNum
Seek #fileNum, 20
Read #fileNum, data$, 2
Close #fileNum

Select...Send Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 657

Select...Send Statement

Executes one of several groups of statements, depending on the value of an expression.

Syntax

Select selectExpr
 Case caseExpr
 statements
 [Case caseExpr
 statements]
 [Default
 statements]

Send

Parameters

selectExpr Any numeric or string expression.
caseExpr Any numeric or string expression that evaluates to the same type as selectExpr.
statements One or more valid SPEL+ statements or multi-statements.

Description

If any one caseExpr is equivalent to selectExpr, then the statements after the Case statement are executed.
After execution, program control transfers to the statement following the Send statement.

If no caseExpr is equivalent to selectExpr, the Default statements are executed and program control transfers
to the statement following the Send statement.

If no caseExpr is equivalent to selectExpr and Default is omitted, nothing is executed and program control
transfers to the statement immediately following the Send statement.

selectExpr may include constants, variables, and logical operators that use And, Or and Xor. caseExpr also
may include constants, variables, and logical operators that use And, Or and Xor. In this case, the
calculation result of caseExpr is compared to that of selectExpr and do not specify the variable in caseExpr
because the motion becomes complicated.

See Also
If...Then...Else

Select…Send Statement Example

Shown below is a simple example for Select...Send:

Function Main
 Integer I
 For i = 0 To 10
 Select I
 Case 0
 Off 1;On 2;Jump P1
 Case 3
 On 1;Off 2
 Jump P2;Move P3;On 3
 Case 7
 On 4
 Default
 On 7
 Send
 Next
Fend

SelectDB Statement

658 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

SelectDB Statement

Searches the data in the table in an opened database.

Syntax

SelectDB (#fileNumber, TableName, SelectCondition, SortMethod)

Parameters

#fileNumber Integer value from 501 to 508 representing the database number specified with the
OpenDB statement

TableName Table name you want to search in
If the database type specified with #fileNumber is an Excel workbook, specify an
Excel worksheet or named table
When specifying an Excel sheet, add $ to end of the worksheet name and enclose the
name with [].
When specifying an area with a name in an Excel worksheet, enclose the name with
[].

SelectCondition Conditions of the search.
AND, OR are available to specify the multiple conditions.
If omitted, the all data in the table is searched.

SortMethod Order to show searched data
Specify Sort key and Sort order (ascending order [ASC] / descending order [DESC]).
If the Sort order is omitted, the ascending Sort key order is specified.
If the SortMethod is omitted, the order is decided by the opened database.

Return Values

Returns total numbers of lines.

Description

Sorts the data which meets the SelectCondition in the specified table of the opened database based on the
Sort conditions.
You should execute SelectDB before reading / writing data with the Input# and Print# statements.
If the opened database is an Excel workbook, write a row name to use for the search in the first line of the
worksheet and area defined with the name.
For Excel 2007 workbook, the worksheet name must be specified. You cannot access to area defined with
the name.

Note
- Connection of PC with installing RC+ is required.

See Also

OpenDB,CloseDB, UpdateDB,DeleteDB, Input #, Print #

SelectDB Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 659

SelectDB Example

The following example uses the SQL server 2000 sample database, Northwind.
The Employees table is searched with the condition TitleOfCourtesy = Ms. with EmployeeID in
descending order.

 Integer count, i, eid
 String Lastname$, Firstname$, Title$

 OpenDB #501, SQL, "(LOCAL)", "Northwind"
 count = SelectDB(#501, "Employees", "TitleOfCourtesy = 'Ms.'",
"EmployeeID DESC")
 For i = 0 To count - 1
 Input #501, eid, Lastname$, Firstname$, Title$
 Print eid, ",", Lastname$, ",", Firstname$, ",", Title$
 Next
 CloseDB #501

Using Access database
The following example uses Microsoft Access 2007 sample database “Students” and loads the data whose
ID is more than 10 from the table “Students” in the ID descending order.

 Integer count, i, eid
 String Lastname$, Firstname$, dummy$

 OpenDB #502, Access, "c:\MyDataBase\Students.accdb"
 count = SelectDB(#502, "Students", "ID > 10'", "ID")
 For i = 0 To count - 1
 Input #502, eid, dummy$, Lastname$, Firstname$
 Print eid, ",", Lastname$, ",", Firstname$
 Next
 CloseDB #502

Using Excel workbook
The following example uses Microsoft Excel workbook “Students“ and loads the data in worksheet
“Student” whose Age is under 25 with the ID in ascending order.

 Integer count, i, eid
 String Lastname$, Firstname$

 OpenDB #503, Excel, "c:\MyDataBase\Students.xls"
 count = SelectDB(#503, "[Students$]", "Age < 25", "ID ASC")
 For i = 0 To count - 1
 Input #503, eid, Lastname$, Firstname$
 Print eid, ",", Lastname$, ",", Firstname$
 Next
 CloseDB #503

Sense Statement

660 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Sense Statement

Specifies and displays input condition that, if satisfied, completes the Jump in progress by stopping the
robot above the target position.

Syntax

Sense [condition]

Parameters

condition Input status specified as a trigger
[Event] comparative operator (=, <>, >=, >, <, <=) [Integer expression]
The following functions and variables can be used in the Event:
Functions : Sw, In, InW, Oport, Out, OutW, MemSw, MemIn, MemInW, Ctr

GetRobotInsideBox, GetRobotInsidePlane, AIO_In, AIO_InW,
AIO_Out, AIO_OutW, Hand_On, Hand_Off, SF_GetStatus

Variables : Byte, Int32, Integer, Long, Short, UByte, UInt32, UShort global
 preserve variable, Global variable, module variable

In addition, using the following operators you can specify multiple event conditions.
Operator : And, Or, Xor
Example : Sense Sw(5) = On
 Sense Sw(5) = On And Sw(6) = Off

Description

Sense is used to stop approach motion during a Jump, Jump3, and Jump3CP instructions. The Sense
condition must include at least one of the functions above.

When variables are included in the Sense condition, their values are computed when setting the Sense
condition. No use of variable is recommended. Otherwise, the condition may be an unintended condition.
Multiple Sense statements are permitted. The most recent Sense condition remains current until superseded
with another Sense statement.

Jump, Jump3, Jump3CP with Sense Modifier
Checks if the current Sense condition is satisfied. If satisfied, the Jump instruction completes with the robot
stopped above the target position. (i.e. When the Sense Condition is True, the robot arm remains just above
the target position without executing approach motion. When the Sense condition is False, the robot arm
completes the full Jump instruction motion through to the target position.

When parameters are omitted, the current Sense definition is displayed.

Sense Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 661

Notes
Sense Setting at Main Power On

At power on, the initial Sense condition is:
Sense Sw(0) = On 'Robot does not execute downward motion when Input bit 0 is on.

Use of JS and Stat to Verify Sense
Use JS or Stat to verify if the Sense condition has been satisfied after executing a motion command using
Sense modifier.

To use a variables in the event condition expression
- Available variables are Integer type (Byte, Int32, Integer, Long, Short, UByte, UInt32, UShort)
- Array variables are not available
- Local variables are not available
- If a variable value cannot satisfy the event condition for more than 0.01 seconds, the system cannot retrieve

the change in variables.
- Up to 64 can wait for variables in one system (including the ones used in the event condition expressions

such as Wait). If it is over 64, an error occurs during the project build.
- If you try to transfer a variable waiting for variables as a reference with Byref, an error occurs.
- When a variable is included in the right side member of the event condition expression, the value is

calculated when the motion command start. We recommend not using variables in an integer expression
to avoid making unintended conditions.

See Also

In, JS, Jump, Jump3, Jump3CP, MemIn, MemSw, Stat, Sw, SF_GetStatus

Sense Example

This is a simple example on the usage of the Sense instruction.

Function test
 .
 .
TrySense:
 Sense Sw(1) = Off 'Specifies the arm stops above the target when
 'the input bit 1 is Off.
 Jump P1 C2 Sense
 If JS = True Then
 GoSub ERRPRC 'If the arm remains stationary
 GoTo TrySense 'above the point specified,
 'then execute ERRPRC and go to TrySense.
 EndIf
 On 1; Wait 0.2; Off 1
 .
 .
Fend

<Other Syntax Examples>

> Sense Sw(1)=1 And MemSw(1)=1

> Sense Sw(0) Or (Sw(1) And MemSw(1))

SetCom Statement

662 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

SetCom Statement

Sets or displays parameters for RS-232C port.

Syntax

SetCom #portNumber [, baud] [, dataBits] [, stopBits] [, parity] [, terminator] [, HWFlow]
[, SWFlow] [, timeOut]

Parameters

portNumber Integer value representing a RS-232C port number
Real Part 1 to 8
Windows Part 1001 to 1008

baud Optional. Specifies the baud rate. Valid values are:
110 2400 19200
300 4800 38400
600 9600 56000
1200 14400 115200

 (Default: 9600)
 When using the Windows Part port , some data may drop in the baud rate of 19200 or

more.
dataBits Optional. Specifies the number of data bits per character. Valid values are 7 and 8.
stopBits Optional. Specifies the number of stop bits per character. Valid values are 1 and 2.
parity Optional. Specifies the parity. Valid values are O (Odd), E (Even), and N (None).
terminator Optional. Specifies the line termination characters. Valid values are CR, LF, CRLF.
HWFlow Optional. Specifies hardware control. Valid values are RTS and NONE.
SWFlow Optional. Specifies software control. Valid values are XON and NONE.
timeOut Optional. Specifies the maximum time for transmit or receive in seconds. If this value

is 0, then there is no time out.

Description

When all the parameter is omitted, displays a communication port setting.
If the several ports are used in the communication at one time with more than 19200 baud rate, error 2929 or
2922 may occur. In this case, select the lower baud rate or avoid using several ports at one time.
When using the Windows Part port, some data may drop in the baud rate of 19200 or more.
If any data drops, select the lower baud rate or use the Real Part port.
Parameters are stored to the Compact Flash inside the Controller. When you execute SetCom, the data is
written to the Compact Flash. If a data is written to the Compact Flash frequently, it may shorten the Compact
Flash life. Using SetCom only when changing the parameter is recommended.

See Also

OpenCom, CloseCom, SetNet

SetCom Statement Example

SetCom #1, 9600, 8, 1, N, CRLF, NONE, NONE, 0

SetCom #2, 4800

SetLatch Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 663

SetLatch Statement

Sets the latch function of the robot position using the R-I/O input.

Syntax

SetLatch { #portNumber, triggerMode, continuance latch times}

Parameters

#portNumber Port number of the R-I/O input port to connect the trigger input signal.
The table below shows the port numbers you can specify.
Specify the port number of the unit that the object robot is connected.

 Point Port Number

Control Unit INPUT 2 points 24, 25
OUTPUT - -

Drive Unit 1 INPUT 2 points 56, 57
OUTPUT - -

Drive Unit 2 INPUT 2 points 280, 281
OUTPUT - -

The following constants are defines as the port number.
Constant Port Number
SETLATCH_PORT_CU_0 24
SETLATCH_PORT_CU_1 25
SETLATCH_PORT_DU1_0 56
SETLATCH_PORT_DU1_1 57
SETLATCH_PORT_DU2_0 280
SETLATCH_PORT_DU2_1 281

triggerMode The trigger input signal logic to connect with the R-I/O. The logic can be specified

with the following constants.
Constant Value Explanation
SETLATCH_TRIGGERMODE_TRAILINGEDGE 0 Negative logic
SETLATCH_TRIGGERMODE_LEADINGEDGE 1 Positive logic

With the negative logic, it latches the robot position at the switch edge from the input
signal High to Low.
With the positive logic, it latches the robot position at the switch edge from the input
signal from Low to High.

continuance latch times Specify the continuance latch times of robot position by R-I/O input signal.
1, 2, 3 and 4 is available. After LatchEnable On, point data can be latched for
the specified number of continuance latches. Maximum is 4 times.
Parameter can be omitted. When it’s omitted, it’s only 1 time of continuance
latch.

SetLatch Statement

664 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Description
Sets the condition of the robot position latch using the R-I/O input signals. One robot cannot wait the trigger
signals of several ports simultaneously.
Executing SetLatch needs approx. 40 msec for processing.

Note
If you specify a port number of the unit unrelated to the selected robot, the error “I/O input/output bit number is
out of available range” occurs.

See Also

LatchEnable, LatchState Function, LatchPos Function

SetLatch Statement Example

Function main
 SetLatch 24, SETLATCH_TRIGGERMODE_LEADINGEDGE, 4

' Positive logic continuance latch 4 times
 LatchEnable On 'Enable the latch function
 Go P1
 Wait LatchState = True 'Wait a trigger
 Print LatchPos(WithoutToolArm, 1) 'Display the latched position 1
 Print LatchPos(WithoutToolArm, 2) 'Display the latched position 2
 Print LatchPos(WithoutToolArm, 3) 'Display the latched position 3
 Print LatchPos(WithoutToolArm, 4) 'Display the latched position 4
 LatchEnable Off 'Disable the latch function
Fend

Omitting parameter:

Function main
 SetLatch 24, SETLATCH_TRIGGERMODE_LEADINGEDGE ' Positive logic
 LatchEnable On ' Enable the latch function
 Go P1
 Wait LatchState = True ' Wait a trigger
 Print LatchPos ' Display the latched position
 LatchEnable Off ' Disable the latch function
Fend

SetIn Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 665

SetIn Statement

For Virtual IO, sets specified input port (8 bits) to the specified value.

Syntax

SetIn portNumber, value

Parameters

portNumber Integer expression representing the input port number.
value Integer expression between 0 and 255 to set the specified port to.

Description

SetIn provides the ability to set up to 8 bits of virtual inputs at once.

See Also

SetSW, SetInW

SetIn Statement Example

> setin 0, 1 ' Sets the first bit of port 0 to On.

SetInW Statement

666 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

SetInW Statement

For Virtual IO, sets specified input word (16 bits) to the specified value.

Syntax

SetInW portNumber, value

Parameters

portNumber Integer expression representing the input port number.
value Number between 0 and 65535 to set the specified word to.

Note
Rule of word port which contains the input bit of Real Time I/O

The input bit of the Real Time I/O cannot be reflected.
Specify the setting value of the word ports which contain the input bit of Real Time I/O =1, 3, 17, 19 by an
integer from 0 to 255.
The value larger than 255 will result in an error.

Description

SetInW provides the ability to set up to 16 bits of virtual inputs at once.

See Also

SetSw, SetIn

SetInW Statement Example

> setinw 0, 1 ' Sets the first bit of word 0 to On.

SetNet Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 667

SetNet Statement

Sets parameters for a TCP/IP port.

Syntax

(1) SetNet #portNumber, hostAddress[, TCP_IP_PortNum [, terminator [, SWFlow [, timeOut, [,
protocol [, CloseNet timeout]]]]]]

(2) SetNet

Parameters

portNumber Specifies which TCP/IP port to set parameters for. Valid values are 201 to 216.
hostAddress Specifies the host IP address.
TCP_IP_PortNum Specifies the TCP/IP port number for this node.
terminator Specifies the line termination characters. Valid values are CR, LF, CRLF.
SWFlow Specifies software control. Valid value is NONE.
timeOut Specifies the maximum time for transmit or receive in seconds. If this value is “0”,

then there is no time out.
protocol Specifies the protocol (TCP/UDP/UDP_SEND/UDP_RECV) of communication.
 TCP: TCP communication
 UDP: UDP communication
 UDP_SEND: UDP send
 UDP_RECV: UDP receive
CloseNet timeOut Specifies the time before closing the socket with CloseNet in seconds. (Integer from 0

to 5)
 When 0 is set, closes the socket without waiting for a response to the shutdown request.

Description

Parameters are stored to the Compact Flash inside the Controller. When you execute SetNet, the data is
written to the Compact Flash. If a data is written to the Compact Flash frequently, it may shorten the Compact
Flash life. Using SetNet only when changing the parameter is recommended.

See Also

OpenNet, WaitNet, CloseNet, SetCom

SetNet Statement Example

SetNet #201, "192.168.0.1", 2001, CRLF, NONE, 0, TCP, 5

SetSw Statement

668 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

SetSw Statement

For Virtual IO, sets specified input bit to the specified value.

Syntax

SetSw bitNumber, value

Parameters

bitNumber Integer expression representing the input bit number.
value Integer expression with a value of 0 (Off) or 1 (On).

Description

SetSw provides the ability to turn on or off one input bit.

See Also

SetIn, SetInW

SetSw Statement Example

> setsw 2, on ' Sets the 2nd input bit to On.

SF_GetParam Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 669

SF_GetParam Function

Returns information on the safety function parameters.

Syntax

SF_GetParam (index)

Parameters

index Integer or constant expression that represents the index of the information to retrieve.

Return Values

An integer containing the specified information.
If the index “_EN” is specified at the end of the constant, 1 is returned if the parameter is enabled or 0 if it
is disabled.

Description

Returns the specified safety function parameter values.

Index Constant Description
1 DRYRUNOFF Dry run is disabled
2 SLS_1_HAND_EN SLS_1 hand speed is monitored
3 SLS_1_SPEED Monitored speed setting value for SLS_1
4 SLS_1_ELBOW_EN SLS_1 elbow (SCARA robots: J2) speed is monitored *1
5 SLS_1_JOINT_EN SLS_1 joint speed is monitored
6 SLS_1_JOINTSPEED Monitored joint speed setting value for SLS_1
9 SLS_2_HAND_EN SLS_2 hand speed is monitored
10 SLS_2_SPEED Monitored speed setting value for SLS_2
11 SLS_2_ELBOW_EN SLS_2 elbow (SCARA robots: J2) speed is monitored *1
12 SLS_2_JOINT_EN SLS_2 joint speed is monitored
13 SLS_2_JOINTSPEED Monitored joint speed setting value for SLS_2
16 SLS_3_HAND_EN SLS_3 hand speed is monitored
17 SLS_3_SPEED Monitored speed setting value for SLS_3
18 SLS_3_ELBOW_EN SLS_3 elbow (SCARA robots: J2) speed is monitored *1
19 SLS_3_JOINT_EN SLS_3 joint speed is monitored
20 SLS_3_JOINTSPEED Monitored joint speed setting value for SLS_3
23 SLS_T2_HAND_EN SLS_T2 hand speed is monitored
24 SLS_T2_SPEED Monitored speed setting value for SLS_T2
25 SLS_T2_ELBOW_EN SLS_T2 elbow (SCARA robots: J2) speed is monitored *1
26 SLS_T2_JOINT_EN SLS_T2 joint speed is monitored
27 SLS_T2_JOINTSPEED Monitored joint speed setting value for SLS_T2
30 SLS_T_SPEED Monitored speed setting value for SLS_T
31 SLS_T_JOINT_EN SLS_T joint speed is monitored
32 SLS_T_JOINTSPEED Monitored joint speed setting value for SLS_T
33 SLS_HAND_OFS_X TCP offset position in X-axis direction of SLS
34 SLS_HAND_OFS_Y TCP offset position in Y-axis direction of SLS
35 SLS_HAND_OFS_Z TCP offset position in Z-axis direction of SLS
36 SLS_1_DELAY Delay time setting value for SLS_1
37 SLS_2_DELAY Delay time setting value for SLS_2
38 SLS_3_DELAY Delay time setting value for SLS_3

SF_GetParam Function

670 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Index Constant Description
39 SLS_JOINT_POS_EN Joint angle is monitored
40 SLS_JOINT_POS_ANGLE Monitored joint angle setting value
41 SLP_A_XU_EN XU (wall: X2, restricted area: X1) position of SLP_A is monitored *2

42 SLP_A_XU_POS Setting value for XU (wall: X2, restricted area: X1) monitored
position of SLP_A *2

43 SLP_A_XL_EN XL (wall: X1, restricted area: X2) position of SLP_A is monitored *2

44 SLP_A_XL_POS Setting value for XL (wall: X1, restricted area: X2) monitored
position of SLP_A *2

45 SLP_A_YU_EN YU (wall: Y2, restricted area: Y1) position of SLP_A is monitored *2

46 SLP_A_YU_POS Setting value for YU (wall: Y2, restricted area: Y1) monitored
position of SLP_A *2

47 SLP_A_YL_EN YL (wall: Y1, restricted area: Y2) position of SLP_A is monitored *2

48 SLP_A_YL_POS Setting value for YL (wall: Y1, restricted area: Y2) monitored
position of SLP_A *2

53 SLP_B_XU_EN XU (wall: X2, restricted area: X1) position of SLP_B is monitored *2

54 SLP_B_XU_POS Setting value for XU (wall: X2, restricted area: X1) monitored
position of SLP_B *2

55 SLP_B_XL_EN XL (wall: X1, restricted area: X2) position of SLP_B is monitored *2

56 SLP_B_XL_POS Setting value for XL (wall: X1, restricted area: X2) monitored
position of SLP_B *2

57 SLP_B_YU_EN YU (wall: Y2, restricted area: Y1) position of SLP_B is monitored *2

58 SLP_B_YU_POS Setting value for YU (wall: Y2, restricted area: Y1) monitored
position of SLP_B *2

59 SLP_B_YL_EN YL (wall: Y1, restricted area: Y2) position of SLP_B is monitored *2

60 SLP_B_YL_POS Setting value for YL (wall: Y1, restricted area: Y2) monitored
position of SLP_B *2

65 SLP_C_XU_EN XU (wall: X2, restricted area: X1) position of SLP_C is monitored *2

66 SLP_C_XU_POS Setting value for XU (wall: X2, restricted area: X1) monitored
position of SLP_C *2

67 SLP_C_XL_EN XL (wall: X1, restricted area: X2) position of SLP_C is monitored *2

68 SLP_C_XL_POS Setting value for XL (wall: X1, restricted area: X2) monitored
position of SLP_C *2

69 SLP_C_YU_EN YU (wall: Y2, restricted area: Y1) position of SLP_C is monitored *2

70 SLP_C_YU_POS Setting value for YU (wall: Y2, restricted area: Y1) monitored
position of SLP_C *2

71 SLP_C_YL_EN YL (wall: Y1, restricted area: Y2) position of SLP_C is monitored *2

72 SLP_C_YL_POS Setting value for YL (wall: Y1, restricted area: Y2) monitored
position of SLP_C *2

77 SLP_J2_MON_RAD Setting value for J2 axis monitored range radius of SLP
78 SLP_J3_MON_RAD Setting value for J3 axis monitored range radius of SLP
81 SLP_J1_RANGE_MAX Maximum setting value for J1 axis limit range of soft axis limiting
82 SLP_J1_RANGE_MIN Minimum setting value for J1 axis limit range of soft axis limiting
83 SLP_J2_RANGE_MAX Maximum setting value for J2 axis limit range of soft axis limiting
84 SLP_J2_RANGE_MIN Minimum setting value for J2 axis limit range of soft axis limiting
85 SLP_J3_RANGE_MAX Maximum setting value for J3 axis limit range of soft axis limiting
86 SLP_J3_RANGE_MIN Minimum setting value for J3 axis limit range of soft axis limiting
87 SLP_J4_RANGE_MAX Maximum setting value for J4 axis limit range of soft axis limiting
88 SLP_J4_RANGE_MIN Minimum setting value for J4 axis limit range of soft axis limiting
93 SIN_1_SLS_1_EN SLS_1 function assignment state for SAFETY_IN1
94 SIN_1_SLS_2_EN SLS_2 function assignment state for SAFETY_IN1
95 SIN_1_SLS_3_EN SLS_3 function assignment state for SAFETY_IN1

SF_GetParam Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 671

Index Constant Description
96 SIN_1_SLP_A_EN SLP_A function assignment state for SAFETY_IN1
97 SIN_1_SLP_B_EN SLP_B function assignment state for SAFETY_IN1
98 SIN_1_SLP_C_EN SLP_C function assignment state for SAFETY_IN1
99 SIN_1_SG_EN Protective stop function assignment state for SAFETY_IN1

100 SIN_1_ESTOP_EN Emergency stop function assignment state for SAFETY_IN1
101 SIN_2_SLS_1_EN SLS_1 function assignment state for SAFETY_IN2
102 SIN_2_SLS_2_EN SLS_2 function assignment state for SAFETY_IN2
103 SIN_2_SLS_3_EN SLS_3 function assignment state for SAFETY_IN2
104 SIN_2_SLP_A_EN SLP_A function assignment state for SAFETY_IN2
105 SIN_2_SLP_B_EN SLP_B function assignment state for SAFETY_IN2
106 SIN_2_SLP_C_EN SLP_C function assignment state for SAFETY_IN2
107 SIN_2_SG_EN Protective stop function assignment state for SAFETY_IN2
108 SIN_2_ESTOP_EN Emergency stop function assignment state for SAFETY_IN2
109 SIN_3_SLS_1_EN SLS_1 function assignment state for SAFETY_IN3
110 SIN_3_SLS_2_EN SLS_2 function assignment state for SAFETY_IN3
111 SIN_3_SLS_3_EN SLS_3 function assignment state for SAFETY_IN3
112 SIN_3_SLP_A_EN SLP_A function assignment state for SAFETY_IN3
113 SIN_3_SLP_B_EN SLP_B function assignment state for SAFETY_IN3
114 SIN_3_SLP_C_EN SLP_C function assignment state for SAFETY_IN3
115 SIN_3_SG_EN Protective stop function assignment state for SAFETY_IN3
116 SIN_3_ESTOP_EN Emergency stop function assignment state for SAFETY_IN3
117 SIN_4_SLS_1_EN SLS_1 function assignment state for SAFETY_IN4
118 SIN_4_SLS_2_EN SLS_2 function assignment state for SAFETY_IN4
119 SIN_4_SLS_3_EN SLS_3 function assignment state for SAFETY_IN4
120 SIN_4_SLP_A_EN SLP_A function assignment state for SAFETY_IN4
121 SIN_4_SLP_B_EN SLP_B function assignment state for SAFETY_IN4
122 SIN_4_SLP_C_EN SLP_C function assignment state for SAFETY_IN4
123 SIN_4_SG_EN Protective stop function assignment state for SAFETY_IN4
124 SIN_4_ESTOP_EN Emergency stop function assignment state for SAFETY_IN4
125 SIN_5_SLS_1_EN SLS_1 function assignment state for SAFETY_IN5
126 SIN_5_SLS_2_EN SLS_2 function assignment state for SAFETY_IN5
127 SIN_5_SLS_3_EN SLS_3 function assignment state for SAFETY_IN5
128 SIN_5_SLP_A_EN SLP_A function assignment state for SAFETY_IN5
129 SIN_5_SLP_B_EN SLP_B function assignment state for SAFETY_IN5
130 SIN_5_SLP_C_EN SLP_C function assignment state for SAFETY_IN5
131 SIN_5_SG_EN Protective stop function assignment state for SAFETY_IN5
132 SIN_5_ESTOP_EN Emergency stop function assignment state for SAFETY_IN5
133 SOUT_1_STO STO function assignment state for SAFETY_OUT1
134 SOUT_1_SLS_1 SLS_1 function assignment state for SAFETY_OUT1
135 SOUT_1_SLS_2 SLS_2 function assignment state for SAFETY_OUT1
136 SOUT_1_SLS_3 SLS_3 function assignment state for SAFETY_OUT1
137 SOUT_1_SLS_T2 SLS_T2 function assignment state for SAFETY_OUT1
138 SOUT_1_SLS_T SLS_T function assignment state for SAFETY_OUT1
139 SOUT_1_SLP_A SLP_A function assignment state for SAFETY_OUT1
140 SOUT_1_SLP_B SLP_B function assignment state for SAFETY_OUT1
141 SOUT_1_SLP_C SLP_C function assignment state for SAFETY_OUT1

SF_GetParam Function

672 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Index Constant Description

142 SOUT_1_EP_RC Emergency stop (Controller) function assignment state for
SAFETY_OUT1

143 SOUT_1_EP_TP Emergency stop (Teach Pendant) function assignment state for
SAFETY_OUT1

144 SOUT_1_EN_SW Enable switch function assignment state for SAFETY_OUT1
145 SOUT_2_STO STO function assignment state for SAFETY_OUT2
146 SOUT_2_SLS_1 SLS_1 function assignment state for SAFETY_OUT2
147 SOUT_2_SLS_2 SLS_2 function assignment state for SAFETY_OUT2
148 SOUT_2_SLS_3 SLS_3 function assignment state for SAFETY_OUT2
149 SOUT_2_SLS_T2 SLS_T2 function assignment state for SAFETY_OUT2
150 SOUT_2_SLS_T SLS_T function assignment state for SAFETY_OUT2
151 SOUT_2_SLP_A SLP_A function assignment state for SAFETY_OUT2
152 SOUT_2_SLP_B SLP_B function assignment state for SAFETY_OUT2
153 SOUT_2_SLP_C SLP_C function assignment state for SAFETY_OUT2

154 SOUT_2_EP_RC Emergency stop (Controller) function assignment state for
SAFETY_OUT2

155 SOUT_2_EP_TP Emergency stop (Teach Pendant) function assignment state for
SAFETY_OUT2

156 SOUT_2_EN_SW Enable switch function assignment state for SAFETY_OUT2
157 SOUT_3_STO STO function assignment state for SAFETY_OUT3
158 SOUT_3_SLS_1 SLS_1 function assignment state for SAFETY_OUT3
159 SOUT_3_SLS_2 SLS_2 function assignment state for SAFETY_OUT3
160 SOUT_3_SLS_3 SLS_3 function assignment state for SAFETY_OUT3
161 SOUT_3_SLS_T2 SLS_T2 function assignment state for SAFETY_OUT3
162 SOUT_3_SLS_T SLS_T function assignment state for SAFETY_OUT3
163 SOUT_3_SLP_A SLP_A function assignment state for SAFETY_OUT3
164 SOUT_3_SLP_B SLP_B function assignment state for SAFETY_OUT3
165 SOUT_3_SLP_C SLP_C function assignment state for SAFETY_OUT3

166 SOUT_3_EP_RC Emergency stop (Controller) function assignment state for
SAFETY_OUT3

167 SOUT_3_EP_TP Emergency stop (Teach Pendant) function assignment state for
SAFETY_OUT3

168 SOUT_3_EN_SW Enable switch function assignment state for SAFETY_OUT3
169 POS_ROT_U Setting value for installation plane rotation U_ROT
172 POS_OFS_X Setting value for installation position X_OFS
173 POS_OFS_Y Setting value for installation position Y_OFS

*1 The correspondence between the monitored parts J2, J3, J5 for Safety Limited Speed in Safety Function

Manager and the speed exceeded parts hand and elbow referred in this manual is as follows:
SCARA robots
J2: Elbow
J3: Not applicable
J4: Not applicable

*2 The correspondence between the monitored position X1, X2, Y1, Y2 for Safety Limited Position in

Safety Function Manager and the monitored position XL, XU, YL, YU referred in this manual is as
follows:
When "Wall" is selected for the monitored position
X1 = XL, X2 = XU
Y1 = YL, Y2 = YU
When "Restricted Area" is selected for the monitored position
X1 = XU, X2 = XL

SF_GetParam Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 673

Y1 = YU, Y2 = YL

This command can be used with the Controllers with Safety Board.
SF_GetParam Function Example

If SF_GetParam (SLS_1_HAND_EN) = 1 Then

Print "SLS_1 hand speed monitoring is enabled."
EndIf

SF_GetParam$ Function

674 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

SF_GetParam$ Function

Returns text information on the safety function parameters.

Syntax

SF_GetParam$ (index)

Parameters

index Integer or constant expression that represents the index of the information to retrieve.

Return Values

A string value containing the specified information.

Description

Returns the specified safety function parameter values.

Index Constant Description
1 SF_TOOLVERSION Version of setting tool
2 SF_CHECKSUM Safety function parameter checksum
3 SF_LAST_MODIFIED Last modified date of safety function parameter
4 SF_ROBOT_MODEL_NAME Manipulator name
5 SF_ROBOT_CHECKSUM Robot parameters checksum
6 SF_HOFS Encoder offset (Hofs) for origin of actual robot
7 SF_HOFS_LAST_MODIFIED Last modified date of Hofs

This command can be used with the Controllers with Safety Board.

SF_GetParam$ Function Example

String Checksum$

Checksum$ = SF_GetParam$(SF_CHECKSUM)

Print “Safety function parameter Checksum is ”, Checksum$

> Print SF_GetParam$(SF_LAST_MODIFIED)

2022/01/01 00:00:00

SF_GetStatus Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 675

SF_GetStatus Function

Returns the status bit of the safety function.

Syntax

SF_GetStatus (index)

Parameters

index Integer expression that represents the index of the information to retrieve.

Return Values

An integer containing the specified information of index.

Description

The return values bit information is shown in the following table.

Index Bit Value Description

0
0-6 - Reserved
7 &H80 Failure detection of safety board

1

0 &H1 SLS_1 is enabled
1 &H2 SLS_2 is enabled
2 &H4 SLS_3 is enabled

3-7 - Reserved

2

0 &H1 SLP_A is enabled
1 &H2 SLP_B is enabled
2 &H4 SLP_C is enabled

3-6 - Reserved
7 &H80 Soft Axis Limiting is enabled (always on)

3

0 &H1 SAFETY_IN1 signal is High (the function is off) *1
1 &H2 SAFETY_IN2 signal is High (the function is off) *1
2 &H4 SAFETY_IN3 signal is High (the function is off) *1
3 &H8 SAFETY_IN4 signal is High (the function is off) *1
4 &H10 SAFETY_IN5 signal is High (the function is off) *1

5-7 - Reserved

4

0 &H1 SAFETY_OUT1 signal is High (the function is off) *2
1 &H2 SAFETY_OUT2 signal is High (the function is off) *2
2 &H4 SAFETY_OUT3 signal is High (the function is off) *2

3-7 - Reserved
5~11 0-7 - Reserved

12 0-7 - STF_ID
13 0-7 - STF_DET_L
14 0-7 - STF_DET_U
15 0-7 - Reserved

*1 The safety input signal is negative logic (Active Low).
If a signal level High is input to the safety input, this function will return 1 and the function assigned to
the safety input will not operate.
If a signal level Low is input to the safety input, this function will return 0 and the function assigned to
the safety input will operate. This occurs if a device is not connected to the safety input.

*2 The safety output signal is negative logic (Active Low).

SF_GetStatus Function

676 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

If one of the functions assigned to the safety output is operating, the safety output will be enabled, the
signal level at the safety output will be Low, and this function will return 0.
If none of the functions assigned to the safety output are operating, the safety output will be disabled, the
signal level at the safety output will be High, and this function will return 1.
If no function is assigned to the safety output, the signal level at the safety output will be Low and this
function will return 0.

When you use STF_ID, STF_DET_L, or STF_DET_H, it is possible to check the cause of an error.
How to check using SPEL+ will be described later.
The information for STF_ID, STF_DET_L, and STF_DET_H is as follows.

STF_ID Error STF_DET_L STF_DET_U

100

Stop notification
Safety input

Safety input port
 SAFETY_IN1 0×01
 SAFETY_IN2 0×02
 SAFETY_IN3 0×04
 SAFETY_IN4 0×08
 SAFETY_IN5 0×10

Not used

101
Stop notification
SLS_1 speed exceeded
Joint

Joint number
 J1 0×01 / J2 0×02
 J3 0×04 / J4 0×08

Not used

102
Stop notification
SLS_1 speed exceeded
Part

Part
 Hand 0×01
 Elbow 0×04 *1

Not used

103
Stop notification
SLS_2 speed exceeded
Joint

Joint number
 J1 0×01 / J2 0×02
 J3 0×04 / J4 0×08

Not used

104
Stop notification
SLS_2 speed exceeded
Part

Part
 Hand 0×01
 Elbow 0×04 *1

Not used

105
Stop notification
SLS_3 speed exceeded
Joint

Joint number
 J1 0×01 / J2 0×02
 J3 0×04 / J4 0×08

Not used

106
Stop notification
SLS_3 speed exceeded
Part

Part
 Hand 0×01
 Elbow 0×04 *1

Not used

107
Stop notification
SLS_T speed exceeded
Joint

Joint number
 J1 0×01 / J2 0×02
 J3 0×04 / J4 0×08

Not used

108
Stop notification
SLS_T speed exceeded
Part

Part
 Hand 0×01
 Elbow 0×04 *1

Not used

109
Stop notification
SLS_T2 speed exceeded
Joint

Joint number
 J1 0×01 / J2 0×02
 J3 0×04 / J4 0×08

Not used

110
Stop notification
SLS_T2 speed exceeded
Part

Part
 Hand 0×01
 Elbow 0×04 *1

Not used

115
Stop notification
SLP_A position exceedance
Monitored position

Monitored position
 YL 0×01 / YU 0×02
 XL 0×04 / XU 0×08 *2

Joint number
 J3 0×02
 J2 0×01

116
Stop notification
SLP_B position exceedance
Monitored position

Monitored position
 YL 0×01 / YU 0×02
 XL 0×04 / XU 0×08 *2

Joint number
 J3 0×02
 J2 0×01

117
Stop notification
SLP_C position exceedance
Monitored position

Monitored position
 YL 0×01 / YU 0×02
 XL 0×04 / XU 0×08 *2

Joint number
 J3 0×02
 J2 0×01

SF_GetStatus Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 677

STF_ID Error STF_DET_L STF_DET_U

118
Stop notification
Soft Axis Limiting

Joint number
 J1 0×01 / J2 0×02
 J3 0×04 / J4 0×08

Not used

121

Stop notification
Switch input

Switch number
Enable switch 0×01
Emergency stop switch (Teach
Pendant) 0×02
Emergency stop switch
(Controller connection) 0×04

Not used

122

Stop notification
Mode control

Mode
Parameter communication
permission 0×08
Disable Safety Function (Safety
Board) 0×04
Switch Operation mode 0×02
Parameter setting verified 0×01

Not used

123

Stop notification
Deceleration monitoring

Detection error
 Abnormal deceleration 0×08,
0×04
 Deceleration completed 0×02
 After the monitoring time 0×01

Not used

124
Stop notification
Joint angle monitoring

Joint number
 J1 0×01 / J2 0×02
 J3 0×04 / J4 0×08

Not used

131
Failure and stop notification
Encoder communication failure

Joint number
 J1 0×01 / J2 0×02
 J3 0×04 / J4 0×08

Not used

132
Failure and stop notification
Position error

Joint number
 J1 0×01 / J2 0×02
 J3 0×04 / J4 0×08

Not used

133

Failure and stop notification
Double input error

Error detected part
Safety input port
SAFETY_IN1 0×01
SAFETY_IN2 0×02
SAFETY_IN3 0×04
SAFETY_IN4 0×08
SAFETY_IN5 0×10
Enable switch 0×20
Emergency stop switch (Teach
Pendant) 0×40
Emergency stop switch
(Controller connection) 0×80

Not used

134

Failure and stop notification
Double output error

Error detected part
Safety output port
 SAFETY_OUT1 0×01
 SAFETY_OUT2 0×02
 SAFETY_OUT3 0×04
 STO 0×80

Not used

135

Failure and stop notification
Safety Board error

Error detected part
 Communication bus 0×20
 Power (3.3V) 0×08
 Power (5V) 0×04
 Watchdog timer detection
0×02
 Relay welding 0×01

Not used

SF_GetStatus Function

678 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

STF_ID Error STF_DET_L STF_DET_U

136

Failure and stop notification
Safety Board
MCU error

Error detected part
 Sequence monitor 0×10
 CPU 0×08
 RAM 0×04
 Program ROM 0×02
 Data ROM 0×01

When DET_L = 0×01
(Date ROM)
0×00 - 0×FE
 Data failure part
0×FF
 Parameter failure

137

Failure and stop notification
Safety Board
Duplication internal abnormality

Error detected part
 TCP position not matched
0×02
 Status not matched 0×01

Not used

138
Failure and stop notification
Encoder internal abnormality

Joint number
 J1 0×01 / J2 0×02
 J3 0×04 / J4 0×08

Not used

139
Failure and stop notification
Controller internal abnormality

Error detected part
Operation mode receive error
0×01

Not used

*1 The correspondence between the monitored parts J2, J3, J5 for Safety Limited Speed in Safety

Function Manager and the speed exceeded parts hand and elbow referred in this manual is as
follows:
SCARA robots
J2: Elbow
J3: Not applicable
J4: Not applicable

*2 The correspondence between the monitored position X1, X2, Y1, Y2 for Safety Limited Position

in Safety Function Manager and the monitored position XL, XU, YL, YU referred in this manual
is as follows:
When "Wall" is selected for the monitored position
X1 = XL, X2 = XU
Y1 = YL, Y2 = YU
When "Restricted Area" is selected for the monitored position
X1 = XU, X2 = XL
Y1 = YU, Y2 = YL

- How to check the cause of an error using STF_ID, STF_DET_L and STF_DET_H

Enter and confirm the commands in the following order in the command window and so on.
> SF_GetStatus (12)
115 'Indicates the error of "Stop notification SLP_A position exceedance".
> SF_GetStatus (13)
1 'Indicates that "YL" direction monitored position has been exceeded. (Check for
STF_ID: 115.)
> SF_GetStatus (14)
1 'Indicates the "J2Flag" exceeded. (Check for STF_ID: 115.)

To summarize the above, we can see that the error occurred because "the J2Flag cross the
monitored position in the YL of SLP_A."

SF_GetStatus Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 679

Error information is also recorded in the EPSON RC+ system history. The cause of the error is
recorded in "Additional information". See SPEL+ error messages in the SPEL+ Language
Reference manual.

This command can be used with the Controllers with Safety Board.

SF_GetStatus Function Example

If (SF_GetStatus(3) And &H1) = &H1 Then

Print “SAFETY_IN1 is High”

Else

Print “SAFETY_IN1 is Low”

EndIf

SF_LimitSpeedS Statement

680 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

SF_LimitSpeedS Statement

Sets and displays the speed adjustment value for the function that adjusts the speed at the position set by
the Tool command when SLS is enabled.

Syntax

SF_LimitSpeedS [SLS number [, speed adjustment value]]

Parameters

SLS number The SLS number as an integer value (1 to 3) or the constant listed below. Optional.
Constant Value Description

SLS_1 1 Speed adjustment function when SLS_1 is enabled
SLS_2 2 Speed adjustment function when SLS_2 is enabled
SLS_3 3 Speed adjustment function when SLS_3 is enabled
SLS_T 9 Speed adjustment function when SLS_T is enabled* 1
SLS_T2 10 Speed adjustment function when SLS_T2 is enabled* 1

*1 For SLS_T and SLS_T2, you cannot set the speed adjustment value with this command. The speed is
adjusted at the monitored speed set in Safety Function Manager. For more information, refer to the following
manuals:
Robot Controller Safety Function Manual

Speed adjustment value The speed as an integer value (0 to 10000, unit: mm/sec) Optional.

If 0 is specified, the speed adjustment value is set automatically. The initial value
is 0.

Description

Sets and displays the function that adjusts the speed of the position set by the Tool command when SLS is
enabled. The part whose speed is adjusted by this function is the tool position currently selected by the
Tool command. Note that this is not the TCP position set in the safety function parameters.

If the second parameter is omitted, the speed adjustment value of the specified SLS number will appear.
If all parameters are omitted, the speed adjustment value of all SLS numbers will appear.

This command can be used with the Controllers with Safety Board.
It is available only when Safety Function Options are activated.

Note
The position that is speed adjusted by SF_LimitSpeedS is the tool position selected by the Tool
command.

The speed adjustment value set in SF_LimitSpeedS is applied to the speed at the tool position set by the
Tool command. The Safety Function Manager TCP position is not automatically set in the Tool command.
Use the Tool command to set the proper TCP location.
Also, if automatic speed adjustment does not function correctly, use SF_PeakSpeedS and SF_RealSpeedS
to measure the robot arm operation speed. Use Speed, SpeedFactor, SpeedS, etc. to control the robot arm
operation speed so that it does not exceed the SLS monitoring speed (safety function parameter).

SF_LimitSpeedS Example
- How to set the speed adjustment value for SLS_1 to 1500mm/sec

SF_LimitSpeedS SLS_1, 1500

SF_LimitSpeedS Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 681

- How to display the speed adjustment value for SLS_2 (using the command window)
> SF_LimitSpeedS SLS_2

SLS_2: 400

- How to display the speed adjustment value for all SLS numbers (using the command window)

> SF_LimitSpeedS

SLS_1: 1500

SLS_2: 400

SLS_3: 750

SLS_T: 250

SLS_T2: 3000

SF_LimitSpeedS Function

682 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

SF_LimitSpeedS Function

Returns the speed adjustment value of the function that adjusts the speed at the position set by the Tool
command when SLS is enabled.

Syntax

SF_LimitSpeedS (SLS number)

Parameters

SLS number The SLS number as an integer value or the constant listed below.
Constant Value Description

SLS_1 1 Speed adjustment function when SLS_1 is enabled
SLS_2 2 Speed adjustment function when SLS_2 is enabled
SLS_3 3 Speed adjustment function when SLS_3 is enabled
SLS_T 9 Speed adjustment function when SLS_T is enabled
SLS_T2 10 Speed adjustment function when SLS_T2 is enabled

Return Values

Returns the speed adjustment value [mm/sec] for the specified SLS number.

Description

Returns the speed adjustment value [mm/sec] for the SLS number specified by the function that adjusts speed
when SLS is enabled.

This command can be used with the Controllers with Safety Board.

SF_LimitSpeedS Function Example

Integer i

i = SF_LimitSpeedS(SLS_1)

Print “SLS_1 limit speed is “, i

SF_LimitSpeedSEnable Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 683

SF_LimitSpeedSEnable Statement

Sets and displays On/Off for the function that adjusts the speed of the position set by the Tool command
when SLS is enabled.

Syntax

SF_LimitSpeedSEnable [SLS number [, {On | Off}]]

Parameters

SLS number The SLS number as an integer value or the constant listed below. Optional.
Constant Value Description

SLS_1 1 Speed adjustment function when SLS_1 is enabled
SLS_2 2 Speed adjustment function when SLS_2 is enabled
SLS_3 3 Speed adjustment function when SLS_3 is enabled
SLS_T 9 Speed adjustment function when SLS_T is enabled* 1
SLS_T2 10 Speed adjustment function when SLS_T2 is enabled* 1

*1 For SLS_T and SLS_T2, you cannot set the speed adjustment function with this command. SLS_T turns
on the speed adjustment function when the operation modes are TEACH and TEST T1. SLS_T2 turns on the
speed adjustment function when the operation mode is TEST T2. For more information, refer to the following
manuals:
Robot Controller Safety Function Manual

On | Off On/Off for the speed adjustment function. Optional. The default setting is On.

Return Values

None

Description

Sets and displays On/Off for the function that adjusts the speed at the position set by the Tool command
when the specified SLS number is monitored. When On, the speed at the position set for the tool is adjusted
when SLS is enabled. When Off, the speed is not adjusted even when SLS is enabled. Regardless of the
On/Off setting, the speed at the tool position is not adjusted when SLS is disabled.

If the second parameter is omitted, the speed adjustment status (On/Off) of the specified SLS number will
appear.
If all parameters are omitted, the speed adjustment status (On/Off) of all SLS numbers will appear.

This command can be used with the Controllers with Safety Board.
It is available only when Safety Function Options are activated.

SF_LimitSpeedSEnable Statement

684 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

SF_LimitSpeedSEnable Example
- How to enable the speed adjustment function for SLS_1

SF_LimitSpeedSEnable SLS_1, On

- How to display the speed adjustment function status for SLS_2 (using the command window)

> SF_LimitSpeedSEnable SLS_2

SLS_2: Off

- How to display the speed adjustment function status for all SLS numbers (using the command

window)
> SF_LimitSpeedSEnable

SLS_1: On

SLS_2: Off

SLS_3: Off

SLS_T: On

SLS_T2: On

Note
SF_LimitSpeedSEnable cannot be used at the same time as singularity avoidance, conveyor tracking,
and force control

SF_LimitSpeedSEnable is On by default. If you adjust the speed with this function during operation of
singularity avoidance, conveyor tracking, or force control, an operation error (4093, 4403, or 5830
respectively) occurs.
When using SLS for these operations, set SF_LimitSpeedSEnable to Off before starting the operation.
Also, use SF_PeakSpeedS and SF_RealSpeedS to measure the robot arm operation speed, and use Speed,
SpeedFactor, SpeedS, etc. to control the robot arm operation speed so that it does not exceed the SLS
monitored speed (safety function parameter).

Note
The position that is speed adjusted by SF_LimitSpeedS is the tool position set by the Tool command.

When SF_LimitSpeedSEnable is On, the applied speed adjustment value (set by SF_LimitSpeedS) is
applied to the speed at the tool position set by the Tool command. The Safety Function Manager TCP
position is not automatically set in the Tool command. Use the Tool command to set the proper TCP
location.
Also, if automatic speed adjustment does not function correctly, use SF_PeakSpeedS and SF_RealSpeedS
to measure the robot arm operation speed. Use Speed, SpeedFactor, SpeedS, etc. to control the robot arm
operation speed so that it does not exceed the SLS monitoring speed (safety function parameter).

SF_LimitSpeedSEnable Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 685

SF_LimitSpeedSEnable Function

Returns the status of the function that adjusts the speed at the position set by the Tool command when SLS
is enabled.

Syntax

SF_LimitSpeedSEnable (SLS number)

Parameters

SLS number The SLS number as an integer value (1 to 3) or the constant listed below.
Constant Value Description

SLS_1 1 Speed adjustment function when SLS_1 is enabled
SLS_2 2 Speed adjustment function when SLS_2 is enabled
SLS_3 3 Speed adjustment function when SLS_3 is enabled
SLS_T 9 Speed adjustment function when SLS_T is enabled
SLS_T2 10 Speed adjustment function when SLS_T2 is enabled

Return Values

When the speed adjustment function for the specified SLS number is On, returns 1.
When the speed adjustment function for the specified SLS number is Off, returns 0.

Description

Returns the status for the function that adjusts the TCP operation speed when the specified SLS number is
monitored.

This command can be used with the Controllers with Safety Board.

SF_LimitSpeedSEnable Function Example

If SF_LimitSpeedSEnable(SLS_1) = 0 Then

Print “SLS_1 linked speed adjustment function is disabled.”

Endif

SF_PeakSpeedS Statement

686 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

SF_PeakSpeedS Statement

Displays the peak speed value for the speed monitoring point.

Syntax

SF_PeakSpeedS [Speed monitoring point number]

Parameters

Speed monitoring point number The speed monitoring point number as an integer value (1 or 2).
Optional.

Value Description
1 Hand
2 Elbow

Return Values

None

Description

Displays the peak speed value for the specified speed monitoring point.
If the parameter is omitted, the peak speed value for all speed monitoring points will appear.
The speed of the hand is the speed at the TCP offset position set in Safety Function Manager.

This command can be used with the Controllers with Safety Board.

SF_PeakSpeedS Example

- How to display the peak speed value of the hand (using the command window)
> SF_PeakSpeedS 1

250

- How to display the peak speed value of all speed monitoring points (using the command window)
> SF_PeakSpeedS

250 150

The order of display is as follows:
Hand Elbow

SF_PeakSpeedS Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 687

SF_PeakSpeedS Function

Returns the peak speed of the speed monitoring point.

Syntax

SF_PeakSpeedS (Speed monitoring point number)

Parameters

Speed monitoring point number The speed monitoring point number as an integer value (1 or 2).
Optional.

Value Description
1 Hand
2 Elbow

Return Values

Returns the peak speed [mm/sec].

Description

Returns the peak speed of the specified speed monitoring point.
The speed of the hand is the speed at the TCP offset position set in Safety Function Manager.

This command can be used with the Controllers with Safety Board.

SF_PeakSpeedS Function Example

Print “Hand peak speed is ”, SF_PeakSpeedS (1)

SF_PeakSpeedSClear Statement

688 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

SF_PeakSpeedSClear Statement

Clears and initializes the peak speed value for the speed monitoring point.

Syntax

SF_PeakSpeedSClear [Speed monitoring point number 1 [, Speed monitoring point number 2]]

Parameters

Speed limiting point number 1 The first speed limiting point number as an integer value (1 or 2).
Optional.
Speed limiting point number 2 The second speed limiting point number as an integer value (1 or 2).
Optional.

Value Description
1 Hand
2 Elbow

Return Values

None

Description

Clears (initializes) the peak speed value for the specified speed monitoring point.

If no parameters are specified, the peak speed values for all speed monitoring points are cleared.

This command can be used with the Controllers with Safety Board.

SF_PeakSpeedSClear Example
- How to clear the peak speed of the hand
SF_PeakSpeedSClear 1

- How to clear the peak speed values for all speed monitoring points
SF_PeakSpeedSClear

SF_RealSpeedS Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 689

SF_RealSpeedS Statement

Displays the current speed of the speed monitoring point.

Syntax

SF_RealSpeedS [Speed monitoring point number]

Parameters

Speed monitoring point number The speed monitoring point number as an integer value (1 or 2).
Optional.

Value Description
1 Hand
2 Elbow

Return Values

None

Description

Displays the current speed [mm/sec] of the specified speed monitoring point.
The speed of the hand is the speed at the TCP offset position set in Safety Function Manager.
If the parameter is omitted, the current speed of all speed monitoring points will appear.

This command can be used with the Controllers with Safety Board.

SF_RealSpeedS Example

- How to display the current speed of the hand (using the command window)
> SF_RealSpeedS 1

250

- How to display the current speed of all speed monitoring points (using the command window)
> SF_RealSpeedS

250 150

The order of display is as follows:
Hand Elbow

SF_RealSpeedS Function

690 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

SF_RealSpeedS Function

Returns the current speed of the speed monitoring point.

Syntax

SF_RealSpeedS (Speed monitoring point number)

Parameters

Speed monitoring point number The speed monitoring point number as an integer value (1 or 2).
Optional.

Value Description
1 Hand
2 Elbow

Return Values

Returns the current speed [mm/sec].

Description

Returns the current speed [mm/sec] of the specified speed monitoring point.
The speed of the hand is the speed at the TCP offset position set in Safety Function Manager.

This command can be used with the Controllers with Safety Board.

SF_RealSpeedS Function Example

Print “Hand real speed is ”, SF_RealSpeedS (1)

SFree Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 691

SFree Statement

State free the specified servo axis.

Syntax

SFree jointNumber [, jointNumber,...]

Parameters

jointNumber An integer expression representing a servo joint number (1 to 9).
The additional S axis is 8 and T axis is 9.

Description

SFree removes servo power from the specified servo joints. This instruction is used for the direct teaching
or the part installation by state free joint the specified joint. To release the free joint state, execute the SLock
instruction, Motor On or Motor Off.

SFree initializes the robot control parameter.
See Motor On for the details.

Note
SFree Sets Some System Items back to Their Initial State:

SFree, for safety purposes, initializes parameters concerning the robot arm speed or acceleration
(Speed ,SpeedS, Accel, AccelS etc.), and the LimZ parameter. For details, refer to the Motor On.
Firmware version earlier than 7.5.1.0, SFree is available with only Motor ON state.
SFree changes the motion as following below depends to the firmware version.

Firmware SFree Available/ Not available
Before 7.5.1.0 Only when motor is on
After 7.5.1.0 When motor is on, or motor is off

SFree Statement

692 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Important
SFree and its Use with the Z Joint and U Joint for SCARA robots (including RS series)

The Z joint has electromagnetic brakes so setting SFree for the Z joint does not immediately allow the Z joint
to be moved. To move the Z joint by hand requires the brake to be released continuously by pressing the
brake release switch on the top of the robot arm.
Some model has electronic brake on the U joint. When the robot has the U joint electronic brake, setting
SFree for the U joint does not immediately allow the U joint to be moved. To move the U joint by hand
requires the brake to be released continuously by pressing the brake release switch on the top of the robot
arm.

SFree is Not Valid with 6-Axis robots (including N series)
When SFree is executed in 6-axis robots (including N series), an error occurs.
To move the arm by hands, release the electromagnetic brake by using Brake Off after tuning OFF the motor
by Motor Off.

Executing motion commands while joints are in free joint state
Attempting to execute a motion command while in the free joint condition will cause an error in the
Controller’s default state. However, to allow motion while 1 or more of the joints are in the free joint state,
select the [Allow motion with one or more joints free] checkbox from [Setup]-[System Configuration]-
[Controller]-[Preferences].

Do not use SFree during Conveyor Tracking
Error 5057 or 5058 might occur if SFree is used during conveyor tracking. Use SFree after terminating
conveyor tracking such as Cnv_AbortTrack.

See Also

Brake, LimZ, Motor, SFree Function, SLock

SFree Statement Example
This is a simple example on the usage of the SFree command. To operate the robot in this exemple, the
[Allow motion with one or more joints free] checkbox must be selected from [Setup]-[System
Configuration]-[Controller]-[Preferences].

Function GoPick
 Speed pickSpeed
 SFree 1, 2 'State J1 and J2 to free joint
 'and control the Z and U joints for part installation.
 Go pick
 SLock 1, 2 'Release the free joint state of J1 and J2.
Fend

SFree Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 693

SFree Function

Returns free joint status for a specified joint.

Syntax

SFree(jointNumber)

Parameters

jointNumber Integer expression representing the joint number to check.
The additional S axis is 8 and T axis is 9.

Return Values

True if the joint is free joint, False if not.

See Also

SFree Statement

SetFree Statement Example

If SFree(1) Then
 Print "Joint 1 is free"
EndIf

Sgn Function

694 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Sgn Function

Determines the sign of the operand.

Syntax

Sgn(Operand)

Parameters

Operand A numeric expression.

Return Values

1: If the operand is a positive value.
0: If the operand is a 0
-1: If the operand is a negative value.

Description

The Sgn function determines the sign of the numeric value of the operand.

See Also

Abs, And, Atan, Atan2, Cos, Int, Mod, Or, Not, Sin, Sqr, Str$, Tan, Val, Xor

Sgn Function Example

This is a simple command window example on the usage of the Sgn function.

>print sgn(123)
 1
>print sgn(-123)
 -1
>

Short Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 695

Short Statement

Declares variables of Short type. (2 byte integer variable).

Syntax

Short varName [(subscripts)] [, varName [(subscripts)]...]

Parameters

varName Variable name which the user wants to declare.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared. The

subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 and the available

number of array elements is the upper bound value + 1.
 When specifying the upper bound value, make sure the number of total elements is

within the range shown below:
Local variable 2,000
Global Preserve variable 4,000
Global variable and module variable 100,000

Description

Short is used to declare variables as type integer. Integer variables can contain values from -32768 to 32767.
Local variables should be declared at the top of a function. Global and module variables must be declared
outside of functions.

See Also

Boolean, Byte, Double, Global, Int32, Int64, Integer, Long, Real, String, UByte, UInt32, UInt64,
UShort

Short Statement Example

The following example shows a simple program that declares some variables using Short.

Function shorttest
 Short A(10) 'Single dimension array of Short
 Short B(10, 10) 'Two dimension array of Short
 Short C(5, 5, 5) 'Three dimension array of Short
 Short var1, arrayvar(10)
 Integer i
 Print "Please enter an Integer Number"
 Input var1
 Print "The Integer variable var1 = ", var1
 For i = 1 To 5
 Print "Please enter an Integer Number"
 Input arrayvar(i)
 Print "Value Entered was ", arrayvar(i)
 Next i
Fend

ShutDown Statement

696 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

ShutDown Statement

Shuts down EPSON RC+ and optionally shuts down or restarts Windows.

Syntax

ShutDown [mode] [, Forced]

Parameters

mode Optional. An integer expression that represents the mode setting described below.

Symbolic constant Value Meaning

Mode omitted −1 Displays a dialog allowing the user to choose the shutdown option.
SHUTDOWN_ALL 0 Shuts down EPSON RC+ and Windows.
SHUTDOWN_RESTART 1 Shuts down EPSON RC+ and restarts Windows.
SHUTDOWN_EPSONRC 2 Shuts down EPSON RC+.

Forced Optional. Use to force a shutdown.

Description

Use ShutDown to shut down RC+ and optionally shutdown or reboot Windows from your program.
You can force a shutdown by using the Forced parameter.

Note
If you shutdown with the Forced parameter while tasks are running, you could lose data.
Be sure to save data before shutdown.

About the Controllers to use

Shutdown Statement cannot be used with T/VT series.

When the controller configuration is set to “Cooperative mode” in virtual controller
When the controller configuration is set to “Cooperative mode” in the virtual controller, the global Preserve
variables will not be saved if ShutDown statement is executed. Do not use ShutDown statement if you need
to save the global Preserve variables.

See Also

Restart

ShutDown Statement Example

ShutDown 0 ' Shutdown EPSON RC+ and Windows

ShutDown Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 697

ShutDown Function

Shuts down EPSON RC+ and optionally shuts down or restarts Windows.

Syntax

ShutDown ([mode] [, Forced])

Parameters

mode Optional. An integer expression that represents the mode setting described below.

Symbolic constant Value Meaning

Mode omitted −1 Displays a dialog allowing the user to choose the shutdown option.
SHUTDOWN_ALL 0 Shuts down EPSON RC+ and Windows.
SHUTDOWN_RESTART 1 Shuts down EPSON RC+ and restarts Windows.
SHUTDOWN_EPSONRC 2 Shuts down EPSON RC+.

Forced Optional. Use to force a shutdown.

Description

Use ShutDown to shut down RC+ and optionally shutdown or reboot Windows from your program.
You can force a shutdown by using the Forced parameter.

Note
If you shutdown with the Forced parameter while tasks are running, you could lose data.
Be sure to save data before shutdown.

About the Controllers to use

Shutdown Function cannot be used with T/VT series.

When the controller configuration is set to “Cooperative mode” in virtual controller

When the controller configuration is set to “Cooperative mode” in the virtual controller, the global Preserve
variables will not be saved if ShutDown function is executed. Do not use ShutDown function if you need to
save the global Preserve variables.

Return Values
Returns the following integer values.

-1 When a dialog is displayed and the user selects Cancel.
 0 If shutdown fails
 1 If shutdown is successful

ShutDown Function Example

If Shutdown(SHUTDOWN_EPSONRC) = 1 Then
 Print "Shutdown: OK"
Else
 Print "Shutdown: NG"
EndIf

Signal Statement

698 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Signal Statement

Send a signal to tasks executing WaitSig.

Syntax

Signal signalNumber

Parameters

signalNumber Signal number to transmit. Range is 0 to 63.

Description

Signal can be used to synchronize multi-task execution.
Previous signals issued before WaitSig is executed are ignored.

See Also

WaitSig

Signal Statement Example

Function Main
 Xqt 2, SubTask
 Call InitSys
 Signal 1

Fend

Function SubTask
 WaitSig 1

Fend

SimGet Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 699

SimGet Statement
Acquire the setting values of each object properties of simulator.

Syntax
SimGet Object.Property, Var
SimGet Robot.Hand.Propoerty, Var

Parameters
Object String variable that indicates object names acquiring the property values.
Robot String variable that indicates the robot name which the hand specified by “Hand” is

installed.
Hand String variable that indicates the hand name which acquires the property values.
Property Property name that acquires values. Descriptions of properties are described later.
Var Variable that indicates return value.

Description

Use this command to acquire the property setting value of each object of simulator.

Set the following properties to acquire the object setting values.

Property Descriptions Unit Data type Return value
PositionX Acquire a position of X coordinate

system.
(mm) Double

PositionY Acquire a position of Y coordinate
system.

(mm) Double

PositionZ Acquire a position of Z coordinate
system.

(mm) Double

RotationX Acquire rotation angle of X axis. (degree) Double
RotationY Acquire rotation angle of Y axis. (degree) Double

RotationZ Acquire rotation angle of Z axis. (degree) Double
CollisionCheck Acquire enable/disable of collision

detect. - Boolean True or False

CollisionCheckSelf Acquire enable/disable of self-collision
detect of the robot. - Boolean True or False

Visible Acquire state of display/non-display. - Boolean True or False
Type Acquire the types of objects.

-

Integer Layout: 0
Part: 1
Mounted
Device: 3

HalfSizeX Acquire a length of Box object in the X
direction.

(mm) Double

HalfSizeY Acquire a length of Box object in the Y
direction.

(mm) Double

HalfSizeZ Acquire a length of Box object in the Z
direction.

(mm) Double

HalfSizeHeight Acquire a length of Plane object. (mm) Double
HalfSizeWidth Acquire a width of Plane object. (mm) Double
PlaneType Acquire a type of Plane object. - Integer Horizontal: 0

Vertical: 1
Radius Acquire a radius of Sphere object or

Cylinder object.
(mm) Double

Height Acquire a height of Cylinder object. (mm) Double

SimGet Statement

700 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Property Descriptions Unit Data type Return value
Name Acquire an object name. String
Color Acquire a display color of an object. String Color name or

hexadecimal
color code
(ARGB)

You can acquire the properties by combinations shown in the list below.

Property Object
Robot Hand Box Sphere Cylinder Plane CAD Camera

PositionX
PositionY
PositionZ
RotationX
RotationY
RotationZ
CollisionCheck
CollisionCheckSelf - - - - - - -
Visible -
Type - - -
HalfSizeX - - - - - - -
HalfSizeY - - - - - - -
HalfSizeZ - - - - - - -
HalfSizeHeight - - - - - - -
HalfSizeWidth - - - - - - -
PlaneType - - - - - - -
Radius - - - - - -
Height - - - - - - -
Name
Color - - - -

See Also

SimSet

SimGet Statement Example

‘Acquire X coordinate value of SBox_1 object
Double boxPosX
SimGet SBox_1.PositionX, boxPosX

‘Acquire the state of display/non-display of SBox_1 object
Boolean boxVisible
SimGet SBox_1.Visible, boxVisible

‘Acquire the type of SBox_1 object
Integer boxType
SimGet SBox_1.Type, boxType

SimSet Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 701

SimSet Statement

Set properties of each object of simulator. Operate the robot motion, objects, and simulator settings.

Syntax
(1) Property setting for object

SimSet Object.Property, Value
SimSet Robot.Hand.Property, Value

(2) Motion settings for robot (Pick & Place)

SimSet Robot.Pick, Object [,Tool]
SimSet Robot.Place, Object

(3) Operation settings for objects (specify the parent object)

SimSet Object.SetParent [, ParentObject]

(4) Simulator settings (reset the collision detect)

SimSet ResetCollision

Parameters
(1) Property setting for object

Object String variable that indicates object names setting the property values.
Robot String variable that indicates the robot name which the hand specified by “Hand” is

installed.
Hand String variable that indicates hand name which sets the property values.
Property Property name that sets values. Descriptions of properties are described later.
Value Formula with new values. Data type depends on properties.

(2) Motion settings for robot (Pick & Place)

Robot String variable that indicates the robot name to Pick or Place.
Object String variable that indicates the object name to be Picked or Placed.
Tool Formula that indicates Tool number which is used at the time of Picking.

(3) Operation settings for object (specify the parent object)

Object String variable that indicates the object name which sets the parent object.
ParentObject String variable that indicates the parent object name.

SimSet Statement

702 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Description
Use this command to set properties of each object of simulator. Also, use the command to change the the
robot motion, objects, and simulator settings.

(1) Property setting for object

You can set the objects by specifying the properties shown below.

Property Descriptions Unit Data type Return value
PositionX Set a position of X coordinate. (mm) Double Max: 100000

Min: -100000
PositionY Set a position of Y coordinate. (mm) Double Max: 100000

Min: -100000
PositionZ Set a position of Z coordinate. (mm) Double Max: 100000

Min: -100000
RotationX Set rotation angle of X axis. (degree) Double Max: 360

Min: -360
RotationY Set rotation angle of Y axis. (degree) Double Max: 360

Min: -360
RotationZ Set rotation angle of Z axis. (degree) Double Max: 360

Min: -360
CollisionCheck Set enable/disable of collision

detect. - Boolean True or False

CollisionCheckSelf Set enable/disable of self-collision
detect of the robot. - Boolean True or False

Visible Set state of display/non-display. - Boolean True or False
HalfSizeX Acquire a length of Box object in

the X direction.
(mm) Double Max: 100000

Min: 0.001
HalfSizeY Acquire a length of Box object in

the Y direction.
(mm) Double Max: 100000

Min: 0.001
HalfSizeZ Acquire a length of Box object in

the Z direction.
(mm) Double Max: 100000

Min: 0.001
HalfSizeHeight Acquire a length of Plane object. (mm) Double Max: 100000

Min: 0.001
HalfSizeWidth Acquire a width of Plane object. (mm) Double Max: 100000

Min: 0.001
PlaneType Acquire a type of Plane object. - Integer Horizontal: 0

Vertical: 1
Radius Acquire a radius of Sphere object

or Cylinder object.
(mm) Double Max: 100000

Min: 0.001
Height Acquire a height of Cylinder

object.
(mm) Double Max: 100000

Min: 0.001
Name Acquire an object name. String
Color Acquire a display color of an

object.
 String Color name or

hexadecimal
color code
(ARGB)

SimSet Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 703

You can set the property by combinations shown in the list below.

Property Objects
Robot Hand Box Sphere Cylinder Plane CAD Camera

PositionX
PositionY
PositionZ
RotationX
RotationY
RotationZ
CollisionCheck
CollisionCheckSelf - - - - - - -
Visible -
HalfSizeX - - - - - - -
HalfSizeY - - - - - - -
HalfSizeZ - - - - - - -
HalfSizeHeight - - - - - - -
HalfSizeWidth - - - - - - -
PlaneType - - - - - - -
Radius - - - - - -
Height - - - - - - -
Name
Color - - - -

(2) Motion settings for robot (Pick & Place)

You can set the following robot motions.

Pick
The robot specified by “Robot” grasps the object specified by “Object”.
Grasped object is registered as the part of the robot. Also, if any tool number is specified to “Tool”, you
can operate grasped motion by using the specified tool number. If the “Tool” settings are omitted, use
Tool0 to operate grasped motion.
You cannot grasp the object that is already registered as the part or set as an arm installation tool. Also,
you cannot grasp the camera.

Place
The robot specified by “Robot” places the object specified by “Object”. The placed object is deregistered
as the part of the robot.
You cannot place the objects which registrations are already deregistered.

You can grasp or place the object by combinations shown in the list below.

Motion Objects
Robot Hand Box Sphere Cylinder Plane CAD Camera

Pick - - -
Place - - -

(3) Operation settings for object (specify the parent object)

You can set operations for the following objects

SimSet Statement

704 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

SetParent
Set the object specified by “ParentObject” as the parent object for the object specified by “Object”.
“ParentObject” can be omitted. In that case, the object specified by “Object” will be the parent object. If
the object specified by “Object” is a child object of some object, the setting as the child object is
deregistered.
If the object specified by “Object” is registered as part or arm installation tool, you cannot specify the
parent object.

The objects that can specify the SetParent are as follows. For the camera object, only the object set as a
fixed camera can use the SetParent.

Operation Objects
Robot Hand Box Sphere Cylinder Plane CAD Camera

SetParent - -

You can use SetParent by combinations shown in the list below.

 ParentObject

Robot Hand Box Sphere Cylinder Plane CAD Camera

C
hild O

bject

Robot - - - - - - - -
Hand - - - - - - - -
Box - -
Sphere - -
Cylinder - -
Plane - -
CAD - -
Camera - -

(4) Simulator settings (reset the collision detect)

You can change the following simulator settings.

ResetCollision
Reset the collision detect. If the robot and the object do not collide after executing ResetCollision, reset the
collision state and update the 3D display on the simulator. If the robot and the object collide, the collision
state does not be reset and 3D display of the simulator will not be updated.

See Also
SimGet

SimSet Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 705

SimSet Statement Example

‘Set the X coordinate value of SBox_1 object to 100.0mm
SimSet SBox_1.PositionX, 100.0

‘Grasp SBox_1 by Tool1 in Robot1
SimSet Robot1.Pick, SBox_1, 1

‘Place SBox_1 grasped by Robot1
SimSet Robot1.Place, SBox_1

‘Set CAD_1 to the parent object of SBox_1
SimSet SBox_1.SetParent, CAD_1

‘Set SBox_1 as the parent object
SimSet SBox_1.SetParent

‘Reset the collision detect
SimSet ResetCollision

Sin Function

706 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Sin Function

Returns the sine of a numeric expression.

Syntax

Sin(radians)

Parameters

radians Real expression in Radians.

Return Values

Numeric value representing the sine of the numeric expression radians.

Description

Sin returns the sine of the numeric expression. The numeric expression (radians) must be in radian units.
The value returned by the Sin function will range from -1 to 1.

To convert from radians to degrees, use the RadToDeg function.

See Also

Abs, Atan, Atan2, Cos, Int, Mod, Not, Sgn, Sqr, Str$, Tan, Val

Sin Function Example

The following example shows a simple program which uses Sin.

Function sintest
 Real x
 Print "Please enter a value in radians:"
 Input x
 Print "Sin of ", x, " is ", Sin(x)
Fend

SingularityAngle Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 707

SingularityAngle Statement

Sets the singularity neighborhood angle necessary for the singularity avoiding function.

Syntax

SingularityAngle {angle}

Parameters

angle Specify the Joint #5 angle (real number equals to or greater than 0.1. Unit: deg) by a
formula or a value for determining the wrist singularity neighborhood of the vertical 6-
axis robot (including N series).

Result

Current SingularityAngle value will be displayed if the parameter is omitted.

Description

This command is enabled only when the singularity avoiding function is being used.
Default is 10 deg. This command can be used to adjust the start position of the singularity avoidance. If the
value smaller than the default is specified, avoidance motion starts at the point closer to the singularity.
Usually, it is not necessary to change the parameter. This may be useful to reduce errors which occur when
passing the singularity.

If SingularityAngle parameter is changed, the current setting is effective until the next controller startup.

See Also

AvoidSingularit, SingualrityAngle Function, SingularitySpeed

SingularityAngle Statement Example

SingularityAngle 7.0 'Sets the singularity neighborhood angle at 7 degrees

SingularityAngle Function

708 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

SingularityAngle Function

Returns the SingularityAngle setting value.

Syntax

SingularityAngle

Return Values

Returns the singularity neighborhood angle (Unit: deg).

See Also

AvoidSingularity, SingularityAngle, SingularitySpeed, SingularitySpeed Function

SingularityAngle Function Example

Real currSingularityAngle
currSingularityAngle = SingularityAngle

SingularityDist Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 709

SingularityDist Statement

Sets the singularity neighborhood distance necessary for the singularity avoiding function.

Syntax
SingularityDist {distance}

Parameters
distance Specify the distance between the point P and Joint #1 rotation axis (real number equals

to or larger than 0. Unit: mm) by a formula or a value for determining the shoulder
singularity neighborhood or f the vertical 6-axis robot (including N series) and RS
series.

Result

Current SingularityDist value will be displayed if the parameter is omitted.

Description
This command is enabled only when the singularity avoiding function is being used.
Default is 30 mm. This command can be used to adjust the start position of the singularity avoidance. If the
value smaller than the default is specified, avoidance motion starts at the point closer to the singularity.
Usually, it is not necessary to change the parameter. This may be useful to reduce errors which occur when
passing the singularity.

If SingularityDist parameter is changed, the current setting is effective until the next controller startup.

See Also

AvoidSingularity, SingularityAngle, SingualrityAngle Function, SingularityDist Function,
SingularitySpeed, SingularitySpeed Function

SingularityDist Statement Example

SingularityDist 10.0 'Sets the singularity neighborhood distance at 10 mm

SingularityDist Function

710 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

SingularityDist Function

Returns the SingularityDist setting value.

Syntax
SingularityDist

Return Values
Returns the singularity neighborhood distance (Unit: mm).

See Also
SingularityDist, AvoidSingularity, SingularityAngle, SingularityAngle Function, SingularitySpeed,
SingularitySpeed Function

SingularityDist Function Example

Real currSingularityDist
currSingularityDist = SingularityDist

SingularitySpeed Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 711

SingularitySpeed Statement

Sets the singularity neighborhood angular velocity necessary for the singularity avoiding function.

Syntax

SingularitySpeed {Angular velocity}

Parameters

Angular velocity Specify the percentage of the Joint #4 angular velocity with respect to the maximum
angular velocity (real number equals to or greater than 0.1. Unit: %) by a formula or a
value for determining the wrist singularity neighborhood of the vertical 6-axis robot
(including N series).

Result

Current SingularitySpeed value will be displayed if the parameter is omitted.

Description

This command is enabled only when the singularity avoiding function is being used.
Default is 10%. This command can be used to adjust the start position of the singularity avoidance. If the
value smaller than the default is specified, avoidance motion starts at the point closer to the singularity.
Usually, it is not necessary to change the parameter. This may be useful to reduce errors which occur when
passing the singularity.

If SingularitySpeed parameter is changed, the current setting is effective until the next controller startup.

See Also

AvoidSingularity Function, SingualrityAngle, SingularitySpeed

SingularitySpeed Example

SingularitySpeed 30.0 'Sets the singularity neighborhood angular velocity at 30%

SingularitySpeed Function

712 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

SingularitySpeed Function

Returns the SingularitySpeed setting value.

Syntax

SingularitySpeed

Return Values

Returns the singularity neighborhood angular velocity (Unit: %).

See Also

SingularitySpeed, SingularityAngle, AvoidSingularity

SingularitySpeed Function Example

Real currSingularitySpeed
currSingularitySpeed = SingularitySpeed

SLock Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 713

SLock Statement

Release the free joint state for the specified servo axis.

Syntax

SLock jointNumber [, jointNumber,...]

Parameters

jointNumber The servo joint number (1 to 9).
The additional S axis is 8 and T axis is 9.

Description

SLock release the free joint state which was free joint state by the SFree instruction for the direct teaching or
part installation.

If the joint number is omitted, all joints are released free joint.

Executing SLock the 3rd joint (Z) causes the brake to release.

Executing SLock while in Motor Off state will cause an error.

SLock initializes the robot control parameter.
See Motor On for the details.

6-axis robots (including N series) cannot be free joint state by the SFree instruction. When SLock is executed,
an error occurs.

See Also

Brake, LimZ, Reset, SFree

SLock Example

This is a simple example on the usage of the SLock command. To operate the robot in this exemple, the
[Allow motion with one or more joints free] checkbox must be selected from [Setup]-[System
Configuration]-[Controller]-[Preferences].

Function test
 .
 .
 .
 SFree 1, 2 'State J1 and J2 to free joint
 'and control the Z and U joints for part installation.
 Go P1
 SLock 1, 2 'Release the free joint state of J1 and J2.
 .
 .
 .
Fend

SoftCP Statement

714 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

SoftCP Statement

Specifies the SoftCP motion mode.

Syntax

SoftCP { On | Off }

Parameters

On | Off On is used to enable SoftCP motion mode.
Off is used to disable SoftCP motion mode.

Description

SoftCP motion mode controls the vibration caused by CP motion with high acceleration/deceleration.
Normal CP motion focuses on path-tracking and uniform-motion which increases the vibration when
acceleration/deceleration is high. To reduce the vibration, acceleration/deceleration needs to be reduced with
the SpeedS and AccelS commands.
However, some applications don’t necessarily require the high performance of path-tracking and uniform-
motion but need CP motion with less vibration when acceleration/deceleration is high.
SoftCP motion mode dampens the path-tracking and uniform-motion performance more than in the normal
CP motion mode and reduces the vibration in CP motion with high acceleration/deceleration.

SoftCP motion mode applies to the following CP motion commands:

Move, BMove, TMove, Arc, Arc3, CVMove, Jump3CP

If the vibration doesn’t matter in the normal CP motion or the performances of path-tracking and uniform-
motion are required, don’t apply SoftCP motion mode.

Caution
When connection CP motion and PTP motion in CP On

When connecting CP motion and PTP motion as shown below, be sure to enable SoftCP.
If it is not enabled, noise may occur from the robot depending on the motion. After connecting CP motion
and PTP motion, disable SoftCP.
SoftCP On
Go P1 CP
Move P2
SoftCP Off

See Also

SoftCP Function

SoftCP Statement Example

SoftCP On
Move P1
Move P2
SoftCP Off

SoftCP Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 715

SoftCP Function

Returns the status of SoftCP motion mode.

Syntax

SoftCP

Return Values

0 = SoftCP motion mode off, 1 = SoftCP motion mode on.

See Also

SoftCP Statement

SoftCP Function Example

If SoftCP = Off Then
 Print "SoftCP is off"
EndIf

Space$ Function

716 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Space$ Function

Returns a string of space characters.

Syntax

Space$(count)

Parameters

count The number of spaces to put in the return string.

Return Values

Returns a string of count space characters.

Description

Space$ returns a string of count space characters as specified by the user. Space$ can return up to 255
characters (the maximum number of characters allowed in a string variable).

The Space$ instruction is normally used to insert spaces before, after, or between other strings of characters.

See Also

Asc, Chr$, InStr, Left$, Len, LSet$, Mid$, Right$, RSet$, Str$, Val

Space$ Function Example

> Print "XYZ" + Space$(1) + "ABC"
XYZ ABC

> Print Space$(3) + "ABC"
 ABC
>

Speed Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 717

Speed Statement

Specifies or displays the arm speed for the point to point motion instructions Go,
Jump and Pulse.

Syntax

(1) Speed percent [, departSpeed, approSpeed]
(2) Speed

Parameters

percent Integer expression between 1 and 100 representing the arm speed as a percentage of
the maximum speed.

departSpeed Integer expression between 1 and 100 representing the depart motion speed for the
Jump instruction. Available only with Jump command.

approSpeed Integer expression between 1 and 100 representing the approach motion speed for the
Jump instruction. Available only with Jump command.

Return Values

Displays current Speed value when used without parameters.

Description

Speed specifies the arm speed for all point to point motion instructions. This includes motion caused by the
Go, Jump and Pulse robot motion instructions. The speed is specified as a percentage of maximum speed
with the range of acceptable values between 1-100. (1 represents 1% of the maximum speed and 100
represents 100% of maximum speed). Speed 100 represents the maximum speed possible.

Depart and approach speed values apply only to the Jump instruction. If omitted, each defaults to the percent
value.

The speed value initializes to its default value when any one of the following is performed:

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

In Low Power Mode, the effective speed setting is lower than the default value. If a higher speed is specified
directly (from the command window) or in a program, the speed is set to the default value. In High Power
Mode, the motion speed setting is the value specified with Speed.

If higher speed motion is required, set high power mode using Power High and close the safety door. If the
safety door is open, the Speed settings will be changed to their default value.

If Speed is executed when the robot is in low power mode, the following message is displayed. The following
example shows that the robot will move at the default speed (5) because it is in Low Power Mode even though
the speed setting value by Speed is 80.

> speed 80
> speed
Low Power Mode
 80
 80 80
>

Speed Statement

718 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

See Also
Accel, Go, Jump, Power, Pass, Pulse, SpeedS

Speed Statement Example

Speed can be used from the command window or in a program. Shown below are simple examples of both
methods.

Function speedtst
 Integer slow, fast, i
 slow = 10
 fast = 100
 For i = 1 To 10
 Speed slow
 Go P0
 Go P1
 Speed fast
 Go P0
 Go P1
 Next i
Fend

From the command window the user can also set Speed values.

> Speed 100,100,50 'Z joint downward speed set to 50%
> Speed 50
> Speed
 Low Power State: Speed is limited to 5
 50
 50 50
>

Speed Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 719

Speed Function

Returns one of the three speed settings.

Syntax

Speed[(paramNumber)]

Parameters

paramNumber Integer expression which evaluates to one of the values shown below.
When omitted, 1 will be taken as the specified number.

 1: PTP motion speed
 2: Jump depart speed
 3: Jump approach speed

Return Values

Integer value from 1 to 100.

See Also

Speed

Speed Function Example

 Integer savSpeed

 savSpeed = Speed(1)
 Speed 50
 Go pick
 Speed savSpeed
Fend

SpeedFactor Statement

720 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

SpeedFactor Statement

Sets and returns the setting value of speed factor for manipulator motions.

Syntax

(1) SpeedFactor speedRatio
(2) SpeedFactor

Parameters

speedRatio Integer expression or value between 1 and 100 representing the speed ratio of
manipulator motion. (Unit: %)

Return Values

Displays current SpeedFactor value when used without parameters.

Description

SpeedFactor specifies the speed factor for all manipulators and motions set to the Controller. Usually,
SpeedFactor is set to 100 % and speed for each manipulator/motion command is set by Speed or SpeedR.
SpeedFactor is useful to set specific speed to all motions of all manipulators at one time. For example, the
motion with Speed = 80% operates at 40% of the speed, when speed ratio is 50%.

SpeedFactor also changes the acceleration at the same rate in consideration of a balance of acceleration and
deceleration of the manipulator motion.

SpeedFactor is equivalent to the speed ratio setting in the operator window and changes along with the value.

SpeedFactor will be initialized to 100% at the Controller startup.

See Also

SpeedFactor Function

SpeedFactor Statement Example

Function main
 Motor On
 Power High
 SpeedFactor 80

 Speed 100; Accel 100,100
 Go P1 'Operates with Speed 80; Accel 80,80

 Speed 50; Accel 50,50
 Go P2 'Operates with Speed 40; Accel 40,40
Fend

SpeedFactor Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 721

SpeedFactor Function

Returns SpeedFactor setting value.

Syntax

SpeedFactor

Return Values

Integer value representing the SpeedFactor setting.

See Also

SpeedFactor Statement

Speed Function Example

Real savSpeedFactor

savSpeedFactor = SpeedFactor
SpeedFactor 80
Go P1
Go P2
SpeedFactor savSpeedFactor

SpeedR Statement

722 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

SpeedR Statement

Sets or displays the tool rotation speed for CP motion when ROT is used.

Syntax

(1) SpeedR rotSpeed
(2) SpeedR

Parameters

rotSpeed Real expression in degrees / second.
Valid entries range of the parameters: 0.1 to 1000

Return Values

When parameters are omitted, the current SpeedR setting is displayed.

Description

SpeedR is effective when the ROT modifier is used in the Move, Arc, Arc3, BMove, TMove, and Jump3CP
motion commands.

The SpeedR value initializes to the default value (low speed) when any one of the following conditions
occurs:

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

See Also

AccelR, Arc, Arc3, BMove, Jump3CP, Power, SpeedR Function, TMove

SpeedR Statement Example

SpeedR 200

SpeedR Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 723

SpeedR Function

Returns tool rotation speed value.

Syntax

SpeedR

Return Values

Real value in degrees / second.

See Also

AccelR, SpeedR

SpeedR Function Example

Real currSpeedR

currSpeedR = SpeedR

SpeedS Statement

724 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

SpeedS Statement

Specifies or displays the arm speed for use with the continuous path motion instructions such as Move,
Arc, Arc3, Jump3, and Jump3CP.

Syntax
(1) SpeedS speed [, departSpeed, approSpeed]
(2) SpeedS

Parameters
speed Real expression representing the CP motion speed in units of mm/sec.
departSpeed Optional. Real expression representing the Jump3 depart speed in units of mm/sec.
approSpeed Optional. Real expression representing the Jump3 approach speed in units of mm/sec.
Valid entries range of the parameters:

Other than N series: 0.1 to 2000
N series : 0.1 to 1120

Return Values

Displays current SpeedS value when used without parameters.

Description
SpeedS specifies the tool center point speed for use with all the continuous path motion instructions. This
includes motion caused by the Move and Arc instructions.

SpeedS is specified in mm/Sec which represents a Tool Center Point velocity for the robot arm. The default
value varies from robot to robot. See the Manipulator manual for the default SpeedS values for your robot
model. This is the initial SpeedS value set up automatically by the controller each time main power is turned
on.

The SpeedS value initializes to its default value when any one of the following is performed:

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

In Low Power Mode, the effective SpeedS setting is lower than the default value. If a higher speed is specified
directly (from the command window) or in a program, the speed is set to the default value. In High Power
Mode, the motion SpeedS setting is the value of SpeedS.

If higher speed motion is required, set high power mode using Power High and close the safety door. If the
safety door is open, the SpeedS settings will be changed to their default value.

See Also
AccelS, Arc, Jump3, Move, Speed

SpeedS Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 725

SpeedS Statement Example
SpeedS can be used from the command window or in a program. Shown below are simple examples of both
methods.

Function speedtst
 Integer slow, fast, i
 slow = 50
 fast = 500
 For i = 1 To 10
 SpeedS slow
 Move P0
 Move P1
 SpeedS fast
 Move P0
 Move P1
 Next i
Fend

From the command window the user can also set SpeedS values.

> speeds 1000
> speeds 500
> speed 30 'sets point to point speed
> go p0 'point to point move
> speeds 100 'sets straight line speed in mm/Sec
> move P1 'moves in straight line

SpeedS Function

726 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

SpeedS Function

Returns the current SpeedS setting.

Syntax

SpeedS [(paramNumber)]

Parameters

paramNumber Optional. Integer expression specifying which SpeedS value to return.
 1: CP speed
 2: Jump3 depart speed
 3: Jump3 approach speed

Return Values

Real number, in mm/sec

See Also

SpeedS Statement

SpeedS Function Example

Real savSpeeds

savSpeeds = SpeedS

Print "Jump3 depart speed = ", SpeedS(2)

Sqr Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 727

Sqr Function

Computes the non-negative square root value of the operand.

Syntax

Sqr(Operand)

Parameters

Operand A real expression.

Return Values

Square root value.

Description

The Sqr function returns the non-negative square root value of the operand.

Potential Error
Negative operand

If the operand is or has a negative numeric value, an error will occur.

See Also

Abs, And, Atan, Atan2, Cos, Int, Mod, Not, Or, Sgn, Sin, Str$, Tan, Val, Xor

Sqr Function Example

This is a simple Command window example on the usage of the Sqr function.

>print sqr(2)
 1.414214
>

The following example shows a simple program which uses Sqr.

Function sqrtest
 Real x
 Print "Please enter a numeric value:"
 Input x
 Print "The Square Root of ", x, " is ", Sqr(x)
Fend

ST Function

728 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

ST Function

Returns the coordinate value of the specified additional axis in the point data.

Syntax

ST (sValue As Real, tValue As Real)

Parameters

sValue Real value that specifies the S axis coordinate value
tValue Real value that specifies the T axis coordinate value

Return Values

Coordinate values of the specified additional axis in the point data.

Description

This function is used when you are using the additional ST axes.
When using this function like Go ST(10,20), the additional axis will move to the specified coordinate but the
manipulator will not move. If you want to move the manipulator as well, use like Go XY(60,30,-
50,45) : ST(10,20).
For the details of the additional axis, refer to EPSON RC+ Users Guide: 21. Additional Axis.

See Also

XY Function

ST Function Example

P10 = ST(10, 20)

StartMain Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 729

StartMain Statement

Executes the main function from a background task.
This command is for the experienced user and you need to understand the command specification before
use.

Syntax
StartMain mainFuncname

Parameters

mainFuncname Main function name you want to execute (main ~ main63)

Description
To execute StartMain, you need to set the [Enable advanced task commands] preference in the [Setup]-
[System Configuration]-[Controller]-[Preferences] page.

If a task is executed using the Xqt statement from a background task, the executed task becomes a
background task. With StartMain, you can execute the main function as a non-background task from a
background task.

If you have already executed the main function or execute StartMain from a non-background task, an error
occurs.

CAUTION

■ When executing StartMain command from a program, you must understand the
command specification and confirm that the system has the proper conditions for
this command. Improper use such as continuous execution of a command within a
loop may deteriorate the system safety.

See Also
Xqt

StartMain Statement Example

Function bgmain

 :
 If Sw(StartMainSwitch) = On And Sw(ErrSwitch) = Off Then
 StartMain main
 EndIf
 :

Fend

Stat Function

730 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Stat Function

Returns the execution status information of the controller.

Syntax

Stat(address)

Parameters

address Defines which status bits to check. (0 to 2)

Return Values

Returns a 4 byte value that presents the status of the controller. Refer to table below.

Description

The Stat instruction returns information as shown in the table below:

Address Bit Controller Status Indicated When Bit is On
0 0-15 &H1 to&H8000 Task (1~16) is being executed (Xqt) or in Halt State
 16 &H10000 Task(s) is being executed
 17 &H20000 Pause condition
 18 &H40000 Error Condition
 19 &H80000 Teach mode
 20 &H100000 Emergency Stop Condition
 21 &H200000 Low Power Mode (Power Low)
 22 &H400000 Safeguard Input is Closed
 23 &H800000 Enable Switch is Open
 24 &H1000000 Undefined
 25 &H2000000 Undefined
 26 &H4000000 Test mode
 27 &H8000000 T2 mode
 28-31 Undefined

1 0 &H1
Log of Stop above target position upon satisfaction of
condition in Jump...Sense statement. (This log is erased when
another Jump statement is executed).

 1 &H2
Log of stop at intermediate travel position upon satisfaction of
condition in Go/Jump/Move...Till statement. (This log is erased
when another Go/Jump/Move...Till statement is executed

 2 &H4 Undefined

 3 &H8 Log of stop at intermediate travel position upon satisfaction of
condition in Trap statement

 4 &H10 Motor On mode
 5 &H20 Current position is home position
 6 &H40 Low power state
 7 &H80 Undefined
 8 &H100 4th Joint motor is on
 9 &H200 3rd Joint motor is on
 10 &H400 2nd Joint motor is on
 11 &H800 1st Joint motor is on
 12 &H1000 6th Joint motor is on
 13 &H2000 5th Joint motor is on
 14 &H4000 Axis T motor is on
 15 &H8000 Axis S motor is on
 16 &H10000 7th Joint motor is on
 17-31 Undefined
2 0-15 &H1 to &H8000 Task (17~32) is being executed (Xqt) or in Halt State

See Also

Stat Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 731

EStopOn Function, TillOn Function, PauseOn Function, SafetyOn Function

Stat Function Example

Function StatDemo

 rbt1_sts = RShift((Stat(0) And &H070000), 16)
 Select TRUE
 Case (rbt1_sts And &H01) = 1
 Print "Tasks are running"
 Case (rbt1_sts And &H02) = 2
 Print "Pause Output is ON"
 Case (rbt1_sts And &H04) = 4
 Print "Error Output is ON"
 Send
Fend

Str$ Function

732 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Str$ Function

Converts a numeric value to a string and returns it.

Syntax

Str$(number)

Parameters

number Integer or real expression.

Return Values

Returns a string representation of the numeric value.

Description

Str$ converts a number to a string. Any positive or negative number is valid.

See Also

Abs, Asc, Chr$, InStr, Int, Left$, Len, Mid$, Mod, Right$, Sgn, Space$, Val

Str$ Function Example

The example shown below shows a program which coverts several different numbers to strings and then
prints them to the screen.

Function strtest
 Integer intvar
 Real realvar
 '
 intvar = -32767
 Print "intvar = ", Str$(intvar)
 '
 realvar = 567.9987
 Print "realvar = ", Str$(realvar)
 '
Fend

Some other example results from the Str$ instruction from the command window.

> Print Str$(99999999999999)
 1.000000E+014

> Print Str$(25.999)
 25.999

String Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 733

String Statement

Declares variables of type String. (Character-string variables)

Syntax

String varName$ [(subscripts)] [, varName$ [(subscripts)]...]

Parameters

varName$ Variable name which the user wants to declare as type String.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared. The

subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 and the available

number of array elements is the upper bound value + 1.
 When specifying the upper bound value, make sure the number of total elements is

within the range shown below:
Local variable 200
Global Preserve variable 400
Global variable and module variable 10,000

Description

The String statement is used to declare variables of type String. String variables can contain up to 255
characters. Local variables should be declared at the top of a function. Global and module variables must
be declared outside of functions.
String Operators
The following operators can be used to manipulate string variables:
 + Merges character strings together. Can be used in the assignment statements for string variables

or in the Print instruction.
 Example: name$ = fname$ + " " + lname$

 = Compares character strings. True is returned only when the two strings are exactly equal,

including case.
 Example: If temp1$ = "A" Then GoSub test

 < > Compares character strings. True is returned when one or more characters in the two strings

are different.
 Example: If temp1$ <> "A" Then GoSub test

Note
Variable Names Must Include "$" Character:

Variables of type String must have the character "$" as the last character in the variable name.

See Also

Boolean, Byte, Double, Global, Int32, Int64, Integer, Long, Real, Short, UByte, UInt32, UInt64,
UShort

String Statement

734 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

String Statement Example

String password$
String A$(10) 'Single dimension array of string
String B$(10, 10) 'Two dimension array of string
String C$(5, 5, 5) 'Three dimension array of string

Print "Enter password:"
Input password$
If UCase$(password$) = "EPSON" Then
 Call RunMaintenance
Else
 Print "Password invalid!"
EndIf

Sw Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 735

Sw Function

Returns or displays the selected input port status. (i.e. Discrete User I/O)

Syntax

Sw(bitNumber)

Parameters

bitNumber Integer expression representing I/O input bits.

Return Values

Returns a 1 when the specified input is On and a 0 when the specified input is Off.

Description

Sw provides a status check for hardware inputs. Sw is most commonly used to check the status of one of the
inputs which could be connected to a feeder, conveyor, gripper solenoid, or a host of other devices which
works via discrete I/O. Obviously the input checked with the Sw instruction has 2 states (1 or 0). These
indicate whether the device is On or Off.

See Also

In, InBCD, MemOn, MemOff, MemSw, Off, On, OpBCD, Oport, Out, Wait

Sw Function Example

The example shown below simply checks the discrete input #5 and branches accordingly. On is used instead
of 1 for more clarity.

Function main
 Integer i, feed5Ready
 feed5Ready = Sw(5)
 'Check if feeder is ready
 If feed5Ready = On Then
 Call mkpart1
 Else
 Print "Feeder #5 is not ready. Please reset and"
 Print "then restart program"
 EndIf
Fend

Other simple examples are as follows from the command window:

> print sw(5)
1
>

SyncLock Statement

736 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

SyncLock Statement

Synchronizes tasks using a mutual exclusion lock.

Syntax

SyncLock syncID [, timeOut]

Parameters

syncID Integer expression representing signal number to receive. Range is from 0 to 63.
timeOut Optional. Real expression representing the maximum time to wait for lock.

Description

Use SyncLock to lock use of a common resource so that only one task at a time can use it. When the task is
finished with the resource, it must call SyncUnlock to release the lock so other tasks can use it.

A task can only unlock a syncID that it previously locked.

A task must execute SyncUnlock to release the lock.
If the task is finished, then the lock it previously locked will releases.

When SynLock is second consecutive used to a same signal number, an error occurs.

If the timeOut parameter is used, then the Twcmd_tw function must be used to check if the lock was
successful.

Note
In EPSON RC+ 6.0 and 7.0, the lock is automatically released when the task is finished while it is not in
EPSON RC+5.0.

See Also

Signal, SyncLock, Tw, Wait, WaitPos

SyncLock Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 737

SyncLock Statement Example
The following example uses SyncLock and SyncUnlock to allow only one task at a time to write a message
to a communication port.

Function Main

 Xqt Func1
 Xqt Func2
Fend

Function Func1
 Long count
 Do
 Wait .5
 count = count + 1
 LogMsg "Msg from Func1, " + Str$(count)
 Loop
Fend

Function Func2
 Long count
 Do
 Wait .5
 count = count + 1
 LogMsg "Msg from Func2, " + Str$(count)
 Loop
Fend

Function LogMsg(msg$ As String)
 SyncLock 1
 OpenCom #1
 Print #1, msg$
 CloseCom #1
 SyncUnlock 1
Fend

The following example uses SyncLock with optional time out. Tw is used to check if the lock was successful.
By using a timeout, you can execute other code periodically while waiting to lock a resource.

Function MySyncLock(syncID As Integer)
 Do
 SyncLock syncID, .5
 If Tw = 0 Then
 Exit Function
 EndIf
 If Sw(1) = On Then
 Off 1
 EndIf
 Loop
Fend

SyncUnlock Statement

738 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

SyncUnlock Statement

Unlocks a sync ID that was previously locked with SyncLock.

Syntax

SyncUnlock syncID

Parameters

syncID Integer expression representing signal number to receive. Range is from 0 to 63.

Description

Use SyncUnlock to unlock a sync ID previously locked with SyncLock.
A task can only unlock a syncID that it previously locked.

See Also

Signal, SyncLock, Wait, WaitPos

SyncUnlock Statement Example

Function Main

 Xqt task
 Xqt task
 Xqt task
 Xqt task
Fend

Function task
 Do
 SyncLock 1
 Print "resource 1 is locked by task", MyTask
 Wait .5
 SyncUnlock 1
 Loop
Fend

SyncRobots Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 739

SyncRobots Statement

Start the reserved robot motion.

Syntax

SyncRobots robotNumber [, robotNumber] [, ...]
SyncRobots All

Parameters

robotNumber Integer expression that specifies a robot number you want to start the motion.
All All robots whose motion is reserved

Description

SyncRobots is used to start the robot motion reserved with the SYNC parameter of each motion command.
The robots specified by the SyncRobots start to move in the same timing. This is more useful than
synchronizing the normal multi-task programs by waiting for the I/O signal event because there is no effect
of switching tasks. It can synchronize the robot motion start more precisely.

If a robot number is specified whose motion is not reserved, an error occurs.

See Also

SyncRobots Function

SyncRobots Statement Example

The example below uses the SYNC parameter of a motion command and SyncRobots to start the motions of
two robots simultaneously.

Function Main
 Xqt Func1
 Xqt Func2
 Do
 Wait 0.1
 If (SyncRobots And &H03) = &H03 Then
 Exit Do
 EndIf
 Loop

SyncRobots 1,2
Fend

Function Func1
 Robot 1
 Motor On
 Go P1 SYNC
Fend

Function Func2
 Robot 2
 Motor On
 Go P1 SYNC
Fend

SyncRobots Function

740 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

SyncRobots Function

Returns the status of a robot whose motion is reserved.

Syntax

SyncRobots

Return Values

Returns the robot motion in a bit, and if not reserved, “0” is returned.

bit 0: robotNumber 1
bit 1: robotNumber 2

:
bit 15: robotNumber 16

Description

SyncRobots function checks the motion reservation status of the SYNC parameter of the robot motion
commands. The status the SyncRobots checks are displayed in the bit status corresponding to the robot
number. Each bit shows either the robot motion is reserved (1) or not (2). You can start the robot motion
reserved using the SyncRobots statement.

See Also

SyncRobots

SyncRobots Function Example

The example below uses the SYNC parameter of a motion command and SyncRobots to start the motions of
two robots simultaneously.

Function Main
 Xqt Func1
 Xqt Func2
 Do
 Wait 0.1
 If (SyncRobots And &H03) = &H03 Then
 Exit Do
 EndIf
 Loop

SyncRobots 1,2
Fend

Function Func1
 Robot 1
 Motor On
 Go P1 SYNC
Fend

Function Func2
 Robot 2
 Motor On
 Go P1 SYNC

Fend

SysConfig Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 741

SysConfig Statement

Displays system configuration parameter.

Syntax

SysConfig

Return Values

Returns system configuration parameter.

Description

Display current configured value for system control data. When the robot and controller is received from the
factory or after changing the configuration, it is a good idea to save this data. This can be done with Backup
Controller from the [Tools]-[Controller dialog].

The following data will be displayed. (The following data is for reference only since data will vary from
controller to controller.)

' Version:
' Firmware 1, 0, 0, 0

' Options:
' External Control Point
' RC+ API

' HOUR: 414.634

' Controller:
' Serial #: 0001

' ROBOT 1:
' Name: Mnp01
' Model: PS3-AS10
' Serial #: 0001
' Motor On Time: 32.738
' Motor 1: Enabled, Power = 400
' Motor 2: Enabled, Power = 400
' Motor 3: Enabled, Power = 200
' Motor 4: Enabled, Power = 50
' Motor 5: Enabled, Power = 50
' Motor 6: Enabled, Power = 50

 ARCH 0, 30, 30
 ARCH 1, 40, 40
 ARCH 2, 50, 50
 ARCH 3, 60, 60
 ARCH 4, 70, 70
 ARCH 5, 80, 80
 ARCH 6, 90, 90
 ARMSET 0, 0, 0, 0, 0, 0
 HOFS 0, 0, 0, 0, 0, 0
 HORDR 63, 0, 0, 0, 0, 0
 RANGE -7427414, 7427414, -8738134, 2621440, -3145728, 8301227, -
5534152, 5534152, -3640889, 3640889, -6553600, 6553600
 BASE 0, 0, 0, 0, 0, 0
 WEIGHT 2, 0
 INERTIA 0.1, 0
 XYLIM 0, 0, 0, 0, 0, 0

SysConfig Statement

742 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

' Extended I/O Boards:
' 1: Installed
' 2: Installed
' 3: None installed
' 4: None installed

' Fieldbus I/O Slave Board:
' Installed
' Type: PROFIBUS

' Fieldbus I/O Master Board:
' None installed

' RS232C Boards:
' 1: Installed
' 2: None installed

' PG Boards:
' 1: None installed
' 2: None installed
' 3: None installed
' 4: None installed

SysConfig Statement Example

> SysConfig

SysErr Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 743

SysErr Function

Returns the latest error status or warning status.

Syntax

SysErr [(infoNo)]

Parameters

infoNo Optional. Integer number representing the error code or warning code to get.
0 : Error code (When the parameter is omitted, 0 is automatically selected.)
1 : Warning code

Return Values

An integer representing the error code or warning code of the controller.

Description

SysErr is used only for NoEmgAbort task (special task using NoEmgAbort at Xqt) and background tasks.
Error codes or warning codes of controller are the error codes or warning codes displayed on the LCD.
When there are no errors or warnings, the return value will be 0.

See Also

ErrMsg$, ErrorOn, Trap, Xqt

SysErr Function Example

The following example shows a program that monitors the controller error and switches the I/O On/Off
according to the error number when error occurs.

Notes
Forced Flag

This program example uses Forced flag for On/Off command.
Be sure that the I/O outputs change during error, or at Emergency Stop or Safety Door Open when designing
the system.

After Error Occurrence
As this program, finish the task promptly after completing the error handling.

Function main

Xqt ErrorMonitor, NoEmgAbort
:
:

Fend

Function ErrorMonitor
 Wait ErrorOn
 If 4000 < SysErr Then
 Print "Motion Error = ", SysErr
 Off 10, Forced
 On 12, Forced
 Else
 Print "Other Error = ", SysErr
 Off 11, Forced
 On 13, Forced
 EndIf

Fend

Tab$ Function

744 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Tab$ Function

Returns a string containing the specified number of tabs characters.

Syntax

Tab$(number)

Parameters

number Integer expression representing the number of tabs.

Return Values

String containing tab characters.

Description

Tab$ returns a string containing the specified number of tabs.

See Also

Left$, Mid$, Right$, Space$

Tab$ Function Example

Print "X", Tab$(1), "Y"
Print
For i = 1 To 10
 Print x(i), Tab$(1), y(i)
Next i

Tan Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 745

Tan Function

Returns the tangent of a numeric expression.

Syntax

Tan(radians)

Parameters

radians Real expression given in radians.

Return Values

Real number containing the tangent of the parameter radians.

Description

Tan returns the Tangent of the numeric expression. The numeric expression (radians) may be any numeric
value as long as it is expressed in radian units.

To convert from radians to degrees, use the RadToDeg function.

See Also

Abs, Atan, Atan2, Cos, Int, Mod, Not, Sgn, Sin, Sqr, Str$, Val

Tan Function Example

Function tantest
 Real num
 Print "Enter number in radians to calculate tangent for:"
 Input num
 Print "The tangent of ", num, "is ", Tan(num)
Fend

The examples shown below show some typical results using the Tan instruction from the Command window.

> print tan(0)
0.00
> print tan(45)
1.6197751905439
>

TargetOK Function

746 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

TargetOK Function

Returns a status indicating whether or not the PTP (Point to Point) motion from the current position to a
target position is possible.

Syntax

TargetOK(targetPos)

Parameters

targetPos Point expression for the target position.

Return Values

True if is it possible to move to the target position from the current position, otherwise False.

Description

Use TargetOK to verify that a target position and orientation can be reached before actually moving to it.
The motion trajectory to the target point is not considered.

See Also

CurPos, FindPos, InPos, WaitPos

TargetOK Function Example

If TargetOK(P1) Then
 Go P1
EndIf

If TargetOK(P10 /L /F) Then
 Go P10 /L /F
EndIf

TaskDone Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 747

TaskDone Function

Returns the completion status of a task.

Syntax

TaskDone (taskIdentifier)

Parameters

taskIdentifier Task name or integer expression representing the task number.
Task name is a function name used in an Xqt statement or a function started from the
Run window or Operator window.

Task number range is:
Normal tasks : 1 to 32
Background task : 65 to 80
Trap tasks : 257 to 267

Return Values

True if the task has been completed, False if not.

Description

Use TaskDone to determine if a task has completed.

See Also

TaskState, TaskWait

TaskDone Function Example

Xqt 2, conveyor
Do
 .
 .
Loop Until TaskDone(conveyor)

TaskInfo Function

748 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

TaskInfo Function

Returns status information for a task.

Syntax

TaskInfo(taskIdentifier, index)

Parameters

taskIdentifier Task name or integer expression representing the task number.
A task name is the function name used in an Xqt statement or a function started from the
Run window or Operator window.
 Specifying a task number:
 Normal tasks : 1 to 32
 Background tasks : 65 to 80
 Trap tasks : 257 to 267

index Integer expression that represents the index of the information to retrieve.

Return Values

An integer containing the specified information.

Description

Index Description
0 Task number

1 0 – Background task
1 – Normal task, NoPause task, or NoEmgAbort task

2

Task type
0 - Normal task

Nothing specified in Xqt or start the task by Normal
1 - NoPause task

Specified NoPause in Xqt and start the task
2 - NoEmgAbort task

Specified NoEmgAbort in Xqt and start the task
3 - Trap task
4 - Background task

3

−1 - Specified task is not executing.
1 - Specified task is executing.
2 - Specified task is waiting for an event.
3 - Specified task is paused or halted
4 - Specified task is in quick pause state
5 - Specified task is in error state

4 Timeout has occurred during wait for event (same as TW)
5 Event wait time (milliseconds).
6 Current robot number selected by the task
7 Current robot number being used by the task

See Also

CtrlInfo, RobotInfo, TaskInfo$

TaskInfo Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 749

TaskInfo Function Example

If (TaskInfo(1, 3) <> 0 Then
 Print "Task 1 is running"
Else
 Print "Task 1 is not running"
EndIf

TaskInfo$ Function

750 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

TaskInfo$ Function

Returns text information for a task.

Syntax

TaskInfo$(taskIdentifier, index)

Parameters

taskIdentifier Task name or integer expression representing the task number.
A task name is the function name used in an Xqt statement or a function started from the
Run window or Operator window.
 Specifying a task number:
 Normal tasks : 1 to 32
 Background tasks : 65 to 80
 Trap tasks : 257 to 267

index Integer expression that represents the index of the information to retrieve.

Return Values

A string containing the specified information.

Description

The following table shows the information that can be retrieved using TaskInfo$:

Index Description
0 Task name
1 Start date / time
2 Name of function currently executing
3 Line number in the program file that contains the function

See Also

CtrlInfo, RobotInfo, TaskInfo

TaskInfo$ Function Example

Print "Task 1 started: "TaskInfo$(1, 1)

TaskState Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 751

TaskState Function

Returns the current state of a task.

Syntax

TaskState(taskIdentifier)

Parameters

taskIdentifier Task name or integer expression representing the task number.
A task name is the function name used in an Xqt statement or a function started from the
Run window or Operator window.
 Specifying a task number:
 Normal tasks : 1 to 32
 Background tasks : 65 to 80
 Trap tasks : 257 to 267

Return Values

0: Task not running
1: Task is running
2: Task is waiting for an event
3: Task has been halted
4: Task has been paused in QuickPause
5: Task in error condition

Description

Use TaskState to get status for a given task. You can specify task number or task name.

See Also

TaskDone, TaskWait

TaskState Function Example

If TaskState(conveyor) = 0 Then
 Xqt 2, conveyor
EndIf

TaskWait Statement

752 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

TaskWait Statement

Waits to for a task to terminate.

Syntax

TaskWait (taskIdentifier)

Parameters

taskIdentifier Task name or integer expression representing the task number.
Task name is a function name used in an Xqt statement or a function started from the
Run window or Operator window.

Task number range is:
Normal tasks : 1 to 32
Background task : 65 to 80
Trap tasks : 257 to 267

See Also

TaskDone, TaskState

TaskWait Statement Example

Xqt 2, conveyor
TaskWait conveyor

TC Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 753

TC Statement

Returns the torque control mode setting and current mode.

Syntax

(1) TC { On | Off }
(2) TC

Parameters

On | Off On : Torque control mode ON
 Off : Torque control mode OFF

Return Values

When the parameter is omitted, returns the current torque control mode.

Description

TC On/Off set the torque control mode available/unavailable.
The torque control mode sets the motor output limit to generate the constant force. This is used in pressing
a hand to an object at constant force or making the close contact and coordinate moving of hand with an
object .
Before setting the torque control available, configure the limits of torque control in TCLim.
Under the torque control, the robot moves as positioning to the target while an operation command is
executed. When the robot contact an object and motor output is at the torque control limit, the robot stops
its operation and keeps the constant torque.

In any of the following cases, the torque mode turns unavailable.

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

See Also
TCLim, TCSpeed

TC Statement

754 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

TC Statement Example 1

Speed 5
Go ApproachPoint

'Set the Z axis torque limit to 20 %
TCLim -1, -1, 20, -1

TC On
Go ContactPoint TargetPoint
Wait 3
Go ApproachPoint
TC Off

Notes
When a position error detected on Safety Board mounted controller

Change the program so that “current position of the robot” and “current target position of the robot” are not
far apart.
If they are far apart, the Safety Board detects failure, and “Erorr No.9801 Detected a position error by the
Safety Board.” error occurs. (Only for controllers mounting the Safety Board.)

The current position of the robot can be required by RealPos function.
The current target position of the robot can be required by CurPos function.
When using SCARA robot, it is recommended that the difference between RealPos and CurPos be less than
about J1:10 deg., J2:10 deg., J3:40 mm, and J4:90 deg.
The value that causes an error differs depending on the model. It can be set for each model within a range
that does not cause an error.
Speed limiting using TCSpeed makes a gap between RealPos and CurPos before contacting the target
object. Do not use TCSpeed, or if you want to use it, be sure that the value is the same as Speed.

ハンド

RealPos≒CurPos
ハンド

対象物 対象物 RealPos
CurPos

TargetPoint TargetPoint

Figure 1. Not contacting target object Figure 2. Contacting target object

Hand

Hand

Target object Target object

1. When not contacting the target object

The current position of the robot (RealPos) and the current target position of the robot (CurPos) are
close.

2. When contacting the target object
The current position of the robot (RealPos) maintains the position where the hand contacted the target
object.
The current target position of the robot (CurPos) moves toward TagetPoint.
If this distance exceeds a certain amount, error No.9801 will occur.

The following shows a sample of code without occurrence of position error of Safety Board.
With using Till statement, errors can be avoided by proceeding to the next process when the difference
between the “current position of the robot” and the “current target position of the robot” is greater than or
equal to a certain amount.
It makes cycle time shorter by making the difference as small as possible, it can move on to the next
process early.

TC Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 755

TC Statement Example 2

Speed 5
Go ApproachPoint

'Set the Z axis torque limit to 20 %
TCLim -1, -1, 20, -1

Xqt posDiffChk(10.0) 'Starts a task of checking for position differences. Sets a flag if J3 has 10.0 mm
or more gap.

TC On
Go TargetPoint Till MemSw(0)
Wait 3
Go ApproachPoint
TC Off

Function posDiffChk(Zth As Double)
 Do
 If (Abs(CZ(RealPos) - CZ(CurPos)) > Zth) Then

'Did the difference between “current position of the robot” and “current target position of
the robot” exceed the threshold ?

 MemOn (0) ' Position deviation is large, Flag ON
 Else
 MemOff (0) ' Position deviation is large, Flag clear
 EndIf
 Wait 0.01
 Loop
Fend

TCLim Statement

756 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

TCLim Statement

Specifies the torque limit of each joint for the torque control mode.

Syntax

TCLim [j1Torque limit, j2Torque limit, j3Torque limit, j4Torque limit [, j5Torque limit]
[, j6Torque limit] [, j7Torque limit] [, j8Torque limit] [, j9Torque limit]]

Parameters

j1Torque limit Specifies the proportion to the maximum momentary torque
 (1 to 100 / unit: %) using an expression or numeric value.
-1: Disable the torque limit and turns the mode to normal position control.

j2Torque limit Specifies the proportion to the maximum momentary torque
(1 to 100 / unit: %) using an expression or numeric value.
-1: Disable the torque limit and turns the mode to normal position control.

j3Torque limit Specifies the proportion to the maximum momentary torque
(1 to 100 / unit: %) using an expression or numeric value.
-1: Disable the torque limit and turns the mode to normal position control.

j4Torque limit Specifies the proportion to the maximum momentary torque
(1 to 100 / unit: %) using an expression or numeric value.
-1: Disable the torque limit and turns the mode to normal position control.

j5Torque limit Option. Specifies the proportion to the maximum momentary torque
(1 to 100 / unit: %) using an expression or numeric value.
-1: Disable the torque limit and turns the mode to normal position control.

j6Torque limit Option. Specifies the proportion to the maximum momentary torque
(1 to 100 / unit: %) using an expression or numeric value.
-1: Disable the torque limit and turns the mode to normal position control.

j7Torque limit Option. Specifies the proportion to the maximum momentary torque
(1 to 100 / unit: %) using an expression or numeric value.
-1: Disable the torque limit and turns the mode to normal position control.

j8Torque limit Option. Specifies the proportion to the S axis maximum momentary torque
 (1 to 100 / unit: %) using an expression or numeric value.
-1: Disable the torque limit and turns the mode to normal position control.

j9Torque limit Option. Specifies the proportion to the T axis maximum momentary torque
(1 to 100 / unit: %) using an expression or numeric value.
-1: Disable the torque limit and turns the mode to normal position control.

Return Values

When the parameters are omitted, returns the current torque limit.

Description

Setting to the torque limit becomes available at TC On.

When the limit value is too low, the robot doesn’t work and operation command stops before the robot
reaches the target position.

TCLim Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 757

In any of the following cases, TCLim set value is initialized.

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

See Also

TC, TCLim Function, TCSpeed

TCLim Statement Example

Speed 5
Go ApproachPoint

'Set the Z axis torque limit to 20 %
TCLim -1, -1, 20, -1

TC On
Go TargetPoint
Wait 3
Go ApproachPoint
TC Off

Notes
When a position error detected on Safety Board mounted controller

Change the program so that “current position of the robot” and “current target position of the robot” are not
far apart.
If they are far apart, the Safety Board detects failure, and “Erorr No.9801 Detected a position error by the
Safety Board.” error occurs. (Only for controllers mounting the Safety Board.)
For more details, refer to TC Statement.

TCLim Function

758 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

TCLim Function

Returns the torque limit of specified joint.

Syntax

TCLim (jointNumber)

Parameters

jointNumber Specifies the joint number to retrieve the torque limit from using an expression or
numeric value.
The additional S axis is 8 and T axis is 9.

Return Values

Returns the integer number representing the current torque limit (1 to 100). -1 means the torque limit is
invalid.

See Also

TC, TCLim, TCSpeed

TCLim Faction Example

Print "Current Z axis torque limit:", TCLim(3)

TCPSpeed Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 759

TCPSpeed Function

Returns the calculated current tool center point (TCP) speed.

Syntax

TCPSpeed

Return Values

Real value containing the calculated current tool center point speed in mm/second.

Description

Use TCPSpeed to get the calculated current speed of the tool center point in mm/second when executing a
CP (Continuous Path) motion command. CP motion commands include Move, TMove, Arc, Arc3, CVMove,
and Jump3CP. This is not the actual tool center point speed. It is the speed that the system has calculated
for the tool center point at the time the function is called.

The actual follow-up delay of the motor has been excluded from this value.
If the robot is executing a PTP (Point to Point) motion command, this function returns “0”.

Even if you are using the additional axis, only the robot travel distance is returned.
For example, it doesn’t include the travel speed of additional axis while you use the additional axis as running
axis.

See Also

AccelS, CurPos, InPos, SpeedS

TCPSpeed Function Example

Function MoveTest
AccelS 4000, 4000
SpeedS 200
Xqt ShowTCPSpeed
Do
 Move P1
 Move P2
Loop

Fend

Function ShowTCPSpeed
 Do
 Print "Current TCP speed is: ", TCPSpeed
 Wait .1
 Loop
Fend

TCSpeed Statement

760 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

TCSpeed Statement

Specifies the speed limit in the torque control.

Syntax

TCSpeed [speed]

Parameters

speed Specifies the proportion to the maximum speed (1 to 100 / unit: %) using an expression or
 numeric value.

Description

Under the torque control, the speed is limited to the TCSpeed setting despite of the speed settings of such
as Speed command.
Error occurs if the speed goes over the limit in the torque control.

In any of the following cases, TCSpeed set value is initialized to 100%.

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

See Also

TC, TCLim, TCSpeed Function

TCSpeed Statement Example

Speed 5
Go ApproachPoint

'Set the Z axis torque limit to 20%
TCLim -1, -1, 20, -1
'Set the speed under the torque control to 5%, the same as the Speed

TcSpeed 5

TC On
Go TargetPoint
Wait 3
Go ApproachPoint
TC Off

Notes
When a position error detected on Safety Board mounted controller

Change the program so that “current position of the robot” and “current target position of the robot” are not
far apart.
Speed limiting using TCSpeed makes a gap between “current position of the robot” and “current target
position of the robot”. Do not use TCSpeed, or if you want to use it, be sure that the value is the same as
Speed.
If they are far apart, the Safety Board detects failure, and “Erorr No.9801 Detected a position error by the
Safety Board.” error occurs. (Only for controllers mounting the Safety Board.)
For more details, refer to TC Statement.

TCSpeed Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 761

TCSpeed Function

Returns the speed limit in the torque control.

Syntax

TCSpeed

Return Values

Returns the integer number (1 to 100) representing the current speed limit.

See Also

TC, TCSpeed, TCLim

TCSpeed Function Example

Integer var
var = TCSpeed

TeachOn Function

762 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

TeachOn Function

Returns the Teach mode status.

Syntax

TeachOn

Return Values

True if it is in the Teach mode, False if not.

Description

TeachOn function is only used in the background task.

See Also

ErrorOn, EstopOn, SafetyOn, Xqt

TeachOn Function Example

The following example monitors the controller as it starts in Teach mode, and turns On/Off the I/O.

Function BGMain
 Do
 Wait 0.1
 If TeachOn = True Then
 On teachBit
 Else
 Off teachBit
 EndIf
 If SafetyOn = True Then
 On safetyBit
 Else
 Off safetyBit
 EndIf
 If PauseOn = True Then
 On PauseBit
 Else
 Off PauseBit
 EndIf
 Loop

Fend

TGo Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 763

TGo Statement

Executes Point to Point relative motion, in the current tool coordinate system.

Syntax

TGo destination [CP] [searchExpr] [!...!] [SYNC]

Parameters

destination The target destination of the motion using a point expression.
CP Optional. Specifies continuous path motion.
searchExpr Optional. A Till or Find expression.

Till | Find
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

!...! Optional. Parallel Processing statements can be added to execute I/O and other
commands during motion.

SYNC Reserves a motion command. The robot will not move until SyncRobots is
executed.

Description

Executes point to point relative motion in the current tool coordinate system.

Arm orientation attributes specified in the destination point expression are ignored. The manipulator keeps
the current arm orientation attributes. However, for a 6-Axis manipulator (including N series), the arm
orientation attributes are automatically changed in such a way that joint travel distance is as small as possible.

The Till modifier is used to complete TGo by decelerating and stopping the robot at an intermediate travel
position if the current Till condition is satisfied.

The Find modifier is used to store a point in FindPos when the Find condition becomes true during motion.

When parallel processing is used, other processing can be executed in parallel with the motion command.

The CP parameter causes acceleration of the next motion command to start when the deceleration starts for
the current motion command. In this case the robot will not stop at the destination coordinate and will
continue to move to the next point.

See Also

Accel, CP, Find, !....! Parallel Processing, P#= (Point Assignment), Speed, Till, TMove, Tool

TGo Statement

764 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

TGo Statement Example

> TGo XY(100, 0, 0, 0) 'Move 100 mm in X direction (in the tool coordinate system)
Function TGoTest

 Speed 50
 Accel 50, 50
 Power High

 Tool 0
 P1 = XY(300, 300, -20, 0)
 P2 = XY(300, 300, -20, 0) /L

 Go P1
 Print Here
 TGo XY(0, 0, -30, 0)
 Print Here

 Go P2
 Print Here
 TGo XY(0, 0, -30, 0)
 Print Here

Fend

[Output]
 X: 300.000 Y: 300.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /R /0
 X: 300.000 Y: 300.000 Z: -50.000 U: 0.000 V: 0.000 W: 0.000 /R /0
 X: 300.000 Y: 300.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /L /0
 X: 300.000 Y: 300.000 Z: -50.000 U: 0.000 V: 0.000 W: 0.000 /L /0

Till Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 765

Till Statement

Specifies and displays event condition that, if satisfied, completes the motion command (Jump, Go, Move,
etc.) in progress by decelerating and stopping the robot at an intermediate position.

Syntax

Till [eventcondition]

Parameters

eventcondition Input status specified as a trigger
[Event] comparative operator (=, <>, >=, >, <, <=) [Integer expression]

The following functions and variables can be used in the Event:

Functions : Sw, In, InW, Oport, Out, OutW, MemSw, MemIn, MemInW, Ctr
GetRobotInsideBox, GetRobotInsidePlane, Force, AIO_In, AIO_InW,
AIO_Out, AIO_OutW, Hand_On, Hand_Off, SF_GetStatus

Variables : Byte, Int32, Integer, Long , Short, UByte, UInt32, UShort global
 preserve variable, Global variable, module variable

In addition, using the following operators you can specify multiple event conditions.
Operator : And, Or, Xor
Example : Till Sw(5) = On
 Till Sw(5) = On And Till(6) = Off

Description

The Till statement can be used by itself or as a search expression in a motion command statement.

The Till condition must include at least one of the functions above.

When variables are included, their values are computed when setting the Till condition. No use of variable
is recommended. Otherwise, the condition may be an unintended condition. Multiple Till statements are
permitted. The most recent Till condition remains current until superseded.

When parameters are omitted, the current Till definition is displayed.

Notes
Till Setting at Main Power On

At power on, the Till condition is initialized to Till Sw(0) = On.
Use of Stat or TillOn to Verify Till

After executing a motion command which uses the Till qualifier there may be cases where you want to verify
whether or not the Till condition was satisfied. This can be done through using the Stat function or the TillOn
function.

To use a variables in the event condition expression
- Available variables are Integer type (Byte, Int32, Integer, Long, Short, UByte, UInt32, UShort)
- Array variables are not available
- Local variables are not available
- If a variable value cannot satisfy the event condition for more than 0.01 seconds, the system cannot retrieve

the change in variables.
- Up to 64 can wait for variables in one system (including the ones used in the event condition expressions

such as Wait). If it is over 64, an error occurs during the project build.
- If you specify Byref to a waiting variable on any function call, an error occurs.
- When a variable is included in the right side member of the event condition expression, the value is

calculated when starting the motion command. We recommend not using variables in an integer expression
to avoid making unintended conditions.

Till Statement

766 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

See Also
Find, Go, In, InW, Jump, MemIn, MemSw, Move, Stat, Sw, TillOn, SF_GetStatus

Till Statement Example
Shown below are some sample lines from programs using the Till instruction.

Till Sw(1) = Off 'Specifies Till condition (Input bit 1 off)
Go P1 Till 'Stop if previous line condition is satisfied
Till Sw(1) = On And Sw($1) = On 'Specify new Till condition
Move P2 Till 'Stop if previous line condition satisfied
Move P5 Till Sw(10) = On 'Stop if condition on this line is satisfied

TillOn Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 767

TillOn Function

Returns the current Till status.

Syntax

TillOn

Return Values

True if the Till condition occurred in the previous motion command using Till.

Description

TillOn returns True if Till condition occurred.

TillOn is equivalent to ((Stat(1) And 2) <> 0).

See Also

EStopOn, SafetyOn, Sense, Stat, Till

TillOn Function Example

Go P0 Till Sw(1) = On
If TillOn Then
 Print "Till condition occurred during move to P0"
EndIf

Time Statement

768 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Time Statement

Displays the current time.

Syntax

Time

Description

Displays the current time in 24 hour format.

See Also

Date, Time$

Time Statement Example
Example from the command window:

> Time
10:15:32

Time Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 769

Time Function

Returns the controller accumulated operating time.

Syntax

Time(unitSelect)

Parameters

unitSelect An integer number ranging from 0 to 2. This integer specifies which unit of time the
controller returns:

0: hours
1: minutes
2: seconds

Description

Returns the controller accumulated operating time as an integer.

See Also

Hour

Time Function Example

Shown below are a few examples from the command window:

Function main
 Integer h, m, s

 h = Time(0) 'Store the time in hours
 m = Time(1) 'Store the time in minutes
 s = Time(2) 'Store the time in seconds
 Print "This controller has been used:"
 Print h, "hours, ",
 Print m, "minutes, ",
 Print s, "seconds"
Fend

Time$ Function

770 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Time$ Function

Returns the current system time.

Syntax

Time$

Return Values

A string containing the current time in 24 hour format hh:mm:ss.

See Also

Date, Date$, Time

Time$ Function Example

Print "The current time is: ", Time$

TLClr Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 771

TLClr Statement

Clears (undefines) a tool coordinate system.

Syntax

TLClr toolNumber

Parameters

toolNumber Integer expression representing which of the 3 tools to clear (undefine).
(Tool 0 is the default tool and cannot be cleared.)

Description

Robot parameter data is stored in compact flash in controller. Therefore, writing to command flash occurs
when executing this command. Frequent writing to compact flash affect to lifetime of compact flash. We
recommend to use this command minimally.

See Also

Arm, ArmClr, ArmSet, ECPSet, Local, LocalClr, Tool, TLSet

TLClr Statement Example

TLClr 1

TLDef Function

772 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

TLDef Function

Returns tool definition status.

Syntax

TLDef (toolNumber)

Parameters

toolNumber Integer expression representing which tool to return status for.

Return Values

True if the specified tool has been defined, otherwise False.

See Also

Arm, ArmClr, ArmSet, ECPSet, Local, LocalClr, Tool, TLClr, TLSet

TLDef Function Example

Function DisplayToolDef(toolNum As Integer)

 If TlDef(toolNum) = False Then
 Print "Tool ", toolNum, "is not defined"
 Else
 Print "Tool ", toolNum, ": ",
 Print TlSet(toolNum)
 EndIf
Fend

TLSet Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 773

TLSet Statement

Defines or displays a tool coordinate system.

Syntax

(1) TLSet toolNum, toolDefPoint
(2) TLSet toolNum
(3) TLSet

Parameters

toolNum Integer number from 1 to 15 representing which of 15 tools to define. (Tool 0 is the default
tool and cannot be modified.)

toolDefPoint Pnumber or P(expr) or point label or point expression.

Return Values

When parameters are omitted, displays all TLSet Definition.
When only the tool number is specified, displays specified TLSet Definition.

Description

Defines the tool coordinate systems Tool 1, Tool 2 or Tool 3 by specifying tool coordinate system origin and
rotation angle in relation to the Tool 0 coordinate system (Hand coordinate system).

TLSet 1, XY(50,100,-20,30)

TLSet 2, P10 +X(20)

In this case, the coordinate values of P10 are referenced and 20 is added to the X value. Arm attribute and
local coordinate system numbers are ignored.

 TLSET 1, XY(100, 60, -20, 30)

Rotation angle (c shown in the next figure)

Position for Z axis

Position for Y axis (b shown in the next figure)

Position for X axis (a shown in the next figure)

Tool coordinate system number

TLSet Statement

774 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

TLSet for 6-Axis robots
The origin of Tool 0 is the flange side of the sixth joint. When all joints are at the 0 degree position, the Tool
0 coordinate system's X axis is aligned with the robot coordinate system's Z axis, the Y axis is aligned with
the robot coordinate system's X axis, and the Z axis is perpendicular to the flange face, and is aligned with
the robot coordinate system's Y axis, as shown in the figure below:

TLSet Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 775

Tool 0 coordinate systems are defined for ceiling and wall mounted robots as shown in the figures below.

TLSet for N series robots

When all joints are at the 0 degree position, the Tool 0 coordinate system's X axis is aligned with the robot
coordinate system's -X axis, the Y axis is aligned with the robot coordinate system's Y axis, and the Z axis is
aligned with the robot coordinate system's -Z axis, as shown in the figure below:

TLSet Statement

776 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Tool 0 coordinate systems are defined for ceiling and wall mounted robots as shown in the figures below.

Description
Robot parameter data is stored in compact flash in controller. Therefore, writing to command flash occurs
when executing this command. Frequent writing to compact flash affect to lifetime of compact flash. We
recommend to use this command minimally.

Note
TLSet values are maintained

The TLSet values are preserved. Use TLClr to clear a tool definition.

See Also

Tool, Arm, ArmSet, TLClr

TLSet Statement Example

The example shown below shows a good test which can be done from the command window to help
understand the difference between moving when a tool is defined and when no tool is defined.

> TLSet 1, XY(100, 0, 0, 0) 'Define tool coordinate system for Tool 1 (plus 100 mm
 ' in x direction from hand coordinate system)
> Tool 1 'Selects Tool 1 as defined by TLSet
> TGo P1 'Positions the Tool 1 tip position at P1
> Tool 0 'Tells robot to use no tool for future motion
> Go P1 'Positions the center of the U-Joint at P1

TLSet Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 777

TLSet Function

Returns a point containing the tool definition for the specified tool.

Syntax

TLSet(toolNumber)

Parameters

toolNumber Integer expression representing the number of the tool to retrieve.

Return Values

A point containing the tool definition.

See Also

TLSet Statement

TLSet Function Example

P1 = TLSet(1)

TMOut Statement

778 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

TMOut Statement

Specifies the number of seconds to wait for the condition specified with the Wait instruction to come true
before issuing a timeout error (error 2280).

Syntax

TMOut seconds

Parameters

seconds Real expression representing the number of seconds until a timeout occurs.
Valid range is 0 to 2147483 seconds in 1 second intervals.

Description

TMOut sets the amount of time to wait (when using the Wait instruction) until a timeout error is issued. If a
timeout of 0 seconds is specified, then the timeout is effectively turned off. In this case the Wait instruction
waits indefinitely for the specified condition to be satisfied.

The default initial value for TMOut is 0.

See Also

In, MemSw, OnErr, Sw, TW, Wait

TMOut Statement Example

TMOut 5
Wait MemSw(0) = On

TMove Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 779

TMove Statement

Executes linear interpolation relative motion, in the current tool coordinate system

Syntax

TMove destination [ROT] [CP] [searchExpr] [!...!] [SYNC]

Parameters

destination The target destination of the motion using a point expression.
ROT Optional. :Decides the speed/acceleration/deceleration in favor of tool rotation.
CP Optional. Specifies continuous path motion.
searchExpr Optional. A Till or Find expression.

Till | Find
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

!...! Optional. Parallel Processing statements can be added to execute I/O and other
commands during motion.

SYNC Reserves a motion command. The robot will not move until SyncRobots is
executed.

Description

Executes linear interpolated relative motion in the current tool coordinate system.

Arm orientation attributes specified in the destination point expression are ignored. The manipulator keeps
the current arm orientation attributes. However, for a 6-Axis manipulator (including N series), the arm
orientation attributes are automatically changed in such a way that joint travel distance is as small as possible.
This is equivalent to specifying the LJM modifier parameter for Move statement. Therefore, if you want to
change the arm orientation larger than 180 degrees, execute it in several times.

TMove uses the SpeedS speed value and AccelS acceleration and deceleration values. Refer to Using TMove
with CP below on the relation between the speed/acceleration and the acceleration/deceleration. If, however,
the ROT modifier parameter is used, TMove uses the SpeedR speed value and AccelR acceleration and
deceleration values. In this case SpeedS speed value and AccelS acceleration and deceleration value have
no effect.

Usually, when the move distance is 0 and only the tool orientation is changed, an error will occur. However,
by using the ROT parameter and giving priority to the acceleration and the deceleration of the tool rotation,
it is possible to move without an error. When there is not an orientational change with the ROT modifier
parameter and movement distance is not 0, an error will occur.

Also, when the tool rotation is large as compared to move distance, and when the rotation speed exceeds the
specified speed of the manipulator, an error will occur. In this case, please reduce the speed or append the
ROT modifier parameter to give priority to the rotational speed / acceleration / deceleration.

The Till modifier is used to complete TMove by decelerating and stopping the robot at an intermediate travel
position if the current Till condition is satisfied.

The Find modifier is used to store a point in FindPos when the Find condition becomes true during motion.

When parallel processing is used, other processing can be executed in parallel with the motion command.

TMove Statement

780 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Note
Using TMove with CP

The CP parameter causes the arm to move to destination without decelerating or stopping at the point defined
by destination. This is done to allow the user to string a series of motion instructions together to cause the
arm to move along a continuous path while maintaining a specified speed throughout all the motion. The
TMove instruction without CP always causes the arm to decelerate to a stop prior to reaching the point
destination.

See Also

AccelS, CP, Find, !....! Parallel Processing, Point Assignment, SpeedS, TGo, Till, Tool

TMove Statement Example

> TMove XY(100, 0, 0, 0) 'Move 100 mm in the X direction (in the tool coordinate system)
Function TMoveTest

 Speed 50
 Accel 50, 50
 SpeedS 100
 AccelS 1000, 1000
 Power High

 Tool 0
 P1 = XY(300, 300, -20, 0)
 P2 = XY(300, 300, -20, 0) /L

 Go P1
 Print Here
 TMove XY(0, 0, -30, 0)
 Print Here

 Go P2
 Print Here
 TMove XY(0, 0, -30, 0)
 Print Here

Fend

[Output]
 X: 300.000 Y: 300.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /R /0
 X: 300.000 Y: 300.000 Z: -50.000 U: 0.000 V: 0.000 W: 0.000 /R /0
 X: 300.000 Y: 300.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /L /0
 X: 300.000 Y: 300.000 Z: -50.000 U: 0.000 V: 0.000 W: 0.000 /L /0

Tmr Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 781

Tmr Function

Tmr function which returns the amount of time in seconds which has elapsed since the timer was started.

Syntax

Tmr(timerNumber)

Parameters

timerNumber Integer expression representing which of the 64 timers to check the time of. (0 to 63)

Return Values

Elapsed time for the specified timer as a real number in seconds. Valid range is 0 to approx. 1.7E+31. Timer
resolution is 0.001 seconds.

Description

Returns elapsed time in seconds since the timer specified was started. Unlike the ElapsedTime function, the
Tmr function counts the time while the program is halted.

Timers are reset with TmReset.

Real overhead

TmReset 0
overHead = Tmr(0)

See Also

ElapsedTime Function, TmReset

Tmr Function Example

TmReset 0 'Resets Timer 0
For i = 1 To 10 'Performs operation 10 times
 GoSub Cycle
Next
Print Tmr(0) / 10 'Calculates and display cycle time

TmReset Statement

782 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

TmReset Statement

Resets the timers used by the Tmr function.

Syntax

TmReset timerNumber

Parameters

timerNumber Integer expression representing which of the 64 timers to reset. (0 to 63)

Description

Resets and starts the timer specified by timerNumber.

Use the Tmr function to retrieve the elapsed time for a specific timer.

See Also

Tmr

TmReset Statement Example

TmReset 0 'Resets Timer 0
For i = 1 To 10 'Performs operation 10 times
 GoSub CYL
Next
Print Tmr(0)/10 'Calculates and display cycle time

Toff Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 783

Toff Statement

Turns off execution line display on the LCD.

Syntax

Toff

Description

Execution line will not be displayed on the LCD.

Note
About the Controllers to use

It cannot be used with RC90/T/VT series.

See Also

Ton

Toff Statement Example

Function main
 Ton MyTask
 ...
 Toff
Fend

Ton Statement

784 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Ton Statement

Specifies a task which shows an execution line on the LCD.

Syntax

Ton taskIdentifier
Ton

Parameters

taskIdentifier Task name or integer expression representing the task number.
Task name is a function name used in an Xqt statement or a function started from the
Run window or Operator window.

Task number range is:
Normal tasks : 1 to 32

Description

Execution line of task 1 is displayed in initial status.
Ton statement displays the specified task execution line on the LCD.
When taskIdentifier is omitted, the task execution line with Ton statement execution is displayed on the LCD.

Note
About the Controllers to use

It cannot be used RC90/T/VT series.

See Also

Toff

Ton Statement Example

Function main
 Ton MyTask
 ...
 Toff
Fend

Tool Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 785

Tool Statement

Selects or displays the current tool.

Syntax

(1) Tool toolNumber
(2) Tool

Parameters

toolNumber Optional. Integer expression from 0 to 15 representing which of 16 tool definitions to use
with subsequent motion instructions.

Return Values

Displays current Tool when used without parameters.

Description

Tool selects the tool specified by the tool number (toolNum). When the tool number is “0”, no tool is selected
and all motions are done with respect to the center of the end effector joint. However, when Tool entry 1, 2,
or 3 is selected motion is done with respect to the end of the tool as defined with the tool definition.

Note
Power Off and Its Effect on the Tool Selection

Turning main power off does not change the tool coordinate system selection.

Lifetime of Compact Flash
Robot parameter data is stored in compact flash in controller. Therefore, writing to command flash occurs
when executing this command. Frequent writing to compact flash affect to lifetime of compact flash. We
recommend to use this command minimally.

See Also

TGo, TLSet, Tmove

Tool Statement Example

The example shown below shows a good test which can be done from the command window to help
understand the difference between moving when a tool is defined and when no tool is defined.

>tlset 1, 100, 0, 0, 0 'Define tool coordinate system for Tool 1 (plus 100 mm in
 'x direction from hand coordinate system)
>tool 1 'Selects Tool 1 as defined by TLSet
>tgo p1 'Positions the Tool 1 tip position at P1
>tool 0 'Tells robot to use no tool for future motion
>go p1 'Positions the center of the U-Joint at P1

Tool Function

786 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Tool Function

Returns the current tool number.

Syntax

Tool

Return Values

Integer containing the current tool number.

See Also

Tool Statement

Tool Function Example

Integer savTool

savTool = Tool
Tool 2
Go P1
Tool savTool

Trap Statement (User defined trigger)

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 787

Trap Statement (User defined trigger)

Defines interrupts and what should happen when they occur.
With the Trap statement, you can jump to labels or call functions when the event occurs.
Trap statement has 2 types as below:

- 4 Traps that interrupts by the user defined input status
- 7 Traps that interrupts by the system status

Trap with user defined trigger is explained here.

Syntax

Trap trapNumber, eventCondition GoTo label
Trap trapNumber, eventCondition Call funcname
Trap trapNumber, eventCondition Xqt funcname
Trap trapNumber

Parameters

trapNumber Integer number from 1 to 4 representing which of 4 Trap numbers to use.
(SPEL+ supports up to 4 active Trap interrupts at the same time.)

eventCondition Input status specified as a trigger
[Event] comparative operator (=, <>, >=, >, <, <=) [Integer expression]

The following functions and variables can be used in the Event:

Functions : Sw, In, InW, Oport, Out, OutW, MemSw, MemIn, MemInW, Ctr,
GetRobotInsideBox, GetRobotInsidePlane, AIO_In, AIO_InW,
AIO_Out, AIO_OutW, Hand_On, Hand_Off, SF_GetStatus

Variables : Byte, Int32, Integer, Long, Short, UByte, UInt32, UShort global
preserve variable, Global variable, module variable In addition, using
the following operators you can specify multiple event conditions.
Operator : And, Or, Xor
Example : Trap 1, Sw(5) = On Call, TrapFunc
 Trap 1, Sw(5) = On And Till(6) = Off, Call TrapFunc

label The label where program execution is to be transferred when Trap condition is satisfied.
funcName The function that is executed when Call or Xqt when the Trap condition is satisfied.

The function with argument cannot be specified.

Description

A Trap executes interrupt processing which is specified by GoTo, Call, or Xqt when the specified condition
is satisfied.

The Trap condition must include at least one of the functions above.
When variables are included in the Trap condition, their values are computed when setting the Trap condition.
No use of variable is recommended. Otherwise, the condition may be an unintended condition.

Once the interrupt process is executed, its Trap setting is cleared. If the same interrupt process is necessary,
the Trap instruction must execute it again.

To cancel a Trap setting simply execute the Trap instruction with only the trapNumber parameter. e.g. “Trap
3” cancels Trap #3.
When the Function that executed Trap GoTo ends (or exit), the Trap Goto will be canceled automatically.
When the declared task ends, Trap Call will be canceled.
Trap Xqt will be canceled when all tasks have stopped.

Trap Statement (User defined trigger)

788 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

If GoTo is specified
In the task set to Trap, the command being executed will be processed as described below. Then, control
branches to the specified label.
- Any arm motion will pause immediately
- Waiting status by the Wait or Input commands will discontinue
- All other commands will complete execution before control branches

If Call is specified
After executing the same process as GoTo described above, then control branches to the specified line number
or label.
Once the function ends, program execution returns to the next statement after the statement where program
interruption occurred. Call statements cannot be used in the Trap processing function.
When an error occurs in the trap process function, error handling with OnErr will be invalid and an error will
occur.

If Xqt is specified
Program control executes the specified function as an interrupt processing task. In this case, the task which
executes the Trap command will not wait for the Trap function to finish and will continue to execute.
You cannot execute a task with an Xqt statement from an interrupt processing task.

Notes
For EPSON RC+4.x user

The Trap Call function of EPSON RC+ 4.x or before is replaced with Trap Xqt in EPSON RC+ 7.0.
The Trap GoSub function of EPSON RC+ 4.x or before is removed in EPSON RC+ 7.0. Instead, use Trap
Call.

To use a variables in the event condition expression
- Available variables are Integer type (Byte, Int32, Integer, Long, Short, UByte, UInt32, UShort)
- Array variables are not available
- Local variables are not available
- If a variable value cannot satisfy the event condition for more than 0.01 seconds, the system cannot retrieve

the change in variables.
- Up to 64 can wait for variables in one system (including the ones used in the event condition expressions

such as Wait). If it is over 64, an error occurs during the project build.
- If you specify Byref to a waiting variable on any function call, an error occurs.
- When a variable is included in the right side member of the event condition expression, the value is

calculated when setting the Trap condition. We recommend not using variables in an integer expression to
avoid making unintended conditions.

See Also

Call, GoTo, Xqt, SF_GetStatus

Trap Statement (User defined trigger)

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 789

Trap Statement Example
<Example 1> Error process defined by User
Sw(0) Input is regarded as an error input defined by user.

Function Main
 Trap 1, Sw(0)= On GoTo EHandle ' Defines Trap
 .
 .
 .
EHandle:
 On 31 'Signal tower lights
 OpenCom #1
 Print #1, "Error is issued"
 CloseCom #1
Fend

<Example 2> Usage like multi-tasking

Function Main
 Trap 2, MemSw(0) = On Or MemSw(1) = On Call Feeder
 .
 .
 .
Fend
.

Function Feeder
 Select TRUE
 Case MemSw(0) = On
 MemOff 0
 On 2
 Case MemSw(1) = On
 MemOff 1
 On 3
 Send

 ' Re-arm the trap for next cycle
 Trap 2, MemSw(0) = On Or MemSw(1) = On Call Feeder
Fend

<Example 3> Using global variable as event condition

Global Integer gi

Function main
 Trap 1, gi = 5 GoTo THandle
 Xqt sub
 Wait 100
 Exit Function

THandle:
 Print "IN Trap ", gi

Fend

Function sub
 For gi = 0 To 10
 Print gi
 Wait 0.5
 Next
Fend

Trap Statement (System status trigger)

790 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Trap Statement (System status trigger)

Defines interrupts and what should happen when they occur.
With the Trap statement, you can jump to labels or call functions when the event occurs.
Trap statement has 2 types as below:

- 4 Traps that interrupts by the user defined input status
- 7 Traps that interrupts by the system status

Trap with system status triggers is explained here.

Syntax

Trap {Emergency | Error | Pause | SGOpen | SGClose | Abort | Finish } Xqt funcname
Trap {Emergency | Error | Pause | SGOpen | SGClose | Abort | Finish }

Parameters

Emergency In the emergency stop status, executes the specified function.
Error In the error status, executes the specified function.
Pause In the pause status, executes the specified function.
SGOpen When safeguard is open, executes the specified function.
SGClose When safeguard is closed, executes the specified function.
Abort All tasks except the background tasks stops (such as when a statement corresponding

to the Abort All is executed or Pause button is pressed) by the user or system, executes
the specified function.

Finish All tasks except the background tasks are completed, executes the specified function.
It cannot be executed in the condition which executes the Trap Abort.

funcname Function of interrupt processing task for which Xqt is executed when the system
status is completed.
Functions with argument cannot be specified.
However, three parameters can be specified if “Error” is specified for the parameter.

Note
Trap *** Call function of EPSON RC+4.x or before is replaced to Trap *** Xqt in EPSON RC+ 7.0.

Description

When the system status completes, the specified interrupt processing task is executed.

Even if you execute an interrupt processing task, the Trap settings cannot be cleared.
To clear the Trap setting, omit the funcname and execute the Trap statement.
Example : Trap Emergency clears Trap Emergency
After all normal tasks are completed and the controller is in the Ready status, all Trap settings are cleared.

You cannot execute more tasks using the Xqt from an interrupt processing.

CAUTION

■ Forced flag
You can turn On/Off the I/O outputs even in the Emergency Stop status, Safeguard
Open status, Teach mode, or error status by specifying the Forced flag to the I/O
output statement such as On and Off statements.
DO NOT connect the external devices which can move machines such as
actuators with the I/O outputs which specifies the Forced flag. It is extremely
dangerous and it can lead the external devices to move in the Emergency Stop
status, Safeguard Open status, Teach mode, or error status.
I/O outputs which specifies the Forced flag is supposed to be connected with the
external device such as LED as the status display which cannot move machines.

Trap Statement (System status trigger)

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 791

If Emergency is specified
When the Emergency Stop is activated, the specified function is executed in the NoEmgAbort task
attribute.
The commands executable from the interrupt processing tasks can execute the NoEmgAbort task.
When the interrupt processing of Emergency Stop is completed, finish the task promptly. Otherwise, the
controller cannot be in the Ready status. You cannot reset the Emergency Stop automatically by
executing the Reset command from the interrupt processing task.
When the task executes I/O On/Off from the interrupt processing task, uncheck the [Outputs off during
emergency stop] check box in the [Controller]-[Preferences] page. If this check box is checked, the
execution order of turn Off by the controller and turn On using the task are not guaranteed.

If Error is specified
When the Error is activated, the specified function is executed in the NoEmgAbort task attribute.
The commands executable from the interrupt processing tasks can execute the NoEmgAbort task.
When the interrupt processing of Emergency Stop is completed, finish the task promptly. Otherwise, the
controller cannot be in the Ready status.
The three omittable parameters (errNumber, robotNumber, jointNumber) can be specified to the user
function. If you want to use these parameters, add three byval integer parameters to the trap function.
If a motion error occurs, errNumber, robotNumber, and jointNumber are set.
If an error other than the motion error occurs, ’0’ will be set to robotNumber, and jointNumber.

If Pause is specified
When the Pause is activated, the specified function is executed in the NoEmgAbort task attribute.

If SGOpen is specified
When the Safeguard is open, the specified function is executed in the NoEmgAbort task attribute.

If SGClose is specified
When the safeguard is closed and latched, the specified function is executed in the NoEmgAbort task
attribute.
If you execute the Cont statement from the interrupt processing tasks, an error occurs.

If Abort is specified
All tasks except background tasks stop (such as when a statement corresponding to the Abort All is
executed or Pause button is pressed) by the user or system, executes the specified function in the NoPause
attribute.
When the interrupt processing of Pause is completed, finish the task promptly. Otherwise, the controller
cannot be in the Ready status. Although a task executed with the Trap Abort has an error, the Trap Error
processing task is not executed.
If the Shutdown or Restart statements are aborted, processing tasks of neither the Trap Abort nor Trap
Finish is executed.

If Finish is specified
All tasks except the background tasks stops (such as when a statement corresponding to the Abort All is
executed or Pause button is pressed) by the user or system, executes the specified function in the NoPause
attribution. It cannot be executed in the condition which executes the Trap Abort processing task.
When the shutdown and interrupt processing are completed, finish the tasks promptly. Otherwise, the
controller cannot be in the Ready status.

See Also

Era, Erl, Err, Ert, ErrMsg$, OnErr, Reset, Restart, SysErr, Xqt

Trap Statement (System status trigger)

792 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Trap Statement Example
Function main
 :
 Trap Error Xqt suberr
 :
Fend

Function suberr
 Print "Error =", Err
 On ErrorSwitch
Fend

Function main

 Trap Error Xqt trapError

FEnd

Function trapError(errNum As Integer, robotNum As Integer, jointNum
As Integer)
Print “error number = “, errNum
Print “robot number = “, robotNum
Print “joint number = “, jointNum
If Ert = 0 Then

 Print “system error”
Else

 Print “task error”
 Print “function = “, Erf$(Ert)
 Print “line number = “, Erl(Ert)
EndIf

FEnd

Trim$ Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 793

Trim$ Function

Returns a string equal to specified string without leading or trailing spaces.

Syntax

Trim$(string)

Parameters

string String expression.

Return Values

Specified string with leading and trailing spaces removed.

See Also

LTrim$, RTrim$

Trim$ Function Example

str$ = " data "
str$ = Trim$(str$) ' str$ = "data"

TW Function

794 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

TW Function

Returns the status of the Wait, WaitNet, and WaitSig commands.

Syntax

TW

Return Values

Returns False if Wait condition is satisfied within the time interval.
Returns True if the time interval has elapsed.

Description

The Timer Wait function TW returns the status of the preceding Wait condition with time interval with a
False (Wait condition was satisfied) or a True (time interval has elapsed).

See Also

TMOut, Waitt, Hand_TW

TW Function Example

Wait Sw(0) = On, 5 'Waits up to 5 seconds for input bit 0 On
If TW = True Then
 Print “Time Up” 'Displays “Time UP” after 5 seconds
EndIf

UBound Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 795

UBound Function

Returns the largest available subscript for the indicated dimension of an array.

Syntax

UBound (arrayName [, dimension])

Parameters

arrayName Name of the array variable; follows standard variable naming conventions.
dimension Optional. Integer expression indicating which dimension's upper bound is returned.

Use 1 for the first dimension, 2 for the second, and 3 for the third. If dimension is
omitted, 1 is assumed.

See Also

Redim

UBound Function Example

Integer i, a(10)

For i=0 to UBound(a)
 a(i) = i
Next

UByte Statement

796 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

UByte Statement

Declares variables of UByte type. (unsigned variable type, size: 2 bytes).

Syntax

UByte varName [(subscripts)] [, varName [(subscripts)]...]

Parameters

varName Variable name which the user wants to declare as UByte type.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared. The

subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 and the available

number of array elements is the upper bound value + 1.
 When specifying the upper bound value, make sure the number of total elements is

within the range shown below:
Local variable 2,000
Global Preserve variable 4,000
Global variable and module variable 100,000

Description

UByte is used to declare variables as UByte type. Variables of UByte type can contain values from 0 to 255.
Local variables should be declared at the top of a function. Global and module variables must be declared
outside of functions.

See Also
Boolean, Byte, Double, Global, Int32, Int64, Integer, Long, Real, Short, String, UInt32, UInt64,
UShort

UByte Statement Example
The following example shows a simple program that declares some variables as UByte type and assigns
values to the variables.
The program monitors whether the top bit of “test_ok” is 1 or 0. The result will be displayed on the screen.
(Since the value 15 is assigned to the variable, the bit with higher “test_ok” value is always set in this
example.)

Function Test
 UByte A(10) 'Single dimension array of UByte type
 UByte B(10, 10) 'Two dimension array of UByte type
 UByte C(5, 5, 5) 'Three dimension array of UByte type
 UByte test_ok
 test_ok = 15
 Print "Initial Value of test_ok = ", test_ok
 test_ok = (test_ok And 8)
 If test_ok <> 8 Then
 Print "test_ok high bit is ON"
 Else
 Print "test_ok high bit is OFF"
 EndIf
Fend

UCase$ Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 797

UCase$ Function

Returns a string that has been converted to uppercase.

Syntax

UCase$ (string)

Parameters

string String expression.

Return Values

The converted uppercase string.

See Also

LCase$, LTrim$, Trim$, RTrim$

UCase$ Function Example

str$ = "Data"
str$ = UCase$(str$) ' str$ = "DATA"

UInt32 Statement

798 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

UInt32 Statement

Declares variables of UInt32 type. (unsigned 4-byte integer variable).

Syntax

UInt32 varName [(subscripts)] [, varName [(subscripts)]...]

Parameters

varName Variable name which the user wants to declare.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared. The

subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 and the available

number of array elements is the upper bound value + 1.
 When specifying the upper bound value, make sure the number of total elements is

within the range shown below:
Local variable 2,000
Global Preserve variable 4,000
Global variable and module variable 100,000

Description

UInt32 is used to declare variables as integer type. Variables of integer type can contain values from 0 to
4294967295. Local variables should be declared at the top of a function. Global and module variables must
be declared outside of functions.

See Also

Boolean, Byte, Double, Global, Int32, Int64, Integer, Long, Real, Short, String, UByte, UInt64,
UShort

UInt32 Statement Example

The following example shows a simple program that declares some variables as integer type using UInt32.

Function uint32test
 UInt32 A(10) 'Single dimension array of UInt32 type
 UInt32 B(10, 10) 'Two dimension array of UInt32 type
 UInt32 C(5, 5, 5) 'Three dimension array of UInt32 type
 UInt32 var1, arrayvar(10)
 Integer i
 Print "Please enter an Integer Number"
 Input var1
 Print "The Integer variable var1 = ", var1
 For i = 1 To 5
 Print "Please enter an Integer Number"
 Input arrayvar(i)
 Print "Value Entered was ", arrayvar(i)
 Next i
Fend

UInt64 Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 799

UInt64 Statement

Declares variables of Uint64 type. (unsigned 8-byte integer variable).

Syntax

Uint64 varName [(subscripts)] [, varName [(subscripts)]...]

Parameters

varName Variable name which the user wants to declare.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared. The

subscripts syntax is as follows.
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 and the available

number of array elements is the upper bound value + 1.
 When specifying the upper bound value, make sure the number of total elements is

within the range shown below:
Local variable 2,000
Global Preserve variable 4,000
Global variable and module variable 100,000

Description

UInt64 is used to declare variables as integer type. Variables of integer type can contain values from 0 to
18446744073709551615. Local variables should be declared at the top of a function. Global and module
variables must be declared outside of functions.

See Also

Boolean, Byte, Double, Global, Int32, Int64, Integer, Long, Real, Short, String, UByte, UInt32,
UShort

UInt64 Statement Example

The following example shows a simple program that declares some variables as integer type using UInt64.

Function uint64test
 UInt64 A(10) 'Single dimension array of UInt64 type
 UInt64 B(10, 10) 'Two dimension array of UInt64 type
 UInt64 C(5, 5, 5) 'Three dimension array of UInt64 type
 UInt64 var1, arrayvar(10)
 Integer i
 Print "Please enter an Integer Number"
 Input var1
 Print "The Integer variable var1 = ", var1
 For i = 1 To 5
 Print "Please enter an Integer Number"
 Input arrayvar(i)
 Print "Value Entered was ", arrayvar(i)
 Next i
Fend

UOpen Statement

800 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

UOpen Statement

Opens a file for read / write access.

Syntax

UOpen fileName As #fileNumber
 .
 .
Close #fileNumber

Parameters

fileName String expression that specifies path and file name.
If path is omitted, the file in the current directory is specified
See ChDisk for the details.

fileNumber Integer expression representing values from 30 to 63.

Description

Opens the specified file by the specified file number. This statement is used for writing and loading data in
the specified file.

Note
A network path is available.

If the specified file does not exist on disk, the file will be created and the data will be written into it.
If the specified file already exists on disk, the data will be written and read starting from the beginning of
the existing data.

The read/write position (pointer) of the file can be changed using the Seek command. When switching
between read and write access, you must use Seek to reposition the file pointer.

fileNumber identifies the file while it is open and cannot be used to refer to a different file until the current
file is closed. fileNumber is used by other file operations such as Print#, Read, Write, Seek, and Close.

Close closes the file and releases the file number.

It is recommended that you use the FreeFile function to obtain the file number so that more than one task
are not using the same number.

See Also

Close, Print #, Input#, AOpen, BOpen, ROpen, WOpen, FreeFile, Seek

UOpen Statement Example

Integer fileNum, i, ｊ

fileNum = FreeFile
UOpen "TEST.DAT" As #fileNum
For i = 0 To 100
 Print #fileNum, i
Next i
Close #fileNum

fileNum = FreeFile
UOpen "TEST.DAT" As #fileNum
Seek #fileNum, 10
Input #fileNum, j
Print "data = ", j
Close #fileNum

UpdateDB Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 801

UpdateDB Statement

Updates the data in the table which is retrieved in the opened data base.

Syntax

UpdateDB #DBNumber, item, value

Parameters

DBNumber Integer expression (501 to 508) representing the data base number specified by
OpenDB.

item Item name of the table to update.
value Value to be updated.

Description

Updates the data in the table which is retrieved in the opened data base with the specified value.
Before updating the data, it is required to issue SelectDB and select the record to be updated.

Note
- Connection of PC with installed RC+ is required.

See Also

OpenDB,CloseDB, SelectDB, DeleteDB

UpdateDB Statement Example

Example using SQL database
Following is an example to register the data to the table “Employees” in the sample database “Northwind”
of SQL server 2000, and update the items in the registered data.

Integer count, i, eid
String Lastname$, Firstname$, Title$

OpenDB #501, SQL, "(LOCAL)", "Northwind"
count = SelectDB(#501, "Employees", "TitleOfCourtesy = 'Mr.'")
Print #501, "Epson", "Taro", "Engineer", "Mr."
count = SelectDB(#501, "Employees", "LastName = 'Epson' and
FirstName = 'Taro'")
Input #501, eid, Lastname$, Firstname$, Title$
Print eid, ",", Lastname$, ",", Firstname$, ",", Title$
UpdateDB #501, "Title", "Chief Engineer"
count = SelectDB(#501, "Employees", "LastName = 'Epson' and
FirstName = 'Taro'")
Input #501, eid, Lastname$, Firstname$, Title$
Print eid, ",", Lastname$, ",", Firstname$, ",", Title$
CloseDB #501

UShort Statement

802 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

UShort Statement

Declares variables of UShort type. (unsigned 2-byte integer variable).

Syntax

UShort varName [(subscripts)] [, varName [(subscripts)]...]

Parameters

varName Variable name which the user wants to declare.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared. The

subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 and the available

number of array elements is the upper bound value + 1.
 When specifying the upper bound value, make sure the number of total elements is

within the range shown below:
Local variable 2,000
Global Preserve variable 4,000
Global variable and module variable 100,000

Description

UShort is used to declare variables as integer type. Integer variables can contain values from 0 to 65535.
Local variables should be declared at the top of a function. Global and module variables must be declared
outside of functions.

See Also

Boolean, Byte, Double, Global, Int32, Int64, Integer, Long, Real, Short, String, UByte, UInt32,
UInt64

UShort Statement Example

The following example shows a simple program that declares some variables as integer type using UShort.

Function ushorttest
 UShort A(10) 'Single dimension array of UShort type
 UShort B(10, 10) 'Two dimension array of UShort type
 UShort C(5, 5, 5) 'Three dimension array of UShort type
 UShort var1, arrayvar(10)
 Integer i
 Print "Please enter an Integer Number"
 Input var1
 Print "The Integer variable var1 = ", var1
 For i = 1 To 5
 Print "Please enter an Integer Number"
 Input arrayvar(i)
 Print "Value Entered was ", arrayvar(i)
 Next i
Fend

Val Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 803

Val Function

Converts a character string that consists of numbers into their numerical value and returns that value.

Syntax

Val(string)

Parameters

string String expression which contains only numeric characters. The string may also contain a
prefix: &H (hexadecimal), &O (octal), or &B (binary).

Return Values

Returns an integer or floating point result depending upon the input string. If the input string has a decimal
point character than the number is converted into a floating point number. Otherwise the return value is an
integer.

Description

Val converts a character string of numbers into a numeric value. The result may be an integer or floating
point number. If the string passed to the Val instruction contains a decimal point then the return value will
be a floating point number. Otherwise it will be an integer.

See Also

Abs, Asc, Chr$, Int, Left$, Len, Mid$, Mod, Right$, Sgn, Space$, Str$

Val Function Example

The example shown below shows a program which coverts several different strings to numbers and then
prints them to the screen.

Function ValDemo
 String realstr$, intstr$
 Real realsqr, realvar
 Integer intsqr, intvar

 realstr$ = "2.5"
 realvar = Val(realstr$)
 realsqr = realvar * realvar
 Print "The value of ", realstr$, " squared is: ", realsqr

 intstr$ = "25"
 intvar = Val(intstr$)
 intsqr = intvar * intvar
 Print "The value of ", intstr$, " squared is: ", intsqr
Fend

Here's another example from Command window.

> Print Val("25.999")
25.999
>

VSD Statement

804 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

VSD Statement

Sets the variable speed CP motion function for SCARA robot.

Syntax
VSD { ON | Off }

Parameters
On | Off On: Enables the variable speed CP motion function of SCARA robot.
 Off: Disables the variable speed CP motion function of SCARA robot.

Description
VSD is available for following commands.

Move, Arc, Arc3
This command is available only for SCARA robots.
For other than SCARA robots, use AvoidSingularity SING_VSD.

The variable speed CP motion function prevents the acceleration error and overspeed error from occurring
when SCARA robot is executing CP motion. This function automatically controls the joint speed while
keeping the trajectory. If the joint speed is controlled, the tool center point speed specified by SpeedS will
not be kept. However, the original speed setting will be returned when the joint speed gets below the limit.
If constant velocity is prioritized, set AccelS, DecelS, and SpeedS smaller and eliminate the error
occurrence.

If the acceleration and overspeed errors occur even when the VSD statement is used, set AccelS, DecelS,
and SpeedS smaller.

If the VSD parameter is changed, the current setting is effective until the next controller startup.
VSD is set off when the startup of the controller.

See Also

VSD Function

VSD Statement Example

VSD On 'Enable the variable speed CP motion and execute the motion
Move P1
Move P2

VSD Off

VSD Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 805

VSD Function

Returns the setting of the variable speed CP motion function for SCARA robot.

Syntax
VSD

Return Values
On = Enables the variable speed CP motion function
Off = Disables the variable speed CP motion function

See Also
VSD

VSD Function Example

If VSD = Off Then
 Print "Variable Speed Drive is off"
EndIf

VxCalib Statement

806 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

VxCalib Statement

This command is only for use with external vision systems and cannot be used with Vision Guide.
Creates calibration data for an external vision system.

Syntax

(1) VxCalib CalNo
(2) VxCalib CalNo, CamOrient, P(pixel_st : pixel_ed), P(robot_st : robot_ed) [, TwoRefPoints]
(3) VxCalib CalNo, CamOrient, P(pixel_st : pixel_ed), P(robot_st : robot_ed), P(ref0) [, P(ref180)]

Parameters

CalNo Integer expression that specifies the calibration data number. The range is from 0 to 15; up
to 16 calibrations may be defined.

CamOrient Integer expression that specifies the camera mounting direction using the following values:
1 to 3: Available only for syntax (2).
4 to 7: Available only for syntax (3).
1: Standalone
2: Fixed downward
3: Fixed upward
4: Mobile on Joint #2
5: Mobile on Joint #4
6: Mobile on Joint #5
7: Mobile on Joint #6

P(pixel_st : pixel_ed)
Specifies the Pixel coordinates (X, Y only) using the continuous point data.

P(robot_st : robot_ed)
Specifies the robot coordinates using the continuous point data.

 The point data varies with mounting directions of the camera specified by CamOrient.
If CamOrient = 1 to 3:
The robot coordinates must be set to the current TOOL and ARM values.
If CamOrient = 4 to 7:
The robot coordinates must be set as TOOL: 0, ARM: 0.

TwoRefPoints Available for syntax (1).
True, when using two measuring points. False, when using one measuring point.
Specifying two measuring points makes the calibration more accurate.
Optional.
Default: False

P(ref0) Available for syntax (3).
Specifies the robot coordinates of the reference point using the point data.

P(ref180) Available for syntax (3).
Specifies the robot coordinates of the second reference point using the point data.
Specifying two reference points makes the calibration more accurate.
Optional.

Description

The VxCalib command calculates the vision calibration data for the specified calibration number using the
specified camera orientation, pixel coordinates, robot coordinates, and reference points (Mobile camera only)
given by the parameter.

When you specify only CalNo, the point data and other settings you defined are displayed (only from the
Command Window).

The following figure shows the coordinates system of the pixel coordinates. (Units: pixel)

VxCalib Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 807

0, 0

+Θ

+Y

+X

0°

For the pixel coordinates and robot coordinates, set the top left position of the window as Point 1 and set the
bottom right position as Point 9 according to the order in the table below.
It is classified into the four categories by the parameter CamOrient and TwoRefPoints.

1) CamOrient = 1 to 3 (Standalone, Fixed Downward, Fixed Upward), TwoRefPoints = False

Data order Position Pixel coordinates Robot coordinates
1 Top left Detection coordinates 1 Measuring point coordinates 1
2 Top center Detection coordinates 2 Measuring point coordinates 2
3 Top right Detection coordinates 3 Measuring point coordinates 3
4 Center right Detection coordinates 4 Measuring point coordinates 4
5 Center Detection coordinates 5 Measuring point coordinates 5
6 Center left Detection coordinates 6 Measuring point coordinates 6
7 Bottom left Detection coordinates 7 Measuring point coordinates 7
8 Bottom center Detection coordinates 8 Measuring point coordinates 8
9 Bottom right Detection coordinates 9 Measuring point coordinates 9

2) CamOrient = 2 (Fixed Downward), TwoRefPoints = True
Note: When the tool is exactly defined, TwoRefPoints is not necessary and should be set to False.

By setting TwoRefPoints to True, two measuring points are used for each calibration position, which makes
the calibration more accurate. 18 robot points with U axis: 0 degree / 180 degrees are required.
After setting 1 to 9 measuring points coordinates, turn the U axis by 180 degrees and set the measuring point
coordinates 10 to 18 where the hand (such as the rod) is positioned at the calibration target position.

Data order Position Pixel coordinates Robot coordinates U axis
1 Top left Detection coordinates 1 Measuring point coordinates 1

0 degree

2 Top center Detection coordinates 2 Measuring point coordinates 2
3 Top right Detection coordinates 3 Measuring point coordinates 3
4 Center right Detection coordinates 4 Measuring point coordinates 4
5 Center Detection coordinates 5 Measuring point coordinates 5
6 Center left Detection coordinates 6 Measuring point coordinates 6
7 Bottom left Detection coordinates 7 Measuring point coordinates 7
8 Bottom center Detection coordinates 8 Measuring point coordinates 8
9 Bottom right Detection coordinates 9 Measuring point coordinates 9
10 Top left - - - Measuring point coordinates 10

180
degrees

11 Top center - - - Measuring point coordinates 11
12 Top right - - - Measuring point coordinates 12
13 Center right - - - Measuring point coordinates 13
14 Center - - - Measuring point coordinates 14
15 Center left - - - Measuring point coordinates 15
16 Bottom left - - - Measuring point coordinates 16
17 Bottom center - - - Measuring point coordinates 17
18 Bottom right - - - Measuring point coordinates 18

VxCalib Statement

808 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

3) CamOrient = 3 (Fixed Upward), TwoRefPoints = True
Note: When the tool is exactly defined, TwoRefPoints is not necessary and should be set to False.

By setting TwoRefPoints to True, two detection points are used, which makes the calibration more accurate.
For only the pixel coordinates, 18 points of U axis: 0 degree / 180 degrees are required.
After setting 1 to 9 detection coordinates at the each measuring point coordinates at 0 degrees, set the
detection coordinates for points 10 to 18 at 180 degrees.

Data order Position Pixel coordinates Robot coordinates U axis
1 Top left Detection coordinates 1 Measuring point coordinates 1

0 degree

2 Top center Detection coordinates 2 Measuring point coordinates 2
3 Top right Detection coordinates 3 Measuring point coordinates 3
4 Center right Detection coordinates 4 Measuring point coordinates 4
5 Center Detection coordinates 5 Measuring point coordinates 5
6 Center left Detection coordinates 6 Measuring point coordinates 6
7 Bottom left Detection coordinates 7 Measuring point coordinates 7
8 Bottom center Detection coordinates 8 Measuring point coordinates 8
9 Bottom right Detection coordinates 9 Measuring point coordinates 9
10 Top left Detection coordinates 10 - - -

180
degrees

11 Top center Detection coordinates 11 - - -
12 Top right Detection coordinates 12 - - -
13 Center right Detection coordinates 13 - - -
14 Center Detection coordinates 14 - - -
15 Center left Detection coordinates 15 - - -
16 Bottom left Detection coordinates 16 - - -
17 Bottom center Detection coordinates 17 - - -
18 Bottom right Detection coordinates 18 - - -

4) CamOrient = 4 to 7

Data order Position Pixel coordinates Robot coordinates
1 Top left Detection coordinates 1 Measuring point coordinates 1
2 Top center Detection coordinates 2 Measuring point coordinates 2
3 Top right Detection coordinates 3 Measuring point coordinates 3
4 Center right Detection coordinates 4 Measuring point coordinates 4
5 Center Detection coordinates 5 Measuring point coordinates 5
6 Center left Detection coordinates 6 Measuring point coordinates 6
7 Bottom left Detection coordinates 7 Measuring point coordinates 7
8 Bottom center Detection coordinates 8 Measuring point coordinates 8
9 Bottom right Detection coordinates 9 Measuring point coordinates 9

Note
In addition to the tables above, specify the robot coordinates of the reference points.
Using the two reference points makes the calibration more accurate. In this case, it needs two points of U
axis: 0 degree / 180 degrees.

After setting the first reference points coordinates, turn the U axis by 180 degrees and set the second reference
points coordinates where the hand (such as the rod) is positioned at the calibration target position. When the
tool is exactly defined, the two reference points are not necessary.

See Also

VxTrans Function, VxCalInfo Function, VxCalDelete, VxCalSave, VxCalLoad

VxCalib Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 809

VxCalib Statement Example

Function MobileJ2

 Integer i
 Double d(8)

 Robot 1
 LoadPoints "MobileJ2.pts"

 VxCalib 0, 4, P(21:29), P(1:9), P(0)

 If (VxCalInfo(0, 1) = True) Then
 For i = 0 To 7
 d(i) = VxCalInfo(0, i + 2)
 Next i
 Print "Calibration result:"
 Print d(0), d(1), d(2), d(3), d(4), d(5), d(6), d(7)

 P52 = VxTrans(0, P51, P50)
 Print "Coordinates conversion result:"
 Print P52
 SavePoints "MobileJ2.pts"
 VxCalSave "MobileJ2.caa"
 Else
 Print "Calibration failed"
 EndIf

Fend

VxCalDelete Statement

810 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

VxCalDelete Statement

This command is only for use with external vision systems and cannot be used with Vision Guide.
Deletes the calibration data for an external vision system calibration.

Syntax

VxCalDelete CalNo

Parameters

CalNo Integer expression that specifies the calibration data number.
The range is from 0 to 15; up to 16 calibrations may be defined.

Description

Deletes the calibration data defined by the specified calibration number.

See Also

VxCalib, VxTrans Function, VxCalInfo Function, VxCalSave, VxCalLoad

VxCalDelete Statement Example

VxCalDelete "MobileJ2.caa"

VxCalLoad Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 811

VxCalLoad Statement

This command is only for use with external vision systems and cannot be used with Vision Guide.
Loads the calibration data for an external vision system calibration from a file.

Syntax

VxCalLoad FileName

Parameters

FileName Specifies the file name from which the calibration data is loaded using a string expression.
The file extension is “.caa”. If omitted, “.caa” is automatically added.
For extensions other than “.caa”, they are automatically changed to “.caa”.

Description

Loads the calibration data from the specified file in the current project.

See Also

VxCalib, VxTrans Function, VxCalInfo Function, VxCalDelete, VxCalSave

VxCalLoad Statement Example

VxCalLoad "MobileJ2.caa"

VxCalInfo Function

812 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

VxCalInfo Function

This command is only for use with external vision systems and cannot be used with Vision Guide.
Returns the calibration completion status and the calibration data.

Syntax

VxCalInfo (CalNo,CalData)

Parameters

CalNo Integer expression that specifies the calibration data number. The range is from 0 to 15; up
to 16 calibrations may be defined.

CalData Specifies the calibration data type to acquire using the integer values in the table below.
CalData Calibration Data Type

1 CalComplete
2 X Avg Error [mm]
3 X Max error [mm]
4 X mm per pixel [mm]
5 X tilt
6 Y Avg error [mm]
7 Y Max error [mm]
8 Y mm per pixel [mm]
9 Y tilt

Return Values

Returns the specified calibration data. For CalData = 1, the data type is Boolean. For all other data, the
data type is Double.

Description

You can check which calibration has defined calibration data.
Also, you can retrieve the calibration data values.

See Also

VxCalib, VxTrans Function, VxCalDelete, VxCalSave, VxCalLoad

VxCalInfo Function Example

Print VxCalInfo(0, 1)

VxCalSave Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 813

VxCalSave Statement

This command is only for use with external vision systems and cannot be used with Vision Guide.
Saves the calibration data for an external vision system calibration to a file.

Syntax

VxCalSave FileName

Parameters

FileName Specifies the file name from which the calibration data is loaded using a string expression.
The extension is “.caa”. If omitted, “.caa” is automatically added.
For extensions other than “.caa”, they are automatically changed to “.caa”.

Description

Saves the calibration data with the specified file name. The file is saved in the current project. If the file
name is already existed, the calibration data is overwritten.

See Also

VxCalib, VxTrans Function, VxCalInfo Function, VxCalDelete, VxCalLoad

VxCalSave Statement Example

VxCalSave "MobileJ2.caa"

VxTrans Function

814 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

VxTrans Function

This command is only for use with external vision systems and cannot be used with Vision Guide.
Converts pixel coordinates to robot coordinates and returns the converted point data.

Syntax

VxTrans (CalNo, P(pixel) [, P(camRobot)]) As Point

Parameters

CalNo Integer expression that specifies the calibration data number.
The range is from 0 to 15; up to 16 calibrations may be defined.

P(pixel) Specifies the vision pixel coordinates (X, Y, U only) using point data.
P(camRobot) Optional. For a mobile camera, this is the position where the robot was located when the

image was acquired. If not specified, then the current robot position is used.
The point should be in TOOL: 0 and ARM: 0.

Return Values

Returns the calculated robot coordinates using the point data.

Description

This command converts pixel coordinates to robot coordinates using the calibration data of the specified
calibration number.

When using a mobile camera, specify P(camRobot) if the robot has been moved from the position where
the image was acquired. Ensure that P(camRobot) is in TOOL: 0 and ARM: 0. The Joint #4 and Joint #6
angles of the set robot coordinates are used for the calculation.

See Also

VxCalib, VxCalInfo Function, VxCalDelete, VxCalSave, VxCalLoad

VxTrans Function Example

P52 = VxTrans(0, P51, P50)

Wait Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 815

Wait Statement

Causes the program to Wait for a specified amount of time or until the specified input condition (using
MemSw or Sw) is met. (Oport may also be used in the place of Sw to check hardware outputs.) Also waits
for the values of global variables to change.

Syntax

(1) Wait time
(2) Wait inputcondition
(3) Wait inputcondition, time

Parameters

time Real expression between 0 and 2,147,483 which represents the amount of time to wait
when using the Wait instruction to wait based on time. Time is specified in seconds.
The smallest increment is 0.01 seconds.

inputcondition The following syntax can be used to specify the input condition:
[Event] Comparative operator (=, <>, >=, >, <, <=) [Integer expression]
The following functions and variables can be used in the Event.

Functions : Sw, In, InW, Oport, Out, OutW, MemSw, MemIn, MemInW,
Ctr, GetRobotInsideBox, GetRobotInsidePlane,
MCalComplete,
Motor, LOF, ErrorOn, SaftyOn, EstopOn, TeachOn ,
Cnv_QueLen, WindowsStatus, AtHome, LatchState,
WorkQue_Len, PauseOn, AIO_In, AIO_InW, AIO_Out,
AIO_OutW, Hand_On, Hand_Off, SF_GetStatus

Operators : Byte, Int32, Integer, Long, Short, UByte, UInt32, UShort global
preserve variables, global variables, module variables

In addition, using the following operators you can specify multiple input conditions.
Operator : And, Or, Xor, Mask

Description

(1) Wait with Time Interval
When used as a timer, the Wait instruction causes the program to pause for the amount of time specified
and then continues program execution.

(2) Wait for Event Conditions without Time Interval

When used as a conditional Wait interlock, the Wait instruction causes the program to wait until specified
conditions are satisfied. If after TMOut time interval has elapsed and the Wait conditions have not yet
been satisfied, an error occurs. The user can check multiple conditions with a single Wait instruction by
using the And, Mask, Or, or Xor instructions. (Please review the example section for Wait.)

(3) Wait with Event Condition and Time Interval
Specifies Wait condition and time interval. After either Wait condition is satisfied, or the time interval
has elapsed, program control transfers to the next command. Use Tw to verify if the Wait condition was
satisfied or if the time interval elapsed.

Wait Statement

816 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Notes
Specifying a Timeout for Use with Wait

When the Wait instruction is used without a time interval, a timeout can be specified which sets a time limit
to wait for the specified condition. This timeout is set through using the TMOut instruction. Please refer to
this instruction for more information. (The default setting for TMOut is “0” which means no timeout.)

Waiting for variable with Wait
- Available variables are Integer type (Byte, Int32, Integer, Long, Short, UByte, UInt32, UShort)
- Array variables are not available
- Local variables are not available
- If variables value cannot satisfy the event condition for more than 0.01 seconds, the change in variables may

not be retrieved.
- Up to 64 can wait for variables in one system (including ones used in the event condition expressions such

as Till). If it is over 64, an error occurs during the project build.
- If you specify Byref to a waiting variable on any function call, an error occurs.
- When a variable or a functions are included in the right side member of the event condition expression, the

value is calculated when setting the Trap condition. We recommend not using variables or functions in an
integer expression to avoid making unintended conditions.

When Using PC COM port (1001 to 1008)

- You cannot use Lof Function for Wait instruction.
When the program is paused while Wait is executing

The Wait instruction does not stop even when the program is paused while the Wait instruction is
executing. The Wait instruction ends when an event condition is satisfied or the specified time has passed.
If the time is set by the Wait parameter, the passed time is reset and the program waits for the specified
time when the program is restarted by selecting Run Window Continue.

See Also

AtHome, Cnv_QueLen, Ctr, ErrorOn, EstopOn, GetRobotInsideBox, GetRobotInsidePlane, In, InW,
LatchState, LOF, Mask, MCalComplete, MemIn, MemInW, MemSw, Motor, Oport, Out, OutW,
PauseOn, SaftyOn, Sw, TeachOn, TMOut, WindowsStatus, Tw, WorkQue_Len, SF_GetStatus

Wait Statement Example
The example shown below shows 2 tasks each with the ability to initiate motion instructions. However, a
locking mechanism is used between the 2 tasks to ensure that each task gains control of the robot motion
instructions only after the other task is finished using them. This allows 2 tasks to each execute motion
statements as required and in an orderly predictable fashion. MemSw is used in combination with the Wait
instruction to wait until the memory I/O #1 is the proper value before it is safe to move again.

Function main
 Integer I
 MemOff 1
 Xqt !2, task2
 For i = 1 to 100
 Wait MemSw(1) = Off
 Go P(i)
 MemOn 1
 Next I
Fend

Function task2
 Integer i
 For i = 101 to 200
 Wait MemSw(1) = On
 Go P(i)
 MemOff 1
 Next i

Wait Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 817

Fend

' Waits until input 0 turns on
Wait Sw(0) = On

' Waits 60.5 secs and then continue execution
Wait 60.5

' Waits until input 0 is off and input 1 is on
Wait Sw(0) = Off And Sw(1) = On

' Waits until memory bit 0 is on or memory bit 1 is on
Wait MemSw(0) = On Or MemSw(1) = On

' Waits one second, then turn output 1 on
Wait 1; On 1

' Waits for the lower 3 bits of input port 0 to equal 1
Wait In(0) Mask 7 = 1

' Waits until the global Integer type variable giCounter is over 10
Wait giCounter > 10

' Waits ten seconds, until the global Long type variable glCheck is 30000
Wait glCheck = 30000, 10

WaitNet Statement

818 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

WaitNet Statement

Wait for TCP/IP port connection to be established.

Syntax

WaitNet #portNumber [, timeOut]

Parameters

portNumber Integer expression for TCP/IP port number to connect. Range is 201 to 216
timeOut Optional. Maximum time to wait for connection.

See Also

OpenNet, CloseNet

WaitNet Statement Example

For this example, two controllers have their TCP/IP settings configured as follows:

Controller #1:
Port: #201
Host Name: 192.168.0.2
TCP/IP Port: 1000

Function tcpip
 OpenNet #201 As Server
 WaitNet #201
 Print #201, "Data from host 1"
Fend

Controller #2:
Port: #201
Host Name: 192.168.0.1
TCP/IP Port: 1000

Function tcpip
 String data$
 OpenNet #201 As Client
 WaitNet #201
 Input #201, data$
 Print "received '", data$, "' from host 1"
Fend

WaitPos Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 819

WaitPos Statement

Waits for robot to decelerate and stop at position before executing the next statement while path motion is
active.

Syntax

WaitPos

Description

Normally, when path motion is active (CP On or CP parameter specified), the motion command starts the
next statement as deceleration starts.
Use the WaitPos command right before the motion to complete the deceleration motion and go on to the next
motion.

See Also

Wait, WaitSig, CP

WaitPos Statement Example

Off 1
CP On
Move P1
Move P2
WaitPos ' waits for robot to decelerate
On 1
CP Off

WaitSig Statement

820 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

WaitSig Statement

Waits for a signal from another task.

Syntax

WaitSig signalNumber [, timeOut]

Parameters

signalNumber Integer expression representing signal number to receive. Range is from 0 to 63.
timeOut Optional. Real expression representing the maximum time to wait.

Description

Use WaitSig to wait for a signal from another task. The signal will only be received after WaitSig has started.
Previous signals are ignored.

See Also

Wait, WaitPos, Signal

WaitSig Statement Example

Function Main
 Xqt SubTask
 Wait 1
 Signal 1
 .
 .
Fend

Function SubTask
 WaitSig 1
 Print "signal received"
 .
Fend

Weight Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 821

Weight Statement

Specifies or displays the weight setting for the robot arm.

Syntax

Weight [payloadWeight [, distance | S | T]]
Weight

Parameters

payloadWeight Optional (It is not possible to omit only payloadWeight). The weight of the end effector
to be carried in Kg unit.

distance Optional. The distance from the rotational center of the second arm to the center of the
gravity of the end effector in mm unit. Valid only for SCARA robots (including RS
series).

S Load weight against the additional S axis in kg to 2 decimal places)
T Load weight against the additional T axis in kg to 2 decimal places)

Return Values

Displays the current Weight settings when parameters are omitted.
When [distance] is omitted, the entered [payloadWeight] will be set and the default value [distance] will be
set.
It is not possible to omit only [payloadWeight].

Description

Specifies parameters for calculating Point to Point motion maximum acceleration. The Weight instruction
specifies the weight of the end effector and the parts to be carried.
The Arm length (distance) specification is necessary only for SCARA robots (including RS series). It is the
distance from the second arm rotation joint centerline to the hand/work piece combined center of gravity.
If the robot has the additional axis, the loads on the additional axis must be set with the S, T parameters.
If the equivalent value work piece weight calculated from specified parameters exceeds the maximum
allowable payload, an error occurs.

Robot parameter data is stored in compact flash in controller. Therefore, writing to command flash occurs
when executing this command. Frequent writing to compact flash affect to lifetime of compact flash. We
recommend to use this command minimally.
You can also set by following “Weight, Inertia, and Eccentricity/offset Measurement Utility”.
The following manual describes the details.

EPSON RC+ 7.0 User’s Guide 6.18.12 Weight, Inertia, and Eccentricity/offset Measurement Utility

Potential Errors
Weight Exceeds Maximum

When the equivalent load weight calculated from the value entered exceeds the maximum load weight, an
error will occur.

Potential Damage to the Manipulator Arm
Take note that specifying a Weight hand weight significantly less than the actual work piece weight can result
in excessive acceleration and deceleration. These, in turn, may cause severe damage to the manipulator.

Note
Weight Values Are Not Changed by Turning Main Power Off

The Weight values are not changed by turning power off. Once the value is set, the value is memorized in
the controller.
When nothing is changed, it will remain at the previously set value.

Weight Statement

822 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

See Also
Accel, Inertia

For details of hand, refer to the Hand Function Manual.

Weight Statement Example
This Weight instruction on the Command window displays the current setting.

> weight
2.000, 200.000
>

Sets the hand weight (3 kg) with the Weight statement
Weight 3.0

Sets the load weight on the additional S axis (30 kg) with the Weight statement
Weight 30.0, S

Weight Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 823

Weight Function

Returns a Weight parameter.

Syntax

Weight(paramNumber)

Parameters

paramNumber Integer expression containing one of the values below:
 1: Payload weight
 2: Arm length
 3: Load on the additional S axis
 4: Load on the additional T axis

Return Values

Real number containing the parameter value.

See Also

Inertia, Weight

For details of Hand, refer to the Hand Function Manual.

Weight Function Example

Print "The current Weight parameters are: ", Weight(1)

Where Statement

824 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Where Statement

Displays current robot position data.

Syntax

Where [localNumber]

Parameters

localNumber Optional. Specifies the local coordinate system number. Default is Local 0.

See Also

Joint, PList, Pulse

Where Statement Example

The display type can be different depending on the robot type and existence of additional axes.
The following example is for Scara robot without the additional axis.

>where
WORLD: X: 350.000 mm Y: 0.000 mm Z: 0.000 mm U: 0.000 deg V: 0.000 deg
W: 0.000 deg
JOINT: 1: 0.000 deg 2: 0.000 deg 3: 0.000 mm 4: 0.000 deg
PULSE: 1: 0 pls 2: 0 pls 3: 0 pls 4: 0 pls

> local 1, 100,100,0,0

> where 1
WORLD: X: 250.000 mm Y:-100.000 mm Z: 0.000 mm U: 0.000 deg V: 0.000 deg
W: 0.000 deg
JOINT: 1: 0.000 deg 2: 0.000 deg 3: 0.000 mm 4: 0.000 deg
PULSE: 1: 0 pls 2: 0 pls 3: 0 pls 4: 0 pls

WindowsStatus Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 825

WindowsStatus Function

Returns the Windows startup status.

Syntax

WindowsStatus

Return Values

Integer value representing the current Windows startup status. The Windows startup status is returned in a
bit image and shows the following status.

Function name System reservation RC+ enabled PC enabled
Bit number 15 to 2 1 0

Details of available
functions

Vision Guide
 (Frame grabber type)
RC+ API
Fieldbus master

PC file
PC RS-232C
Data base access
DLL call

Description
This function is used to check the controller startup status when the controller configuration is set to
“Independent mode”. When the controller configuration is set to “Cooperative mode”, programs cannot be
started until both RC+ function and PC function turn available.

Note
About the Controllers to use

It cannot be used with T/VT series.

WindowsStatus Function Example

Print "The current PC Booting up Status is: ", WindowsStatus

WOpen Statement

826 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

WOpen Statement

Opens a file for writing.

Syntax

WOpen fileName As #fileNumber
 .
 .
Close #fileNumber

Parameters

fileName A string expression containing the path and file name.
If path is omitted, the file in the current directory is specified.
See ChDisk for the details.

fileNumber Integer expression from 30 to 63

Description

Opens the specified file using the specified fileNumber. This statement is used to open and write data to
the specified file. (To append data, refer to the AOpen explanation.)

If the specified filename does not exist on the disks current directory, WOpen creates the file and writes to
it. If the specified filename exists, WOpen erases all of the data in the file and writes to it.

fileNumber identifies the file while it is open and cannot be used to refer to a different file until the current
file is closed. fileNumber is used by other file operations such as Print#, Write, Seek, and Close.

Close closes the file and releases the file number.

It is recommended that you use the FreeFile function to obtain the file number so that more than one task
are not using the same number.

Notes
A network path is available.
File write buffering

File writing is buffered. The buffered data can be written with Flush statement. Also, when closing a file
with Close statement, the buffered data can be written.

See Also

AOpen, BOpen, Close, Print#, ROpen, UOpen, FreeFile

WOpen Statement Example

Integer fileNum, i, j

fileNum = FreeFile
WOpen "TEST.DAT" As #fileNum
For i = 0 To 100
 Print #fileNum, i
Next i
Close #fileNum

fileNum = FreeFile
ROpen "TEST.DAT" As #fileNum
For i = 0 to 100
 Input #fileNum, j
 Print "data = ", j
Next i
Close #fileNum

WorkQue_Add Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 827

WorkQue_Add Statement

Adds the work queue data (point data and user data) to the specified work queue.

Syntax

WorkQue_Add WorkQueNum, pointData [, userData]

Parameters

WorkQueNum Integer expression (1 to 16) that specifies the work queue number.
pointData The point data to be added to the work queue.
userData Optional. Real expression used to register the user data along with the point data.

If omitted, 0 (real number) is registered as the user data.

Description

pointData and useData are added to the end of the work queue. When the Sort type is specified by
WorkQue_Sort, however, they are registered according to the specified Sort type.

When the double registration prevention distance is set by WorkQue_Reject, the distance from the previously
registered point data is calculated. If the point data is less than that distance, the point data and the user data
are not added to the work queue. In this case, an error does not occur.

The upper limit of the work queue data is 1000. The work queue data is deleted by WorkQue_Remove when
it is finished being used.

See Also

WorkQue_AutoRemove, WorkQue_Len, WorkQue_Reject, WorkQue_Remove, WorkQue_Sort

WorkQueAdd Statement Example

Integer x, y
Real u

P0 = XY(300, 300, 300, 90, 0, 180)
P1 = XY(200, 280, 150, 90, 0, 180)
P2 = XY(200, 330, 150, 90, 0, 180)
P3 = XY(-200, 280, 150, 90, 0, 180)

Pallet 1, P1, P2, P3, 10, 10
x = 1
y = 1
u = 5.3
WorkQue_Add 1, Pallet(1, x, y), u

WorkQue_AutoRemove Statement

828 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

WorkQue_AutoRemove Statement

Sets the auto delete function to the specified work queue.

Syntax

WorkQue_AutoRemove WorkQueNum ,{True | False}

Parameters

WorkQueNum Integer expression (1 to 16) that specifies the work queue number.
True | False True: Enables the auto delete function.

False: Disables the auto delete function.

Description

Sets the auto delete function to the work queue. When the auto delete is enabled, the point data and the user
data are automatically deleted from the work queue when the point data is obtained from the work queue by
WorkQue_Get.
When the auto delete is disabled, the point data and the user data are not deleted. To delete them, use
WorkQue_Remove.
The user data obtained by WorkQue_UserData are not deleted automatically.

Auto delete function can be set to each work queue.

See Also

WorkQue_AutoRemove Function, WorkQue_Get

WorkQue_AutoRemove Statement Example

WorkQue_AutoRemove 1, True

WorkQue_AutoRemove Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 829

WorkQue_AutoRemove Function

Returns the state of the auto delete function set to the work queue.

Syntax

WorkQue_AutoRemove (WorkQueNum)

Parameters

WorkQueNum Integer expression (1 to 16) that specifies the work queue number.

Return Values

True if the auto delete function of the specified work queue is enabled, otherwise False.

See Also

WorkQue_AutoRemove, WorkQue_Get

WorkQue_AutoRemove Function Example

Boolean autoremove

autoremove = WorkQue_AutoRemove(1)

WorkQue_Get Function

830 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

WorkQue_Get Function

Returns the point data from the specified work queue.

Syntax

WorkQue_Get(WorkQueNum [, index])

Parameters

WorkQueNum Integer expression (1 to 16) that specifies the work queue number.
index Optional. Integer expression that represents the index of the queue data to acquire.

(the beginning of the index number is 0)

Return Values

The point data is returned from the specified work queue.

Description

Use WorkQue_Get to acquire the point data from the work queue. If the index is omitted, the first data of
the queue data is returned. If the index is specified, the point data of the specified index is returned.

When the auto delete function is enabled by WorkQue_AutoRemove, the point data and the user data are
deleted by WorkQue_Get.
When the auto delete is disabled, the point data and the user data are not deleted. To delete them, use
WorkQue_Remove.

See Also

WorkQue_AutoRemove, WorkQue_Len, WorkQue_Reject, WorkQue_Remove, WorkQue_Sort

WorkQue_Get Function Example

' Jump to the first part in the queue and track it
Jump WorkQue_Get(1)
On gripper
Wait .1
Jump place
Off gripper
Wait .1
WorkQueRemove 1

WorkQue_Len Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 831

WorkQue_Len Function

Returns the number of the valid work queue data registered to the specified work queue.

Syntax

WorkQue_Len(WorkQueNum)

Parameters

WorkQueNum Integer expression (1 to 16) that specifies the work queue number.

Return Values

The integer expression representing the number of registered valid work queue data.

Description

Returns the number of registered valid work queue data.

You can also use WorkQue_Len as an argument to the Wait statement.

See Also

WorkQue_Add, WorkQue_Get, WorkQue_Remove

WorkQue_Len Function Example

Do
 Do While WorkQue_Len(1) > 0
 WorkQue_Remove 1, 0
 Loop
 If WorkQue_Len(1) > 0 Then
 Jump WorkQue_Get(1, 0) C0
 On gripper
 Wait .1
 WorkQue_Remove 1, 0
 Jump place
 Off gripper
 Jump idlePos
 EndIf
Loop

WorkQue_List Statement

832 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

WorkQue_List Statement

Displays the work queue data list (point data and user data) of the specified work queue.

Syntax

WorkQue_List WorkQueNum [, numOfItems]

Parameters

WorkQueNum Integer expression (1 to 16) that specifies the work queue number.
numOfItems Optional. Integer expression to specify how many items to display. If omitted, all

items are displayed.

Note

This command will only work in the command window.

See Also

WorkQue_Add, WorkQue_Get, WorkQue_Remove

WorkQue_List Statement Example
From the command window:

> WorkQue_List 1
Queue 0 = XY(1.000, 1.000, 0.000, 0.000) /R /0 (0.000)
Queue 1 = XY(3.000, 1.000, 0.000, 0.000) /R /0 (2.000)
Queue 2 = XY(4.000, 1.000, 0.000, 0.000) /R /0 (3.000)
Queue 3 = XY(5.000, 1.000, 0.000, 0.000) /R /0 (4.000)
Queue 4 = XY(6.000, 1.000, 0.000, 0.000) /R /0 (5.000)

WorkQue_Reject Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 833

WorkQue_Reject Statement

Sets and displays the minimum distance for double registration prevention to the specified work queue.

Syntax

WorkQue_Reject WorkQueNum [, rejectDistance]

Parameters

WorkQueNum Integer expression (1 to 16) that specifies the work queue number.
rejectDistance Optional when being executed from the command window. Real expression specifying

the minimum distance between parts allowed in the queue in millimeters. If omitted,
the current rejectDistance is displayed.

Description

Use WorkQue_Reject to specify the minimum distance between parts to prevent double registration of the
point data. The work queue cannot be registered when the point data less than the minimum distance is
registered by WorkQue_Add. WorkQue_Reject helps the system filter out double registration. The default
is 0 mm.

WorkQue_Reject should be executed before adding the work queue data (point data and user data) by
WorkQue_Add.

Double registration prevention can be set for each work queue.

See Also

WorkQue_Add, WorkQue_Reject Function

WorkQue_Reject Statement Example

WorkQue_Reject 1, 2.5

WorkQue_Reject Function

834 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

WorkQue_Reject Function

Returns the distance of the double registration prevention set to the specified work queue.

Syntax

WorkQue_Reject (WorkQueNum)

Parameters

WorkQueNum Integer expression (1 to 16) that specifies the work queue number.

Return Values

Real value in millimeters

See Also

WorkQue_Add, WorkQue_Reject

WorkQue_Reject Function Example

Real rejectDist

RejectDist = WorkQue_Reject(1)

WorkQue_Remove Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 835

WorkQue_Remove Statement

Deletes the work queue data (point data and user data) from the specified work queue.

Syntax

WorkQue_Remove WorkQueNum [, index | All]

Parameters

WorkQueNum Integer expression (1 to 16) that specifies the work queue number.
index Optional. Integer expression that represents the index of the queue data to delete. (the

beginning of the index number is 0).
Specify All when deleting all the queue data from the work queue.

Description

Use WorkQue_Remove to remove one or more items from a work queue data. Typically, you remove
items from the queue after you are finished with the data.

See Also

WorkQue_Add

WorkQue_Remove Statement Example

Jump WorkQue_Get(1)
On gripper
Wait .1
Jump place
Off gripper
Wait .1

' Remove the data from the WorkQueue
WorkQue_Remove 1

WorkQue_Sort Statement

836 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

WorkQue_Sort Statement

Sets and displays the Sort type of the specified work queue.

Syntax

WorkQue_Sort WorkQueNum [, SortMethod]

Parameters

WorkQueNum Integer expression (1 to 16) that specifies the work queue number.
SortMethod Specify the Sort method with an integer expression or with the following constant.

This can be omitted if executed from the command window. If omitted, the current
Sort method is displayed.
Constant Value Description
QUE_SORT_NONE 0 No sorting (registration order to work queue)
QUE_SORT_POS_X 1 X coordinate ascending order
QUE_SORT_INV_X 2 X coordinate descending order
QUE_SORT_POS_Y 3 Y coordinate ascending order
QUE_SORT_INV_Y 4 Y coordinate descending order
QUE_SORT_POS_USER 5 User data (real value) ascending order
QUE_SORT_INV_USER 6 User data (real value) descending order

Description

Sets the Sort method to the work queue. When the point data and the user data are added by WorkQue_Add,
they are registered to the work queue according to the specified Sort method.

When the user data is set again by WorkQue_UserData, the order of the work queues is changed according
to the specified Sort method.

WorkQue_Sort should be executed before adding the work queue data (point data and user data) to the work
queue data by WorkQue_Add.

WorkQue_Sort should be executed before setting the user data again by WorkQue_UserData.

Sort method can be set for each work queue.

See Also

WorkQue_Add, WorkQue_UserData

WorkQue_Sort Statement Example

WorkQue_Sort 1, QUE_SORT_POS_X

WorkQue_Sort Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 837

WorkQue_Sort Function

Returns the Sort method of the specified work queue.

Syntax

WorkQue_Sort (WorkQueNum)

Parameters

WorkQueNum Integer expression (1 to 16) that specifies the work queue number.

Return Values

An integer expression representing the Sort method set to the work queue.
4 = No sorting (registration order to work queue)
5 = X coordinate ascending order
6 = X coordinate descending order
7 = Y coordinate ascending order
8 = Y coordinate descending order
9 = User data (real value) ascending order
10 = User data (real value) descending order

See Also

WorkQue_Add, WorkQue_Sort, WorkQue_UserData

WorkQue_Sort Function Example

Integer quesort

quesort = WorkQue_Sort(1)

WorkQue_UserData Statement

838 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

WorkQue_UserData Statement

Resets and displays the user data (real number) registered to the specified work queue.

Syntax

WorkQue_UserData WorkQueNum [, index] [, userData]

Parameters

WorkQueNum Integer expression (1 to 16) that specifies the work queue number.
index Integer expression that represents the index of the work queue data. (the beginning of

the index number is 0). Optional when executing from the command window.
userData Integer expression that represents the user data to be set again. This can be omitted

when executed from the command window. If omitted, the current user data (real
expression) is displayed.

Description

Resets and displays the user data currently registered to the work queue.

If the Sort method is specified by WorkQue_Sort, the order of the work queue data is changed according to
the specified Sort method.
 QUE_SORT_POS_USER : User data (real expression) ascending order
 QUE_SORT_INV_USER : User data (real expression) descending order

See Also

WorkQue_UserData Function

WorkQue_UserData Example

WorkQue_UserData 1, 1, angle

WorkQue_UserData Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 839

WorkQue_UserData Function

Returns the user data (real value) registered to the specified work queue.

Syntax

WorkQue_UserData (WorkQueNum [, index])

Parameters

WorkQueNum Integer expression (1 to 16) that specifies the work queue number.
index Optional. Integer expression that represents the index of the work queue data. (the

first index number is 0).

Return Values

Real value.

See Also

WorkQue_UserData

WorkQue_UserData Function Example

' Remove from queue
angle = WorkQue_UserData(1) ' default to queue index of 0
Jump WorkQue_Get(1) :U(angle)
WorkQue_Remove 1

Wrist Statement

840 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Wrist Statement

Sets the wrist orientation of a point.

Syntax

(1) Wrist point [, Flip | NoFlip]
(2) Wrist

Parameters

point Pnumber or P(expr) or point label.
Flip | NoFlip Representing wrist orientation.

Return Values

When both parameters are omitted, the wrist orientation is displayed for the current robot position.
If Flip | NoFlip is omitted, the wrist orientation for the specified point is displayed.

See Also

Elbow, Hand, J4Flag, J6Flag, Wrist Function

Wrist Statement Example

Wrist P0, Flip
Wrist P(mypoint), NoFlip

P1 = 320.000, 400.000, 350.000, 140.000, 0.000, 150.000

Wrist P1, NoFlip

Go P1

Wrist P1, Flip
Go P1

Wrist Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 841

Wrist Function

Returns the wrist orientation of a point.

Syntax

Wrist [(point)]

Parameters

point Optional. Pnumber or P(expr) or point label or point expression. If point is omitted, then the
wrist orientation of the current robot position is returned.

Return Values

1 NoFlip (/NF)
2 Flip (/F)

See Also

Elbow, Hand, J4Flag, J6Flag, Wrist Statement

Wrist Function Example

Print Wrist(pick)
Print Wrist(P1)
Print Wrist
Print Wrist(P1 + P2)

Write Statement

842 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Write Statement

Writes characters to a file or communication port without end of line terminator.

Syntax
Write #portNumber, string

Parameters

portNumber ID number that specifies the file or communications port.
File number can be specified in ROpen, WOpen, AOpen statements.
Communication port number can be specified in OpenCom (RS-232C) or OpenNet
(TCP/IP) statements.

string String expression that will be written to the file.

Description

Write is different from Print in that it does not add an end of line terminator.

Note
About the Controllers to use

For T/VT series, an error will occur at operation when RS-232C port of the Controller is specified.
File write buffering

File writing is buffered. The buffered data can be written with Flush statement. Also, when closing a file
with Close statement, the buffered data can be written.

See Also

Print, Read, WriteBin

Write Statement Example

OpenCom #1
For i = 1 to 10
 Write #1, data$(i)
Next i
CloseCom #1

WriteBin Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 843

WriteBin Statement

Writes binary data to a file or communications port.

Syntax

WriteBin #portNumber, data
WriteBin #portNumber, array(), count

Parameters

portNumber ID number that specifies the file or communications port
File number can be specified in BOpen statements.
Communication port number can be specified in OpenCom (RS-232C) or OpenNet
(TCP/IP) statements.

data Integer expression containing the data to be written.
array() Name of a byte, integer, or long array variable that contains the data bytes to be written.

Specify a one dimension array variable.
count Specifies the number of bytes to be written.

The specified count has to be less than or equal to the number of array elements and also
smaller than 256 bytes.
If the communication port (TCP/IP) is the subject, the count has to be less than or equal to
the number of array and also smaller than 1024 bytes.

Note
About the Controllers to use

For T/VT series, an error will occur at operation when RS-232C port of the Controller is specified.

See Also

ReadBin, Write

WriteBin Statement Example

Integer i, data(100)

OpenCom #1
For i = 0 To 100
 WriteBin #1, i
Next I
WriteBin #1, data(), 100
CloseCom #1

Xor Operator

844 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Xor Operator

Performs the bitwise Xor operation (exclusive OR) on two expressions.

Syntax

result = expr1 Xor expr2

Parameters

expr1, expr2 A numeric value, or a variable name.
result An integer.

Result

Returns a result of bitwise Xor operation.

Description
The Xor operator performs the bitwise Xor operation on the values of the operands. Each bit of the result is
the Xored value of the corresponding bits of the two operands.

If bit in expr1 is And bit in expr2 is The result is
0 0 0
0 1 1
1 0 1
1 1 0

See Also

And, LShift, Not, Or, Rshift

Xor Operator Example

>print 2 Xor 6
 4
>

Xqt Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 845

Xqt Statement

Initiates execution of a task from within another task.

Syntax

Xqt [taskNumber,] funcName [(argList)] [, Normal | NoPause | NoEmgAbort]

Parameters

taskNumber Optional. The task number for the task to be executed. The range of the task number
is 1 to 32.
For background tasks, specifies integer value from 65 to 80.

funcName The name of the function to be executed.
argList Optional. List of arguments that are passed to the function procedure when it is called.

Multiple arguments are separated by commas.
taskType Optional. Usually omitted.

For background tasks, specifying a task type means nothing.
Normal Executes a normal task.
NoPause Executes a task that does not pause at Pause statement or Pause input signal occurrence

or Safety Door Open.
NoEmgAbort Executes a task that continues processing at Emergency Stop or error occurrence.

Description
Xqt starts the specified function and returns immediately.

Normally, the taskNumber parameter is not required. When taskNumber is omitted, SPEL+ automatically
assigns a task number to the function, so you don't have to keep track of which task numbers are in use.

Notes
Task Type

Specify NoPause or NoEmgAbort as a task type to execute a task that monitors the whole controller.
However, be sure to use these special tasks based on the understanding of the task motion using SPEL+ or
restriction of special tasks.
For details of special tasks, refer to the section Special Tasks in the EPSON RC+ User’s Guide.

Background task
When executing Xqt in a background task, the generated task is also the background task.
To execute the main function from a background task, use the StartMain statement.
The details of the background task is explained in the EPSON RC+ Users Guide manual: 6.20 Special Task.

Xqt Statement

846 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Unavailable Commands in NoEmgAbort Task and background task
The following commands cannot be executed in NoEmgAbort task and background task.
A Accel Cnv_Trigger O OLAccel VCreateCalibration

 AccelR Cnv_UpStream P Pass VCreateObject
 AccelS CollisionDetect PerformMode VCreateSequence
 AIO_TrackingStart CP Pg_LSpeed VDefArm
 AIO_TrackingEnd CP_Offset Pg_Scan VDefGetMotionRange
 Arc Curve Plane VDefLocal
 Arc3 CVMove PlaneClr VDefSetMotionRange
 Arch E ECP Power VDefTool
 Arm ECPClr PTPBoost VDeleteCalibration
 ArmCalib ECPSet Pulse VDeleteObject
 ArmCalibCLR F Find Q QP VDeleteSeuence
 ArmCalibSET Fine QPDecelR VEditWindow
 ArmClr FineDist QPDecelS VGet
 ArmSet Force_Calibrate R Range VGoCenter
 AutoLJM Force_ClearTrigger Reset *1 VLoad
 AutoOrientationFlag Force_Sensor Restart *2 VLoadModel
 AvoidSingularity Force_SetTrigger S Sense VRun

B Base G Go SetLatch VSave
 BGo H Hand_On SFree VSaveImage
 BMove Hand_Off SingularityAngle VSaveModel
 Box Home SingularityDist VSet
 BoxClr HomeClr SingularitySpeed VShowModel
 Brake HomeSet SLock VStasShow

C Calib Hordr SoftCP VStatsReset
 Cnv_AbortTrack I Inertia Speed VStatsResetAll
 Cnv_Accel J JTran SpeedFactor VStatsSave
 Cnv_AccelLim Jump SpeedR VSD
 Cnv_Adjust Jump3 SpeedS VStatsShow
 Cnv_AdjustClear Jump3CP SyncRobots VTeach
 Cnv_AdjustGet JRange T TC VTrain
 Cnv_AdjustSet L LatchEnable TGo W WaitPos
 Cnv_DownStream LimitTorque Till Weight
 Cnv_Fine LimZ TLSet WorkQue_Add
 Cnv_Mode LimZMargin TLClr WorkQue_Reject
 Cnv_OffsetAngle Local TMove WorkQue_Remove
 Cnv_QueAdd LocalClr Tool

WorkQue_Sort

 Cnv_QueMove M MCal Trap WorkQue_UserData
 Cnv_QueReject MCordr V VCal X Xqt *3
 Cnv_QueRemove Motor VcalPoints XYLim
 Cnv_QueUserData Move VCls

*1 Reset Error can be executed
*2 Executable from the Trap Error processing task
*3 Executable from the background tasks

DO NOT use XQT command repeatedly in Loop statements.
Do not use XQT command repeatedly in Loop statements such as Do…Loop.
The controller may freeze up. If you use Loop statements repeatedly, make sure to add Wait command
(Wait 0.1).

See Also

Function/Fend, Halt, Resume, Quit, Startmain, Trap

Xqt Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 847

Xqt Statement Example

Function main
 Xqt flash 'Start flash function as task 2
 Xqt Cycle(5) 'Start Cycle function as task 3

 Do
 Wait 3 'Execute task 2 for 3 seconds
 Halt flash 'Suspend the task

 Wait 3
 Resume flash 'Resume the task
 Loop
Fend

Function Cycle(count As Integer)
 Integer i

 For i = 1 To count
 Jump pick
 On vac
 Wait .2
 Jump place
 Off vac
 Wait .2
 Next i
Fend

Function flash
 Do
 On 1
 Wait 0.2
 Off 1
 Wait 0.2
 Loop
Fend

XY Function

848 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

XY Function

Returns a point from individual coordinates that can be used in a point expression.

Syntax

XY(x, y, z, u [, v, w])

Parameters

x Real expression representing the X coordinate.
y Real expression representing the Y coordinate.
z Real expression representing the Z coordinate.
u Real expression representing the U coordinate.
v Optional for 6-Axis robots (including N series). Real expression representing the V coordinate.
w Optional for 6-Axis robots (including N series). Real expression representing the W coordinate.

Return Values

A point constructed from the specified coordinates.

Description

When you don’t use the additional ST axis, there are nothing in particular to be care of.
You can move the manipulator to the specified coordinate with XY function like below:
 Go XY(60,30,-50,45)

When you use the additional ST axis, you need to be careful.
XY function returns the only robot point data, not including the additional axis.
If you use XY function lick this: Go XY(60,30,-50,45), the manipulator will move to the specified coordinate
but the additional axis will not move. If you want to move the additional axis as well, specify like this: Go
XY(60,30,-50,45) : ST(10,20).
For the details of additional axis, refer to EPSON RC+ Users Guide: 21. Additional Axis.

See Also

JA, Point Expression, ST Function

XY Function Example

P10 = XY(60, 30, -50, 45) + P20

XYLim Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 849

XYLim Statement

Sets or displays the permissible XY motion range limits for the robot.

Syntax

XYLim minX, maxX, minY, maxY [, minZ] [, maxZ]
XYLim

Parameters

minX The minimum X coordinate position to which the manipulator may travel.
(The manipulator may not move to a position with the X Coordinate less than minX.)

maxX The maximum X coordinate position to which the manipulator may travel.
(The manipulator may not move to a position with the X Coordinate greater than maxX.)

minY The minimum Y coordinate position to which the manipulator may travel.
(The manipulator may not move to a position with the Y Coordinate less than minY.)

maxY The maximum Y coordinate position to which the manipulator may travel.
(The manipulator may not move to a position with the Y Coordinate greater than maxY.)

minZ Optional. The minimum Z coordinate position to which the manipulator may travel.
(The manipulator may not move to a position with the Z Coordinate less than minZ.)

maxZ Optional. The maximum Z coordinate position to which the manipulator may travel.
(The manipulator may not move to a position with the Z Coordinate greater than maxZ.)

Result

Displays current XYLim values when used without parameters.

Description

XYLim is used to define XY motion range limits. Many robot systems allow users to define joint limits but
the SPEL+ language allows both joint limits and motion limits to be defined. In effect this allows users to
create a work envelope for their application. (Keep in mind that joint range limits are also definable with
SPEL.)

The motion range established with XYLim values applies to monitor method configured in XYLimMode
command. For details of monitor method, refer to XYLimMode statement.

Robot parameter data is stored in compact flash in controller. Therefore, writing to command flash occurs
when executing this command. Frequent writing to compact flash affect to lifetime of compact flash. We
recommend to use this command minimally.

Notes
Turning Off Motion Range Checking

There are many applications which don't require Motion Range limit checking and for that reason there is a
simple method to turn this limit checking off. To turn motion range limit checking off, define the Motion
Range Limit values for minX, maxX, minY, and maxY to be “0”. For example XYLim 0, 0, 0, 0.

Default Motion Range Limit Values
The default values for the XYLim instruction are "0, 0, 0, 0". (Motion Range Limit Checking is turned off.)

XYLim Statement

850 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Tip
Point & Click Setup for XYLim

EPSON RC+ has a point and click dialog box for defining the motion range limits. The simplest method to
set the XYLim values is by using the XYZ Limits page on the Robot Manager .

See Also

Range, XYLimMode

XYLim Statement Example

This simple example from the command window sets and then displays the current XYLim setting:

> xylim -200, 300, 0, 500

> XYLim
-200.000, 300.000, 0.000, 500.000

XYLim Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 851

XYLim Function

Returns point data for either upper or lower limit of XYLim region.

Syntax

XYLim(limit)

Parameters

limit Integer expression that specifies which limit to return.
 1: Lower limit.
 2: Upper limit.

Return Values

When “1” is specified for reference data, returns X axis lower limit position specified in XYLim as X of
point data, Y axis lower limit position as Y, and Z axis lower limit position as Z.
When “2” is specified for reference data, returns X axis upper limit position specified in XYLim as X of
point data, Y axis upper limit position as Y, and Z axis upper limit position as Z.

See Also

XYLim Statement

XYLim Function Example

P1 = XYLim(1)
P2 = XYLim(2)

XYLimClr Statement

852 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

XYLimClr Statement

Clears the XYLim definition.

Syntax

XYLimClr

See Also

XYLim, XYLimDef

XYLimClr Function Example

This example uses the XYLimClr function in a program:

Function ClearXYLim

 If XYLimDef = True Then
 XYLimClr
 EndIf
Fend

XYLimDef Function

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 853

XYLimDef Function

Returns whether XYLim has been defined or not.

Syntax

XYLimDef

Return Values

True if XYLim has been defined, otherwise False.

See Also

XYLim, XYLimClr

XYLimDef Function Example

This example uses the XYLimDef function in a program:

Function ClearXYLim

 If XYLimDef = True Then
 XYLimClr
 EndIf
Fend

XYLimMode Statement

854 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

XYLimMode Statement

Sets or displays monitor method of XYLim.

Syntax
(1) XYLimMode monitor method
(2) XYLimMode

Parameters
Monitor method Integer expression represents monitor method of using XYLim.

Constant Value Description

XYLIM_STANDARD 0 Applies XYLim to endpoint of motion
command. (There is no effect on Pulse.)

XYLIM_STRICT 1
Applies XYLim to monitor method of
XYLIM_STANDARD, trajectory, and
pulse motion.

Result

Displays monitor method of XYLim that currently configured when used without parameters.

Description

XYLimMode sets monitor method of XYLim for spcified robot.
When XYLIM_STANDARD is specified, the motion range set in XYLim is effective only for endpoint of
motion command. From start point of motion to trajectory of endpoint is not applicable. Therefore, during
operation, the arm may pass outside of the area that set in XYLim. In this mode, XYLim is not applied to
pulse motion.
When XYLIM_STRICT is specified, the motion range set in XYLim is applied to endpoint of motion
command and start point of motion to trajectory of endpoint. Therefore, during operation, if the arm tried to
move out of the range set in the XYLim, an error will occur. In this mode, XYLim is applied to pulse
motion. However, moving from outside the XYLim range to within the range, such as “the start point is
outside the XYLim range and the endpoint is within the XYLim range”, it is possible to move without an
outside XYLim range error.
To prevent robot interferes other devices, using with XYLIM_STRICT is recommended.

It is possible to change settings of default value of monitoring method when Controller start up, in the
Controller preferences of EPSON RC+. The value confihured in XYLimMode command is enabled until
Controller restart. When restarted Controller, the monitoring method of XYLim will be reset to the method
specified in the Controller preferences.

CAUTION

■ For XYLIM_STANDARD, the arm may pass outside of the area that set in XYLim.
Therefore, note that the robot does not interfere other devices. For example,
setting extra space to XYLim and actual obstacle, operating near XYLim area,
check trajectory at low speed.

XYLimMode Statement

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 855

Potential Errors
When executed PTP near XYLim area.

When executing PTP motion such as Go motion, start point and endpoint moves like the arrow of image on
the left. Therefore, in XYLIM_STRICT, target coordinate is in the range but trajectory is out of range so an
error will occur. In this case, avoid it so that the motion trajectory does not exceed XYLim by adding
midPoint between start point and target coordinate like following image on the right.

 Endpoint

XYLim lower limit

Start point

XYLim upper limit

Start point

Endpoint

XYLim lower limit

Midpoint

XYLim upper limit

When using past project:

If a project used with Controller FW Ver 7.5.2.0 or earlier than 7.5.52.0 is applied to a Controller that
XYLim monitoring method is XYLIM_STRICT, the trajectory may become an out-of-range error. In this
case, change the program to not exceed XYLim by adding midpoint.

See Also

XYLim

XYLimMode Command Example
This example uses XYLimMode. Moving current point to P1 with XYLIM_STANDARD and moving P1
to P2 with XYLIM_STRICT.

Function XYLimMode_sample
Motor On
XYLimMode XYLIM_STANDARD
Go P1 ’Applying XYLim only for endpoint.
XYLimMode XYLIM_STRICT
Go P2 ’Applying XYLim to endpoint and trajectory.

Fend

This is an example using XYLimMode in command window. Displays current monitor method of XYLim.
> XYLimMode
1

XYLimMode Function

856 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

XYLimMode Function

Acquire the monitor method of configured XYLim.

Syntax
XYLimMode

Return Values
Returns the monitor method of configured XYLim.
0 = Applying XYLim to endpoint of motion command. (not applying to pulse motion.)
1 = Applying XYLim to endpoint of motion command and trajectory. (applying to pulse motion.)

See Also
XYLimMode

XYLimMode Function Example
This is an example of using XYLimMode function. This is a program acquires monitor method of XYLim
for function and displays it.

Function XYLimMode_sample

Integer iVar

iVar = XYLimMode
Print iVar

Fend

Appendix A: SPEL+ Command Use Condition List

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 857

Appendix A: SPEL+ Command Use Condition List

Command window Command can be used in the command window.
Program Command can be used as a statement in the SPEL+

program.
Function Command can be used as a function.

Command Command window Program Function RC+ TP3
A AbortMotion -
 Abs - -
 Accel
 AccelMax - -
 AccelR
 AccelS
 Acos - -
 Agl - -
 AglToPls - -
 AIO_In -
 AIO_InW -
 AIO_Out
 AIO_OutW
 AIO_Set
 AIO_TrackingSet -
 AIO_TrackingStart - - -
 AIO_TrackingEnd - - -
 AIO_TrackingOn
 Align - -
 AlignECP - -
 And - - -
 AOpen -
 Arc -
 Arc3 -
 Arch
 AreaCorrection
 AreaCorrectionClr -
 AreaCorrectionDef
 AreaCorrectionInv
 AreaCorrectionOffset
 AreaCorrectionSet -
 Arm
 ArmClr -
 ArmDef - -
 ArmSet
 Asc - -
 ArmCalib
 ArmCalibClr -
 ArmCalibDef - -
 ArmCalibSet
 Asin - -
 Atan - -
 Atan2 - -
 ATCLR -
 AtHome - -
 ATRQ
 AutoLJM

Appendix A: SPEL+ Command Use Condition List

858 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Command Command window Program Function RC+ TP3
 AvoidSingularity
B Base
 BClr - -
 BClr64 - -
 BGo -
 BMove -
 Boolean - - -
 BOpen -
 Box
 BoxClr -
 BoxDef - -
 Brake (Function only)
 BSet - -
 BSet64 - -
 BTst - -
 BTst64 - -
 Byte - - -
C Calib -
 Call - - -
 CalPls
 ChDir -
 ChDisk -
 ChDrive -
 ChkCom - -
 ChkNet - -
 Chr$ - -
 ClearPoints -
 Close -
 CloseCom -
 CloseDB -
 CloseNet -
 Cls -
 Cnv_AbortTrack -
 Cnv_Accel
 Cnv_AccelLim
 Cnv_Adjust -
 Cnv_AdjustClear -
 Cnv_AdjustGet
 Cnv_AdjustSet -
 Cnv_Downstream
 Cnv_Fine
 Cnv_LPulse - -
 Cnv_Mode
 Cnv_Name$ - -
 Cnv_Number - -
 Cnv_OffsetAngle
 Cnv_Point - -
 Cnv_PosErr - -
 Cnv_PosErrOffset - -
 Cnv_Pulse - -
 Cnv_QueAdd -
 Cnv_QueGet - -
 Cnv_QueLen - -
 Cnv_QueList - -
 Cnv_QueMove -
 Cnv_QueReject

Appendix A: SPEL+ Command Use Condition List

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 859

Command Command window Program Function RC+ TP3
 Cnv_QueRemove -
 Cnv_QueUserData
 Cnv_RobotConveyor - -
 Cnv_Speed - -
 Cnv_Trigger -
 Cnv_Upstream
 CollisionDetect
 Cont - -
 Copy -
 Cos - -
 CP
 Ctr - -
 CTReset -
 CtrlDev - -
 CtrlInfo - -
 CurDir$ - -
 CurDisk$ - -
 CurDrive$ - -
 CurPos - -
 Curve -
 CVMove -
 CP_Offset
 CR
 CS
 CT
 CU
 CV
 CW
 CX
 CY
 CZ
D Date -
 Date$ - -
 Declare - - -
 DegToRad - -
 Del -
 DeleteDB -
 DiffPoint
 DispDev
 Dist - -
 Do...Loop - - -
 Double - - -
E ECP
 ECPClr -
 ECPDef - -
 ECPSet
 ElapsedTime - -
 Elbow
 Eof - -
 Era - -
 EResume -
 Erf$ - -
 Erl - -
 Err - -
 Errb
 ErrMsg$ - -

Appendix A: SPEL+ Command Use Condition List

860 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Command Command window Program Function RC+ TP3
 Error -
 ErrorOn - -
 Ert - -
 EStopOn - -
 Eval - -
 Exit - - -
 ExportPoints -
F FbusIO_GetBusStatus - -
 FbusIO_GetDeviceStatus - -
 FbusIO_SendMsg -
 FileDataTime$ - -
 FileExists - -
 FileLen - -
 Find -
 FindPos - -
 Fine
 FineDist
 FineStatus
 Fix - -
 Flush -
 FmtStr -
 FmtStr$ - -
 FolderExists - -
 For...Next - - -
 Force_Calibrate -
 Force_ClearTrigger -
 Force_GetForce - -
 Force_GetForces -
 Force_Sensor
 Force_SetTrigger -
 FreeFile - -
 Function...Fend - - -
G GClose -
 GetCurrentUser$ - -
 GetRobotInsideBox - -
 GetRobotInsidePlane - -
 GGet -
 Global - - -
 Go -
 Gosub...Return - - -
 Goto - - -
 GSet -
 GShow -
 GShowDialog - -
H Halt - - -
 Hand
 HealthCalcPeriod
 HealthCtrlAlarmOn
 HealthCtrlInfo
 HealthCtrlRateOffset -
 HealthCtrlReset -
 HealthCtrlWarningEnable
 HealthRateCtrlInfo
 HealthRateRBInfo
 HealthRBAlarmOn
 HealthRBAnalysis

Appendix A: SPEL+ Command Use Condition List

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 861

Command Command window Program Function RC+ TP3
 HealthRBDistance
 HealthRBInfo
 HealthRBRateOffset -
 HealthRBReset -
 HealthRBSpeed
 HealthRBStart -
 HealthRBStop -
 HealthRBTRQ
 HealthRBWarningEnable
 Here
 Hex$ - -
 Hofs
 HofsJointAccuracy -
 Home -
 HomeClr -
 HomeDef - -
 HomeSet
 Hordr
 Hour
I If...Then..Else…EndIf - - -
 ImportPoints -
 In - -
 InBCD - -
 Inertia
 InPos - -
 Input -
 Input # -
 InputBox -
 InReal - -
 InsideBox - -
 InsidePlane - -
 InStr - -
 Int - -
 Int32 - - -
 Integer - - -
 InW - -
 IODef - -
 IOLabel$ - -
 IONumber - -
J J1Angle
 J4Angle
 J1Flag
 J2Flag
 J4Flag
 J6Flag
 JA - -
 Joint -
 JointAccuracy
 JRange
 JS - -
 JT - -
 JTran -
 Jump -
 Jump3 -
 Jump3CP -
 JumpTLZ -

Appendix A: SPEL+ Command Use Condition List

862 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Command Command window Program Function RC+ TP3
L LatchEnable -
 LatchPos - -
 LatchState - -
 LCase$ - -
 Left$ - -
 Len - -
 LimitTorque
 LimitTorqueLP
 LimitTorqueStop
 LimitTorqueStopLP
 LimZ
 LimZMargin
 Line Input -
 Line Input # -
 LJM - -
 LoadPoints -
 Local
 LocalClr -
 LocalDef - -
 Lof - -
 LogIn - -
 Long - - -
 LSet$ - -
 LShift - -
 LShift64 - -
 LTrim$ - -
M Mask - - -
 MCal -
 MCalComplete - -
 MCordr
 MemIn - -
 MemInW - -
 MemOff -
 MemOn -
 MemOut -
 MemOutW -
 MemSw - -
 Mid$ - -
 MHour - -
 MkDir -
 Mod - - -
 Motor
 Move -
 MsgBox
 MyTask - -
N Next - - -
 Not - - -
O Off -
 OLAccel
 OLRate
 On -
 OnErr - - -
 OpBCD -
 OpenCom
 OpenDB -
 OpenNet

Appendix A: SPEL+ Command Use Condition List

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 863

Command Command window Program Function RC+ TP3
 Oport - -
 Or - - -
 Out
 OutReal
 OutW
P P# -
 PAgl - -
 Pallet
 PalletClr -
 ParseStr
 Pass -
 Pause - - -
 PauseOn - -
 PDescription -
 PDescription$ -
 PDef - -
 PDel -
 PerformMode
 PG_FastStop -
 PG_LSpeed
 PG_Scan -
 PG_SlowStop -
 PLabel -
 PLabel$ - -
 Plane
 PlaneClr -
 PlaneDef - -
 PList -
 PLocal
 Pls - -
 PNumber - -
 PosFound - -
 Power
 PPls - -
 Preserve - - -
 Print -
 Print # -
 PTCLR -
 PTPBoost
 PTPBoostOK - -
 PTPTime - -
 PTran -
 PTRQ
 Pulse
Q QP -
 QPDecelR
 QPDecelS
 Quit - - -
R RadToDeg - -
 Randmize -
 Range -
 Read -
 ReadBin -
 Real - - -
 RealAccel - -
 RealPls - -

Appendix A: SPEL+ Command Use Condition List

864 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Command Command window Program Function RC+ TP3
 RealPos - -
 RealTorque - -
 Recover -
 RecoverPos - -
 Redim -
 Rename -
 RenDir -
 Reset -
 ResetElapsedTime -
 Restart - -
 Resume - - -
 Return - - -
 Right$ - -
 RmDir -
 Rnd - -
 Robot
 RobotInfo - -
 RobotInfo$ - -
 RobotModel$ - -
 RobotName$ - -
 RobotSerial$ - -
 RobotType - -
 ROpen -
 ROTOK
 RSet$ - -
 RShift64 - -
 RShift - -
 RTrim$ - -
 RunDialog - - -
S SafetyOn - -
 SavePoints -
 Seek -
 Select...Send - - -
 SelectDB
 Sense -
 SetCom -
 SetIn -
 SetInReal -
 SetInW -
 SetLatch -
 SetNet -
 SetSw -
 SF_GetParam ○ ○ ○ ○
 SF_GetParam$ ○ ○ ○ ○
 SF_GetStatus ○ ○ ○ ○
 SF_LimitSpeedS ○ ○ ○ ○
 SF_LimitSpeedSEnable ○ ○ ○ ○
 SF_RealSpeedS ○ ○ ○ ○
 SF_PeakSpeedS ○ ○ ○ ○
 SF_PeakSpeedSClear ○ ○ ○ -
 SFree
 Sgn - -
 Short - - -
 Shutdown
 Signal -

Appendix A: SPEL+ Command Use Condition List

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 865

Command Command window Program Function RC+ TP3
 SimGet - - -
 SimSet -
 Sin - -
 SingularityAngle
 SingularityDist
 SingularitySpeed
 SLock -
 SoftCP
 Space$ - -
 Speed
 SpeedFactor
 SpeedR
 SpeedS
 SPELCom_Event -
 Sqr - -
 ST - -
 StartMain - - -
 Stat - -
 Str$ - -
 String - - -
 Sw - -
 SyncLock - - -
 SyncUnlock - - -
 SyncRobots
 SysConfig - -
 SysErr - -
T Tab$ - -
 Tan - -
 TargetOK - -
 TaskDone - -
 TaskInfo - -
 TaskInfo$ - -
 TaskState
 TaskWait -
 TC -
 TCLim
 TCPSpeed - -
 TCSpeed
 TeachOn - -
 TGo -
 Till -
 TillOn - -
 Time
 Time$ - -
 TLClr -
 TLDef - -
 TLSet
 TMOut -
 TMove -
 Tmr - -
 TmReset -
 Toff -
 Ton -
 Tool
 Trap - - -
 Trim$ - -

Appendix A: SPEL+ Command Use Condition List

866 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Command Command window Program Function RC+ TP3
 TW - -
U UBound - -
 UByte - - -
 UCase$ - -
 UInt32 - - -
 UOpen -
 UpdateDB -
 UShort - - -
V Val - -
 VCal -
 VCalPoints -
 VCls - - -
 VCreateCalibration - - -
 VCreateObject - - -
 VCreateSequence - - -
 VDefArm - - -
 VDefGetMotionRange - -
 VDefLocal - - -
 VDefSetMotionRange - -
 VDefTool - - -
 VDeleteCalibration - - -
 VDeleteObject - - -
 VDeleteSequence - - -
 VGet - - -
 VGoCenter - - -
 VisCalib - - - -
 VisCalInfo - - -
 VisCalLoad - - - -
 VisCalSave - - - -
 VisTrans - - -
 VLoad - - -
 VLoadModel - - -
 VRun - - -
 VSave - - -
 VSaveImage - - -
 VSaveModel - - -
 VSD
 VSet - - -
 VShowModel - -
 VStatsReset - - -
 VStatsResetAll - - -
 VStatsSave - - -
 VStatsShow -
 VTeach - - -
 VTrain - -
 VxCalib -
 VxCalDelete -
 VxCalLoad -
 VxCalInfo - -
 VxCalSave -
 VxTrans - -
W Wait -
 WaitNet -
 WaitPos -
 WaitSig -
 Weight

Appendix A: SPEL+ Command Use Condition List

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 867

Command Command window Program Function RC+ TP3
 Where - -
 WindowStatus - -
 WorkQue_Add -
 WorkQue_AutoRemove
 WorkQue_Get
 WorkQue_Len
 WorkQue_List - -
 WorkQue_Reject
 WorkQue_Remove -
 WorkQue_Sort
 WorkQue_UserData
 WOpen -
 Wrist
 Write -
 WriteBin -
X Xor - - -
 Xqt - - -
 XY - -
 XYLim
 XYLimClr -
 XYLimDef - -
 XYLimMode

Appendix B: Precaution of Compatibility

868 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Appendix B: Precaution of Compatibility

B-1: Precaution of EPSON RC+ 6.0 Compatibility
Overview

This section contains information for customers using EPSON RC+ 7.0 with RC700 series
Controller that have already used EPSON RC+ 6.0 with RC620.
EPSON RC+ 7.0 and EPSON RC+ 6.0 differ in such as hardware, adaptable manipulators,
number of joint allowance, and software execution environment. Please read this section
and understand the contents for the safety use of the Robot system.
EPSON RC+ 7.0 is improved software that has compatibility with products before EPSON
RC+ 7.0 and designed to innovate advanced software technologies. However, some parts
do not have compatibility with EPSON RC+ 6.0 or have been deleted to specialize in the
robot controller and for ease of use.
The following compatibility is indicated based on EPSON RC+ 6.0 compared to EPSON
RC+ 7.0.

General Differences

General differences of EPSON RC+ 6.0 and EPSON RC+ 7.0 are as follows.

Item EPSON RC+ 7.0 EPSON RC+ 6.0
Number of task Up to 32 tasks

(Background task : Up to 16 tasks)
Up to 32 tasks
(Background task : Up to 16
tasks)

Type of task Able to specify NoPouse task
Able to specify NoEmgAbort task
Able to specify Background task

Able to specify NoPouse task
Able to specify NoEmgAbort task
Able to specify Background task

Special TRAP
such as TRAP ERROR

Supported Supported

Task starts by TRAP number Dedicated task number Dedicated task number
Multi Manipulator Supported Supported
Robot number 1 to 16 1 to 16
Number of significant figure
for Real type

6 digits 6 digits

Number of significant figure
for Double type

14 digits 14 digits

Array elements number Other than string variable Other than string variable
Local variable 2,000 Local variable 2,000
Global variable 100,0000 Global variable 100,0000
Module variable 100,0000 Module variable 100,0000
Global Preserve variable 4,000 Global Preserve variable 4,000

String variable String variable
Local variable 200 Local variable 200
Global variable 10,000 Global variable 10,000
Module variable 10,000 Module variable 10,000
Global Preserve variable 400 Global Preserve variable 400

Device number 21:PC
22:REMOTE
24:TP
20:TP3

21:PC
22:REMOTE
24:TP
28:LCD

Appendix B: Precaution of Compatibility

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 869

Item EPSON RC+ 7.0 EPSON RC+ 6.0
Control device Remote I/O

PC
REMOTE COM
REMOTE Ethernet
TP3

Remote I/O
PC

Timer number range 0 to 63 0 to 63
Program capacity 8 MB 8 MB
Signal No range
for SyncLock, SyncUnlock

0 to 63 0 to 63

Signal No range
for WaitSig, Signal

0 to 63 0 to 63

Memory I/O port 1024 1024
I/O port number Common with EPSON RC+ 6.0
Port No of Ethernet 201 to 216 201 to 216
Remote I/O assignment Assigned as default Default: --
Port No of
RS-232C communication

1 to 8, 1001 to 1008 1to 8, 1001, 1002

OpenCom execution of
RS-232C communication port

Mandatory Mandatory

Input/output to files Supported Supported
File number 30 to 63 30 to 63
Access number for the database 501 to 508 501 to 508
Vision Guide Network camera type

Frame grubber type
Network camera type
Frame grubber type

Conveyor tracking Supported Supported
PG robot Supported Supported
OCR Supported Supported
Security Supported Supported
VBGuide 6.0 (RC+ API 7.0) Supported Supported
Fieldbus I/O Use normal I/O commands Use normal I/O commands
Fieldbus master Response is not guaranteed Response is not guaranteed
Fieldbus slave Response is guaranteed Response is guaranteed
GUI Builder Supported Supported
Error number Common with EPSON RC+ 6.0

Appendix B: Precaution of Compatibility

870 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Compatibility List of Commands
+ Function expansion / function changes have been made with upper compatibility.
− No changes.
! Pay attention. Function changes or syntax changes have been made.
!! Pay attention. Significant changes have been made.
× Deleted.

Command Compatibility Note

A Abs Function −
 Accel Statement −
 Accel Function −
 AccelMax Statement −
 AccelR Statement −
 AccelR Function −
 AccelS Statement −
 AccelS Function −
 Acos Function −
 AglToPls Function −
 Agl Function −
 AlignECP Function −
 Align Function −
 And Statement −
 Arc Statement −
 Arc3 Statement −
 Arch Statement −
 Arch Function −
 Arm Statement −
 Arm Function −
 ArmClr Statement −
 ArmDef Function −
 ArmSet Statement −
 ArmSet Function −
 Asc Function −
 Asin Function −
 Atan Function −
 Atan2 Function −
 ATCLR Statement −
 ATRQ Statement −
 ATRQ Function −
B Base Statement −
 Base Function −
 BClr Function −
 BGo Statement + Added PerformMode parameter.
 BMove Statement −
 Boolean Statement −
 Box Statement + Added the remote output logic designation
 Box Function −
 BoxClr Function −

Appendix B: Precaution of Compatibility

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 871

Command Compatibility Note
 BoxDef Function −
 Brake Statement −
 Brake Function −
 BSet Function −
 BTst Function −
 Byte Statement −
C Call Statement −
 ChkCom Function −
 ChkNet Function −
 Chr$ Function −
 ClearPoints Statement −
 CloseCom Statement −
 CloseNet Statement −
 Cls Statement −
 Cos Function −
 CP Statement −
 CP Function −
 CTReset Statement −
 Ctr Function −
 CtrlDev Function −
 CtrlInfo Function −
 CurPos Function −
 Curve Statement −
 CVMove Statement −
 CX to CW Statement −
 CX to CW Function −
D Date Statement −
 Date$ Function −
 DegToRad Function −
 DispDev Statement −
 DispDev Function −
 Dist Function −
 Do...Loop Statement −
 Double Statement −
E ECP Statement −
 ECP Function −
 ECPClr Statement −
 EcpDef Function −
 ECPSet Statement −
 ECPSet Function −
 Elbow Statement −
 Elbow Function −
 Era Function −
 Erase Statement −
 EResume Statement −
 Erf$ Function −
 Erl Function −

Appendix B: Precaution of Compatibility

872 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Command Compatibility Note
 Err Function −
 ErrMsg$ Function −
 Error Statement −
 ErrorOn Function −
 Ert Function −
 EStopOn Function −
 Exit Statement −
F Find Statement −
 FindPos Function −
 Fine Statement −
 Fine Function −
 Fix Function −
 FmtStr$ Statement −
 For...Next −
 Function...Fend −
G Global Statement + Added PerformMode parameter.
 Go Statement −
 Gosub...Return −
 Goto Statement −
H Halt Statement −
 Hand Statement −
 Hand Function −
 Here Statement −
 Here Function −
 Hex$ Function −
 Home Statement −
 HomeClr Statement −
 HomeDef Function −
 HomeSet Statement −
 HomeSet Function −
 HOrdr Statement −
 HOrdr Function −
 Hour Statement −
 Hour Function −
I If...EndIf −
 In Function −
 InBCD Function −
 Inertia Statement −
 Inertia Function −
 InPos Function −
 Input Statement −
 Input# Statement −
 InsideBox Function −
 InsidePlane Function −
 InStr Function −
 Int Function −
 Integer Statement −

Appendix B: Precaution of Compatibility

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 873

Command Compatibility Note
 InW Function −
 IOLabel$ Function −
 IONumber Function −
 IONumber Function −
J J1Flag Statement −
 J1Flag Function −
 J2Flag Statement −
 J2Flag Function −
 J4Flag Statement −
 J4Flag Function −
 J6Flag Statement −
 J6Flag Function −
 JA Function −
 Joint −
 JRange Statement −
 JRange Function −
 JS Function −
 JT Function −
 JTran Statement −
 Jump Statement + Added PerformMode parameter.
 Jump3 Statement −
 Jump3CP Statement −
L LCase$ Function −
 Left$ Function −
 Len Function −
 LimZ Statement −
 LimZ Function −
 Line Input Statement −
 Line Input# Statement −
 LJM Function −
 LoadPoints −
 Local Statement −
 Local Function −
 LocalClr Statement −
 LocalDef Function −
 Lof Function −
 Long Statement −
 LSet$ Function −
 LShift Function −
 LTrim$ Function −
M Mask Operator −
 MemIn Function −
 MemInW Function −
 MemOff Statement −
 MemOn Statement −
 MemOut Statement −
 MemOutW Statement −

Appendix B: Precaution of Compatibility

874 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Command Compatibility Note
 MemSw Function −
 Mid$ Function −
 Mod Operator −
 Motor Statement −
 Motor Function −
 Move Statement −
 MyTask Function −
N Not Operator −
O Off Statement −
 OLAccel Statement −
 OLAccel Function −
 OLRate Statement −
 OLRate Function −
 On Statement −
 OnErr −
 OpBCD Statement −
 OpenCom Statement −
 OpenNet Statement −
 Oport Function −
 Or Operator −
 Out Statement −
 Out Function −
 OutW Statement −
 OutW Function −
P PAgl Function −
 Pallet Statement + Added coordinate value designation
 Pallet Function −
 ParsStr Statement −
 ParsStr Function −
 Pass Statement −
 Pause Statement −
 PauseOn Function −
 PDef Function −
 PDel −
 PLabel$ Function −
 PLabel Statement −
 Plane Statement −
 Plane Function −
 PlaneClr Statement −
 PlaneDef Function −
 PList Statement −
 PLocal Statement −
 PLocal Function −
 Pls Function −
 PNumber Function −
 PosFound Function −
 Power Statement −

Appendix B: Precaution of Compatibility

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 875

Command Compatibility Note
 Power Function −
 PPls Function −
 Print Statement −
 Print# Statement −
 PTCLR Statement −
 PTPBoost Statement −
 PTPBoost Function −
 PTPBoostOK Function −
 PTPTime Function −
 PTran Statement −
 PTRQ Statement −
 PTRQ Function −
 Pulse Statement −
 Pulse Function −
Q QP Statement −
 Quit Statement −
R RadToDeg Function −
 Randmize Statement −
 Range Statement −
 Read Statement −
 ReadBin Statement −
 Real Statement −
 RealPls Function −
 RealPos Function −
 RealTorque Statement −
 Redim Statement −
 Reset Statement −
 Resume Statement −
 Return Statement −
 RobotInfo Function −
 RobotInfo$ Function −
 RobotModel$ Function −
 RobotName$ Function −
 RobotSerial$ Function −
 RobotType Function −
 RSet$ Function −
 RShift Function −
 RTrim$ Function −
S SafetyOn Function −
 SavePoints Statement −
 Select...Send Statement −
 Sense Statement −
 SetCom Statement −
 SetInW Statement −
 SetIn Statement −
 SetNet Statement −
 SetSw Statement −

Appendix B: Precaution of Compatibility

876 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Command Compatibility Note
 SFree Statement −
 SFree Function −
 Sgn Function −
 Signal Statement −
 Sin Function −
 SLock Statement −
 SoftCP Statement −
 SoftCP Function −
 Space$ Function −
 Speed Statement −
 Speed Function −
 SpeedR Statement −
 SpeedR Function −
 SpeedS Statement −
 SpeedS Function −

 SPELCom_Event
Statement −

 Sqr Function −
 Stat Function −
 Str$ Function −
 String Statement −
 Sw Function −
 SyncLock Statement −
 SyncUnlock Statement −
 SysConfig Statement −
 SysErr Function −
T Tab$ Function −
 Tan Function −
 TargetOK Function −
 TaskDone Function −
 TaskInfo Function −
 TaskInfo$ Function −
 TaskState Statement −
 TaskState Function −
 TaskWait Statement −
 TC Statement −
 TCLim Statement −
 TCLim Function −
 TCSpeed Statement −
 TCSpeed Function −
 TGo Statement + Added PerformMode parameter.
 TillOn Function −
 Time Command −
 Time Function −
 Time$ Function −
 TLClr Statement −
 TlDef Function −

Appendix B: Precaution of Compatibility

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 877

Command Compatibility Note
 TLSet Statement −
 TLSet Function −
 TMOut Statement −
 TMove Statement −
 Tmr Function −
 TmReset Statement −
 Toff Statement −
 Ton Statement −
 Tool Statement −
 Tool Function −
 Trap Statement −
 Trim$ Function −
 Tw Function −
U UBound Function −
 UCase$ Function −
V Val Function −
W Wait Statement −
 WaitNet Statement −
 WaitPos Statement −
 WaitSig Statement −
 Weight Statement −
 Weight Function −
 Where Statement −
 Wrist Statement −
 Wrist Function −
 Write Statement −
 WriteBin Statement −
X Xor Operator −
 Xqt Statement −
 XY Function −
 XYLim Statement −
 XYLim Function −
 XYLimClr Statement −
 XYLimDef Statement −
 XYLimDef Function −

Appendix B: Precaution of Compatibility

878 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

B-2: Precaution of EPSON RC+ 5.0 Compatibility
Overview

This section contains information for customers using EPSON RC+ 7.0 with RC700 series
and RC90 series Controllers that have already used EPSON RC+ 5.0 with RC180.
EPSON RC+ 7.0 and EPSON RC+ 5.0 differ in such as hardware, adaptable manipulators,
number of joint allowance, and software execution environment. Please read this section
and understand the contents for the safety use of the Robot system.
EPSON RC+ 7.0 is improved software that has compatibility with products before EPSON
RC+ 7.0 and designed to innovate advanced software technologies. However, some parts
do not have compatibility with EPSON RC+ 5.0 or have been deleted to specialize in the
robot controller and for ease of use.
The following compatibility is indicated based on EPSON RC+ 5.0 compared to EPSON
RC+ 7.0.

General Differences
General differences of EPSON RC+ 5.0 and EPSON RC+ 7.0 are as follows.

Item EPSON RC+ 7.0 EPSON RC+ 5.0
Number of task Up to 32 tasks

(Background task : Up to 16 tasks)
Up to 16 tasks

Type of task Able to specify NoPouse task
Able to specify NoEmgAbort task
Able to specify Background task

Able to specify NoPouse task
Able to specify NoEmgAbort task

Special TRAP
such as TRAP ERROR

Supported Not supported

Task starts by TRAP number Dedicated task number Dedicated task number
Multi Manipulator Supported Not supported
Robot number 1 to 16 1
Number of significant figure for
Real type

6 digits 6 digits

Number of significant figure for
Double type

14 digits 14 digits

Array elements number Other than string variable Other than string variable
Local variable 2,000 Local variable 1,000
Global variable 100,000 Global variable 0,000
Module variable 100,000 Module variable 0,000
Global Preserve variable 4,000 Global Preserve variable 1,000

String variable String variable
Local variable 200 Local variable 100
Global variable 10,000 Global variable 1,000
Module variable 10,000 Module variable 1,000
Global Preserve

variable 400 Global Preserve variable 100

Device number 21:PC
22:REMOTE
24:TP
20:TP3

21:PC
22:REMOTE
23:OP
24:TP

Control device Remote I/O
PC
REMOTE COM
REMOTE Ethernet
TP3

Remote I/O
PC
OP1
REMOTE Ethernet

Appendix B: Precaution of Compatibility

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 879

Item EPSON RC+ 7.0 EPSON RC+ 5.0
Timer number range 0 to 63 0 to 15
Program capacity 8 MB 4 MB
Signal No range
for SyncLock, SyncUnlock

0 to 63 0 to 15

Signal No range
for WaitSig, Signal

0 to 63 0 to 5

Memory I/O port 1024 256
I/O port number Common with EPSON RC+ 5.0
Port No of Ethernet 201 to 216 201 to 208
Remote I/O assignment Assigned as default Assigned as default
Port No of
RS-232C communication

1 to 8, 1001 to 1008 1 to 8

OpenCom execution of
RS-232C communication port

Mandatory Mandatory

Input/output to files Supported Not supported
File number 30 to 63 Not supported
Access number for the database 501 to 508 Not supported
Vision Guide Network camera type

Frame grubber type
Network camera type

Conveyor tracking Supported Not supported
PG robot Supported Not supported
OCR Supported Not supported
Security Supported Not supported
VBGuide 5.0 (RC+ API 7.0) Supported VBGuide Lite is supported
Fieldbus I/O Use normal I/O commands Use normal I/O commands
Fieldbus master Response is not guaranteed Not supported
Fieldbus slave Response is guaranteed Response is guaranteed
GUI Builder Supported Not supported
Error number Common with EPSON RC+ 5.0

Appendix B: Precaution of Compatibility

880 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Compatibility List of Commands
+ Function expansion / function changes have been made with upper compatibility.
− No changes.
! Pay attention. Function changes or syntax changes have been made.
!! Pay attention. Significant changes have been made.
× Deleted.

Command Compatibility Note

A Abs Function −
 Accel Statement −
 Accel Function −
 AccelMax Statement −
 AccelR Statement −
 AccelR Function −
 AccelS Statement −
 AccelS Function −
 Acos Function −
 AglToPls Function −
 Agl Function −
 AlignECP Function −
 Align Function −
 And Statement −
 Arc Statement −
 Arc3 Statement −
 Arch Statement −
 Arch Function −
 Arm Statement −
 Arm Function −
 ArmClr Statement −
 ArmDef Function −
 ArmSet Statement −
 ArmSet Function −
 Asc Function −
 Asin Function −
 Atan Function −
 Atan2 Function −
 ATCLR Statement −
 ATRQ Statement −
 ATRQ Function −
B Base Statement −
 Base Function −
 BClr Function −
 BGo Statement + Added PerformMode parameter.
 BMove Statement −
 Boolean Statement −
 Box Statement + Added the robot number designation
 Box Function + Added the robot number designation
 BoxClr Function + Added the robot number designation
 BoxDef Function + Added the robot number designation
 Brake Statement −

Appendix B: Precaution of Compatibility

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 881

Command Compatibility Note
 Brake Function −
 BSet Function −
 BTst Function −
 Byte Statement −
C Call Statement + DLL function Call is supported
 ChkCom Function −
 ChkNet Function −
 Chr$ Function −
 ClearPoints Statement −
 CloseCom Statement −
 CloseNet Statement −
 Cls Statement −
 Cos Function −
 CP Statement −
 CP Function −
 CTReset Statement −
 Ctr Function −
 CtrlDev Function ! Changed device ID
 CtrlInfo Function − Changed the obtaining contents
 CurPos Function −
 Curve Statement −
 CVMove Statement −
 CX to CW Statement + Added CR, CS, CT
 CX to CW Function + Added CR, CS, CT
D Date Statement ! Only displays
 Date$ Function −
 DegToRad Function −
 DispDev Statement −
 DispDev Function −
 Dist Function −
 Do...Loop Statement −
 Double Statement −
E ECP Statement −
 ECP Function −
 ECPClr Statement −
 EcpDef Function −
 ECPSet Statement −
 ECPSet Function −
 ElapsedTime Function −
 Elbow Statement −
 Elbow Function −
 Era Function −
 Erase Statement ×
 EResume Statement −
 Erf$ Function −
 Erl Function −
 Err Function −
 ErrMsg$ Function −
 Error Statement −

Appendix B: Precaution of Compatibility

882 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Command Compatibility Note
 ErrorOn Function −
 Ert Function −
 EStopOn Function −
 Exit Statement −
F Find Statement −
 FindPos Function −
 Fine Statement −
 Fine Function −
 Fix Function −
 FmtStr$ Statement −
 For...Next −
 Function...Fend −
G Global Statement −
 Go Statement + Added PerformMode parameter.
 Gosub...Return −
 Goto Statement −
H Halt Statement −
 Hand Statement −
 Hand Function −
 Here Statement −
 Here Function −
 Hex$ Function −
 Home Statement −
 HomeClr Statement −
 HomeDef Function −
 HomeSet Statement −
 HomeSet Function −
 HOrdr Statement −
 HOrdr Function −
 Hour Statement −
 Hour Function −
I If...EndIf −
 In Function −
 InBCD Function −
 Inertia Statement −
 Inertia Function −
 InPos Function −
 Input Statement −
 Input# Statement + Added the device number

InsideBox Function ! Added the designation of robot number and

All
Cannot use with Wait statement

InsidePlane Function ! Added the designation of robot number and

All
Cannot use with Wait statement

 InStr Function −
 Int Function −
 Integer Statement −
 InW Function −

Appendix B: Precaution of Compatibility

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 883

Command Compatibility Note
 IOLabel$ Function −
 IONumber Function −
 IONumber Function −
J J1Flag Statement −
 J1Flag Function
 J2Flag Statement
 J2Flag Function
 J4Flag Statement
 J4Flag Function −
 J6Flag Statement −
 J6Flag Function −
 JA Function −
 Joint −
 JRange Statement −
 JRange Function −
 JS Function −
 JT Function −
 JTran Statement −
 Jump Statement + Added PerformMode parameter.
 Jump3 Statement +
 Jump3CP Statement +
L LCase$ Function −
 Left$ Function −
 Len Function −
 LimZ Statement −
 LimZ Function −
 Line Input Statement −
 Line Input# Statement + Added the device number
 LJM Function −
 LoadPoints −
 Local Statement −
 Local Function −
 LocalClr Statement −
 LocalDef Function −
 Lof Function −
 Long Statement −
 LSet$ Function −
 LShift Function −
 LTrim$ Function −
M Mask Operator −
 MemIn Function −
 MemInW Function −
 MemOff Statement −
 MemOn Statement −
 MemOut Statement −
 MemOutW Statement −
 MemSw Function −
 Mid$ Function −
 Mod Operator −

Appendix B: Precaution of Compatibility

884 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Command Compatibility Note
 Motor Statement −
 Motor Function −
 Move Statement −
 MyTask Function −
N Not Operator −
O Off Statement −
 OLAccel Statement −
 OLAccel Function −
 OLRate Statement −
 OLRate Function −
 On Statement −
 OnErr −
 OpBCD Statement −
 OpenCom Statement −
 OpenNet Statement −
 Oport Function −
 Or Operator −
 Out Statement −
 Out Function −
 OutW Statement −
 OutW Function −
P PAgl Function −
 Pallet Statement − Added the coordinate designation
 Pallet Function −
 ParsStr Statement −
 ParsStr Function −
 Pass Statement +
 Pause Statement −
 PauseOn Function −
 PDef Function −
 PDel −
 PLabel$ Function −
 PLabel Statement −
 Plane Statement + Added the robot number designation
 Plane Function + Added the robot number designation
 PlaneClr Statement + Added the robot number designation
 PlaneDef Function + Added the robot number designation
 PList Statement ! Changed the display type
 PLocal Statement −
 PLocal Function −
 Pls Function −
 PNumber Function −
 PosFound Function −
 Power Statement −
 Power Function −
 PPls Function −
 Print Statement −
 Print# Statement + Changed the device number
 PTCLR Statement −

Appendix B: Precaution of Compatibility

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 885

Command Compatibility Note
 PTPBoost Statement −
 PTPBoost Function −
 PTPBoostOK Function −
 PTPTime Function −
 PTran Statement −
 PTRQ Statement −
 PTRQ Function −
 Pulse Statement −
 Pulse Function −
Q QP Statement −
 Quit Statement −
R RadToDeg Function −
 Randmize Statement −
 Range Statement −
 Read Statement −
 ReadBin Statement −
 Real Statement −
 RealPls Function −
 RealPos Function −
 RealTorque Statement −
 Redim Statement −
 Reset Statement −

ResetElapsedTime
Statement －

 Resume Statement −
 Return Statement −
 RobotInfo Function + Added the information
 RobotInfo$ Function + Added the display of default point file name
 RobotModel$ Function −
 RobotName$ Function −
 RobotSerial$ Function −
 RobotType Function −
 RSet$ Function −
 RShift Function −
 RTrim$ Function −
S SafetyOn Function −
 SavePoints Statement −
 Select...Send Statement −
 Sense Statement −
 SetCom Statement −
 SetInW Statement −
 SetIn Statement −
 SetNet Statement −
 SetSw Statement −
 SFree Statement −
 SFree Function −
 Sgn Function −
 Signal Statement −
 Sin Function −

Appendix B: Precaution of Compatibility

886 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Command Compatibility Note
 SLock Statement −
 SoftCP Statement −
 SoftCP Function −
 Space$ Function −
 Speed Statement −
 Speed Function −
 SpeedR Statement −
 SpeedR Function −
 SpeedS Statement −
 SpeedS Function −

SPELCom_Event
Statement −

 Sqr Function −
 Stat Function + Added the information
 Str$ Function −
 String Statement −
 Sw Function −

 SyncLock Statement ! Error occurs by executing SyncLock
repeatedly

 SyncUnlock Statement −
 SysConfig Statement + Added the information
 SysErr Function + Added the function to retrieve the warnings
T Tab$ Function −
 Tan Function −
 TargetOK Function −
 TaskDone Function −
 TaskInfo Function −
 TaskInfo$ Function −
 TaskState Statement + Added the display of background task
 TaskState Function −
 TaskWait Statement −
 TC Statement −
 TCLim Statement −
 TCLim Function −
 TCSpeed Statement −
 TCSpeed Function −
 TGo Statement + Added PerformMode parameter.
 TillOn Function −
 Time Command ! Only displays
 Time Function −
 Time$ Function −
 TLClr Statement −
 TlDef Function −
 TLSet Statement −
 TLSet Function −
 TMOut Statement −
 TMove Statement −
 Tmr Function −
 TmReset Statement −

Appendix B: Precaution of Compatibility

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 887

Command Compatibility Note
 Toff Statement −
 Ton Statement −
 Tool Statement −
 Tool Function −

 Trap Statement ! Added the Trap that interrupts the controller
status

 Trim$ Function −
 Tw Function −
U UBound Function −
 UCase$ Function −
V Val Function −

W Wait Statement ! Added the global variables and others as the
wait condition

 WaitNet Statement −
 WaitPos Statement −
 WaitSig Statement −
 Weight Statement + Added the designation of S, T
 Weight Function + Added the designation of S, T
 Where Statement −
 Wrist Statement −
 Wrist Function −
 Write Statement −
 WriteBin Statement −
X Xor Operator −
 Xqt Statement −
 XY Function −
 XYLim Statement −
 XYLim Function −
 XYLimClr Statement −
 XYLimDef Statement −
 XYLimDef Function −

Appendix B: Precaution of Compatibility

888 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Commands from EPSON RC+ Ver.4.* (Not supported in EPSON RC+ 5.0)
Aopen Statement
BOpen Statement
Calib Statement
CalPls Statement
ChDir Statement
ChDrive Statement
Close Statement
Cnv_AbortTrack Statement
Cnv_Downstream Statement
Cnv_Fine Statement
Cnv_Fine Function
Cnv_Name$ Function
Cnv_Number Function
Cnv_Point Function
Cnv_PosErr Function
Cnv_Pulse Function
Cnv_QueAdd Statement
Cnv_QueGet Function
Cnv_QueLen Function
Cnv_QueList Statement
Cnv_QueMove Statement
Cnv_QueReject Statement
Cnv_QueReject Function
Cnv_QueRemove Statement
Cnv_QueUserData
Statement

Cnv_QueUserData Function
Cnv_RobotConveyor Function
Cnv_Speed Function
Cnv_Trigger Statement
Cnv_Upstream Function
Cont Statement
Copy Statement
CurDir$ Function
CurDrive$ Function
Declare Statement
Del Statement
Eof Function
Eval Function
FbusIO_GetBusStatus Function
FbusIO_GetDeviceStatus
Function
FbusIO_SendMsg Statement
FileDateTime$ Function
FileExists Function
FileLen Function
FolderExists Function
FreeFile Function
GetCurrentUser$ Statement
Hofs Statement

Hofs Function
ImportPoints Statement
InputBox Statement
LogIn Function
MCalComplete Function
MCal Statement
MCordr Statement
MCordr Function
MKDir Statement
MsgBox Statement
Recover Function
Rename Statement
RenDir Statement
Restart Statement
RmDir Statement
Robot Statement
Robot Function
ROpen Statement
RunDialog Statement
Seek Statement
Shutdown Statement
UOpen Statement
WOpen Statement

Appendix B: Precaution of Compatibility

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 889

B-3: Precaution of EPSON RC+ Ver.4.* Compatibility
Overview

This section contains information for customers using EPSON RC+ 7.0 with RC700 series
Controller that have already used EPSON RC+ Ver.4.* with RC520 or RC420.
EPSON RC+ 7.0 and EPSON RC+ Ver.4.* differs in such as hardware, adaptable
manipulators, number of joint allowance, and software execution environment. Please read
this section and understand the contents for the safety use of the Robot system.
EPSON RC+ 7.0 is improved software that has compatibility with products before EPSON
RC+ 7.0 and designed to innovate advanced software technologies. However, some parts
do not have compatibility with EPSON RC+ Ver.4.* or have been deleted to specialize in
the robot controller and for ease of use.
The following compatibility is indicated based on EPSON RC+ Ver.4.* compared to
EPSON RC+ 7.0.

General Differences
General differences of EPSON RC+ Ver.4.* and EPSON RC+ 7.0 are as follows.

Item EPSON RC+ 7.0 EPSON RC+ Ver.4.*
Number of task Up to 32 tasks

(Background task : Up to 16 tasks)
Up to 32 tasks

Type of task Able to specify NoPouse task
Able to specify NoEmgAbort task
Able to specify Background task

Able to specify NoPouse task

Special TRAP
such as TRAP ERROR

Supported Supported

Task starts by TRAP number Dedicated task number Task number only using 1 to
32

Multi manipulator Supported Supported
Robot number 1 to 16 1 to 16
Number of significant figure
for Real type

6 digits 7 digits

Number of significant figure
for Double type

14 digits 15 digits

Array elements number Other than string variable As far as the memory remains
Local variable
Global variable
Module variable
Global Preserve

variable

2000
1,000,000
1,000,000

4,000

String variable
Local variable
Global variable
Module variable
Global Preserve

variable

200
10,000
10,000

400

Line number Not supported Supported
Device number 21:PC

22:REMOTE
24:TP
20:TP3

1:Controller
2:REMOTE
3:OP

Control device Remote I/O
PC
REMOTE COM
REMOTE Ethernet

Remote I/O
PC
OP500RC

Appendix B: Precaution of Compatibility

890 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Item EPSON RC+ 7.0 EPSON RC+ Ver.4.*
TP3

Timer number range 0 to 63 0 to 63
Program capacity 8 MB 4 MB
Signal No range
for SyncLock, SyncUnlock

0 to 63 1 to 32

Signal No range
for WaitSig, Signal

0 to 63 0 to 127

Memory I/O port 1024 512
I/O port number Different with EPSON RC+4.0
Port No of Ethernet 201 to 216 128 to 147
Remote I/O assignment Assigned as default Default: --
Port No of
RS-232C communication

1 to 8, 1001, 1008 1 to 16

OpenCom execution of
RS-232C communication port

Mandatory Optional

Input/output to files Supported Supported
File number for the file access 30 to 63 30 to 63
Access number for the
database

501 to 508 Not supported

Vision Guide Network camera type
Frame grubber type

Frame grubber type

Conveyor tracking Supported Supported
PG robot Supported Supported
OCR Supported Supported
Security Supported Supported
VBGuide (RC+ API 7.0) Supported Supported
Fieldbus I/O Use normal I/O commands Use special commands
Fieldbus master Response is not guaranteed Response is not guaranteed
Fieldbus slave Response is guaranteed Response is not guaranteed
GUI Builder Supported Not supported
Group in the project Not supported Supported
Error number Different with EPSON RC+ Ver.4.*

Appendix B: Precaution of Compatibility

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 891

Compatibility List of Commands
+ Function expansion / function changes have been made with upper compatibility.
− No changes.
! Pay attention. Function changes or syntax changes have been made.
!! Pay attention. Significant changes have been made.
× Deleted.

Command Compatibility Note

A Abs Function −

 Accel Statement + Able to specify more than 100 for some
robots

 Accel Function −
 AccelR Statement −
 AccelR Function −
 AccelS Statement −
 AccelS Function −
 Acos Function + Argument range check has been added
 Agl Function −
 AglToPls Function −
 And Operator −
 AOpen Statement ×
 Arc Statement −
 Arc3 Statement −
 Arch Statement −
 Arch Function −
 Arm Statement −
 Arm Function −
 ArmClr Statement −
 ArmSet Statement −
 ArmSet Function −
 Asc Function −
 Asin Function + Argument range check has been added
 Atan Function −
 Atan2 Function −
 ATCLR Statement −
 ATRQ Statement −
 ATRQ Function −
B Base Statement −
 BClr Function + Argument range check has been added
 Beep Statement ×
 BGo Statement + Added PerformMode parameter.
 BMove Statement −
 Boolean Statement −
 BOpen Statement −
 Brake Statement −
 BSet Function + Argument range check has been added
 BTst Function + Argument range check has been added
 Byte Statement −
C Calib Statement −

Appendix B: Precaution of Compatibility

892 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Command Compatibility Note
 Call Statement −
 CalPls Statement −
 CalPls Function −
 Chain Statement ×
 ChDir Statement −
 ChDrive Statement −
 ChkCom Function −
 ChkNet Function −
 Chr$ Function −
 Clear Statement ! Renamed to ClearPoints
 Close Statement −
 CloseCom Statement −
 CloseNet Statement + Able to specify All

 ClrScr Statement ! Renamed to Cls
Device ID can be specified for arguments

 Cnv_** −
 Cont Statement ! Able to execute by the setting
 Copy Statement −
 Cos Function −
 CP Statement −
 CP Function −
 Ctr Function −
 CTReset Statement −
 CtrlDev Statement ×
 CtrlDev Function ! Changed device ID
 CtrlInfo Function !! Changed the obtaining contents
 CurDir$ Function −
 CurDrive$ Function −
 CurPos Function −
 Curve Statement −
 CVMove Statement −
 CX to CW Statement + Added CR, CS, CT
 CX to CW Function + Added CR, CS, CT
D Date Statement ! Only displays
 Date$ Function −
 Declare Statement ! The processing is slow
 DegToRad Function −
 Del Statement −
 Dir Statement −
 Dist Function −
 Do...Loop Statement −
 Double Statement ! Significant figure is 14 digits
E EClr Statement ×
 ECP Statement −
 ECP Function −
 ECPClr Statement −
 ECPSet Statement −
 ECPSet Function −

Appendix B: Precaution of Compatibility

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 893

Command Compatibility Note
 Elbow Statement −
 Elbow Function −
 ENetIO_**** ×
 Eof Function −
 EPrint Statement ×
 Era Function −
 Erase Statement ×
 EResume Statement −
 Erf$ Function + Able to omit the task number
 Erl Function + Able to omit the task number
 Err Function −
 ErrHist Statement ×
 ErrMsg$ Function ! Argument has language ID
 Error Statement + Able to specify task number for arguments
 Ert Function −
 EStopOn Function + Able to specify Wait
 Eval Function ! Differences in the error output
 Exit Statement −
F FbusIO_**** × Normal I/O command available
 FileDateTime$ Function −
 FileExists Function −
 FileLen Function −
 Find Statement −
 FindPos Function −
 Fine Statement −
 Fine Function −
 Fix Function −
 FmtStr$ Statement !! Function is limited significantly
 FoldrExist Function −
 For...Next −
 FreeFile Function −
 Function...Fend −

G GetCurrentUser$ Functio
n −

 Global Statement −
 Go Statement + Added PerformMode parameter.
 Gosub...Return −
 Goto Statement −
H Halt Statement −
 Hand Statement −
 Hand Function −
 Here Statement −
 Here Function −
 Hex$ Function −
 Hofs Statement −
 Hofs Function −
 Home Statement −

Appendix B: Precaution of Compatibility

894 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Command Compatibility Note
 HomeSet Statement −
 HomeSet Function −
 HOrdr Statement −
 HOrdr Function −
 Hour Statement −
 Hour Function −
 HTest Statement ×
 HTest Function ×
I If...EndIf −
 ImportPoints Statement ! Extension “.pnt” has changed to “.pts”
 In Function −
 In($n) Statement × Replaced to MemIn
 InBCD Function −
 Inertia Statement −
 Inertia Function −
 InPos Function −
 Input Statement −
 Input# Statement + Input is available from devices
 InputBox Statement −
 InStr Function −
 Int Function −
 Integer Statement −
 InW Function −
 InW($n) Statement × Replaced to MemInW
 IONumber Function −
J J4Flag Statement −
 J4Flag Function −
 J6Flag Statement −
 J6Flag Function −
 JA Function −
 JRange Statement −
 JRange Function −
 JS Function ! Returns True/False
 JT Function −
 JTran Statement −
 Jump Statement + Added PerformMode parameter.
 Jump3 Statement −
 Jump3CP Statement −
K Kill Statement × Replaced with Del
L LCase$ Function −
 Left$ Function −
 Len Function −
 LimZ Statement −
 LimZ Function −
 Line Input Statement −
 Line Input# Statement + Input is available from devices
 LoadPoints ! Extension “.pnt” has changed to “.pts”

Appendix B: Precaution of Compatibility

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 895

Command Compatibility Note
 Local Statement ! Local number “0” is an error
 Local Function ! Local number “0” is an error
 LocalClr Statement −
 Lof Function −
 LogIn Statement ! Changed from a statement to a function
 Long Statement −
 LPrint Statement ×
 LSet$ Function −
 LShift Function + Argument range check has been added
 LTrim$ Function −
M Mask Operator −
 MCal Statement −
 MCalComplete Function −
 MCofs Statement ×
 MCofs Function ×
 MCordr Statement −
 MCordr Function −
 Mcorg Statement ×
 MemIn Function −
 MemInW Function −
 MemOff Statement −
 MemOn Statement −
 MemOut Statement −
 MemOutW Statement −
 MemSw Function −
 Mid$ Function −
 MKDir Statement −
 Mod Operator −
 Motor Statement −
 Motor Function −
 Move Statement −
 MsgBox Statement −
 MyTask Function −
N Not Operator −
O Off Statement −
 Off$ Statement × Replaced to MemOff
 OLRate Statement −
 OLRate Function −
 On Statement −
 On$ Statement × Replaced to MemOn
 OnErr −
 OP_* ×
 OpBCD Statement −
 OpenCom Statement ! OpenCom is mandatory
 OpenNet Statement −
 Oport Function −
 Or Operator −

Appendix B: Precaution of Compatibility

896 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Command Compatibility Note
 Out Statement −
 Out Function −
 Out$ Statement × Replaced to MemOut
 OutW Statement −
 OutW Function −
 OutW$ Statement × Replaced to MemOutW
P PAgl Function −
 Pallet Statement −
 Pallet Function −
 ParsStr Statement −
 ParsStr Function −
 Pass Statement + Able to specify continuous point
 Pause Statement −
 PauseOn Function −
 PDef Function −
 PDel + Argument check has been added
 PLabel$ Function −
 PLabel Statement −

 PList !!
Changed the display type
Argument check has been added
Function of Plist* has been deleted

 PLocal Statement −
 PLocal Function −
 Pls Function −
 PNumber Function −
 Point Assignment −
 Point Expression −
 POrient Statement ×
 POrient Function ×
 PosFound Function ! Returns True/False
 Power Statement −
 Power Function −
 PPls Function −

 Print Statement !
Outputs all flags at point output
Sets the output digit number of Double
type and Real type to significant figure

 Print# Statement ! Same as Print Statement
Enables Print to each devices

 PTCLR Statement −
 PTPBoost Statement −
 PTPBoost Function −
 PTPBoostOK Function ! Returns True/False
 PTPTime Function −
 PTran Statement −
 PTRQ Statement −
 PTRQ Function −
 Pulse Statement −
 Pulse Function −

Appendix B: Precaution of Compatibility

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 897

Command Compatibility Note
Q QP Statement −
 Quit Statement −
R RadToDeg Function −
 Randmize Statement + Seed value can be specified
 Range Statement −
 Read Statement −

 ReadBin Statement + Able to read multiple bytes to array
variable

 Real Statement ! 6 digit significant figure
 Recover Statement ! Able to execute by the setting

 Redim Statement !
Element number is limited
Array called by reference cannot be
executed

 Rename Statement −
 RenDir Statement −
 Reset Statement −
 Resume Statement −
 Restart Statement −
 Reset Statement + Added Reset Error
 Return Statement −
 Right$ Function −
 RmDir Statement −
 Rnd Function −
 Robot Statement + Added the RS series
 Robot Function −
 RobotModel$ Function −
 RobotType Function −
 ROpen Statement ×
 RSet$ Function −
 RShift Function + Argument check has been added
 RTrim$ Function −
 RunDialog Statement −
S SafetyOn Function + Able to specify Wait
 SavePoints Statement ! Extension (.pnt) has changed to (.pts)
 Seek Statement −
 Select...Send −
 Sense −

 SetCom Statement !
Cannot specify “56000” for the transfer
rate
Port with OpenCom cannot be executed

 SetNet Statement −
 SFree Statement −
 SFree Function −
 Sgn Function −
 Shutdown Statement −
 Signal Statement −
 Sin Function −
 SLock Statement −
 Space$ Function −

Appendix B: Precaution of Compatibility

898 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Command Compatibility Note
 Speed Statement −
 Speed Function + Argument optional
 SpeedR Statement −
 SpeedR Function −
 SpeedS Statement −
 SpeedS Function −

 SPELCom_Event
Statement −

 SPELCom_Return
Statement ×

 Sqr Function −
 Stat Function ! Some information cannot be retrieved
 Str$ Function −
 String Statement −
 Sw Function −
 Sw($) Function × Replaced to MemSw

 SyncLock Statement !
Error occurs by executing SyncLock
repeatedly
Lock is released when the task is
completed

 SyncUnlock Statement −
T Tab$ Function −
 Tan Function −
 TargetOK Function ! Returns True/False
 TaskDone Function −

 TaskState Function ! 6 specified tasks do not return while Wait
statement execution

 TaskWait Statement −
 TGo Statement + Added PerformMode parameter.
 TillOn Function −
 Time Command ! Only displays
 Time Function −
 Time$ Function −
 TLClr Statement −
 TLSet Statement −
 TLSet Function −
 TMOut Statement −
 TMove Statement −
 Tmr Function −
 TmReset Statement −
 Tool Statement −
 Tool Function −

 Trap Statement !!
Compatibility with Trap Goto
Trap Gosub abolished and replaced to
Trap Call
Trap Call is renamed to Trap Xqt
Added Trap Finish

 Trim$ Function −
 Tw Function ! Returns True/False
 Type Statement −

Appendix B: Precaution of Compatibility

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 899

Command Compatibility Note
U UBound Function −
 UCase$ Function −
 UOpen Statement −
V Val Function −
 Ver Statement × Replaced to SysConfig
 Verinit Statement ×

W Wait Statement + Added the global variables and others as
the wait condition

 WaitNet Statement −
 WaitPos Statement −
 WaitSig Statement −
 Weight Statement + Added the designation of S, T
 Weight Function + Added the designation of S, T
 Where Statement ! Coordinate value always displays 6-axis
 While..Wend × Replaced to Do...Loop
 WOpen Statement −
 Wrist Statement −
 Wrist Function −
 Write Statement −

 WriteBin Statement + Multiple bytes can be listed from the array
variable

X Xor Operator −
 Xqt Statement + Able to specify NoEmgAbort
 XY Function −
 XYLim Statement −
 XYLim Function −
Z ZeroFlg Function ×

Appendix C: Commands of EPSON RC+7.0

900 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Appendix C: Commands of EPSON RC+7.0

C-1: List of Commands Added EPSON RC+4.0 or Later
AbortMotion Statement
AccelMax Function
AglToPls Function
AIO_Out Statement
AIO_Out Function
AIO_OutW Statement
AIO_OutW Function
AIO_Set Statement
AIO_Set Function
AIO_TrackingSet Statement
AIO_TrackingStart Statement
AIO_TrackingEnd Statement
AIO_TrackingOn Function
AIO_In Function
AIO_InW Function
Align Function
AlignECP Function
AreaCorrection Function
AreaCorrectionClr Statement
AreaCorrectionDef Function
AreaCorrectionInv Function
AreaCorrectionOffset Function
AreaCorrectionSet Statement
ArmCalib Statement
ArmCalib Function
ArmCalibSet Statement
ArmCalibSet Function
ArmCalibClr Statement
ArmCalibDef Function
ArmDef Function
ATCLR Statement
AtHome Function
ATRQ Statement
ATRQ Function
AutoLJM Statement
AutoLJM Function
AvoidSingularity Statement
AvoidSingularity Function

BClr Function
BClr64 Function
Box Statement
Box Function
BoxClr Function
BoxDef Function
Brake Function
BSet Function
BSet64 Function
BTst Function
BTst64 Function

ChDisk Statement
ChkCom Function
ChkNet Function
CloseCom Statement
CloseDB Statement
CloseNet Statement
Cls Statement
CP Statement
CP Function
CP_Offset Statement
CP_Offset Function
CR Statement
CR Function CS Statement
CS Function
CT Statement
CT Function
CtrlDev Function
Curve Statement
CVMove Statement
Cnv_Accel Statement
Cnv_Accel Function
Cnv_AccelLim Statement
Cnv_AccelLim Function
Cnv_Adjust Statement
Cnv_AdjustClear Statement
Cnv_AdjustGet Statement
Cnv_AdjustSet Statement
Cnv_DownStream Statement
Cnv_Mode Statement
Cnv_Mode Function
Cnv_OffsetAngle Statement
Cnv_OffsetAngle Function
Cnv_PosErrOffset Statement
Cnv_Upstream Statement
CollisionDetect Statement
CollisionDetect Function

DegToRad Function
DeleteDB Statement
DiffPoint Function
DispDev Statement
DispDev Function
Dist Function

EcpDef Function
ElapsedTime Function
EResume Statement
Errb Function
ErrorOn Function
Error Statement
EStopOn Function
Exit Statement
ExportPoints Statement

FindPos Function
Find Statement
FineDist Statement
FineDist Function
FineStatus Function
Fix Function
Flush Statement
Fmtstr Statement
FunctionHere Statement

GetRobotInsideBox Function
GetRobotInsidePlane Statement

Hand_On Statement
Hand_On Function、
Hand_Off Statement
Hand_Off Function
Hand_TW Function
Hand_Def Function
Hand_Type Function
Hand_Label$ Function
Hand_Number Function
HealthCalcPeriod Statement
HealthCalcPeriod Function
HealthCtrlAlarmOn Function
HealthCtrlInfo Statement
HealthCtrlInfo Function
HealthCtrlRateOffset Statement
HealthCtrlReset Statement
HealthCtrlWarningEnable Statement
HealthCtrlWarningEnable Function
HealthRateCtrlInfo Function
HealthRateRBInfo Function
HealthRBAlarmOn Function
HealthRBAnalysis Statement
HealthRBAnalysis Function
HealthRBDistance Statement
HealthRBDistance Function
HealthRBInfo Statement
HealthRBInfo Function
HealthRBRateOffset Statement
HealthRBReset Statement
HealthRBSpeed Statement
HealthRBSpeed Function
HealthRBStart Statement
HealthRBStop Statement
HealthRBTRQ Statement
HealthRBTRQ Function
HealthRBWarningEnable Statement
HealthRBWarningEnable Function

Appendix C: Commands of EPSON RC+7.0

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 901

Here Function
Hex$ Function
HofsJointAccuracy Statement
HomeClr Statement
HomeDef Function

InReal Function
InsideBox Function
InsidePlane Function
InStr Function
IODef Function
IOLabel$ Function
IONumber Function

J1Angle Statement
J1Angle Function
J4Angle Statement
JA Function
Joint Statement
JointAccuracy Statement
JointAccuracy Function
JumpTLZ Statement
JTran Statement

LatchEnable Statement
LatchState Function
LatchPos Function
LimZMargin Statement
LimZMargin Function
LimitTorque Statement
LimitTorque Function
LimitTorqueLP Statement
LimitTorqueLP Function
LimitTorqueStop Statement
LimitTorqueStop Function
LimitTorqueStopLP Statement
LimitTorqueStopLP Function
LJM Function
LocalDef Function
LShift64 Function

MemInW Function
MemOutW Statement
MHour Function

OLAccel Statement
OLAccel Function
OpenCom Statement
OpenCom Function
OpenDB Statement
OpenNet Statement
OpenNet Function
OutReal
OutReal Function

P# Statement
PalletClr Statement
PauseOn Function
PDef Function
PDel Statement
PDescription Statement
PDescription Function
PerformMode Statement
PerformMode Function
PG_FastStop Statement
PG_LSpeed Statement
PG_LSpeed Function
PG_Scan Statement
PG_SlowStop Statement
PLabel Statement
PLabel$ Function
PlaneClr Statement
PlaneDef Statement
Plane Statement
Plane Function
PList Statement
PLocal Statement
PLocal Function
PNumber Function
PosFound Function
PTCLR Statement
PTPBoostOK Function
PTPTime Function
PTran Statement
PTRQ Statement
PTRQ Function

QPDECELR Statement
QPDECELR Function
QPDECELS Statement
QPDECELS Function

RadToDeg Function
Randomize Statement
ReadBin Statement
Read Statement
RealAccel Function
RealPls Function
RealPos Function
RealTorque Function
RecoverPos Function
Recover Statement
Redim Statement
Rnd Function
ResetElapsedTime Statement
Rnd Function
RobotInfo Function
RobotInfo$ Function
RobotModel$ Function
RobotName$ Function
RobotSerial$ Function
RobotType Function
ROTOK Function
RShift64 Function

SafetyOn Function
SelectDB Statement
SetCom Statement
SetInW Statement
SetIn Statement
SetNet Statement
SetSw Statement
SF_GetParam Function
SF_GetParam$ Function
SF_GetStatus Function
SF_LimitSpeedS Statement
SF_LimitSpeedS Function
SF_LimitSpeedEnable Statement
SF_LimitSpeedEnable Function
SF_PeakSpeedS Statement
SF_PeakSpeedS Function
SF_PeakSpeedSClear Statement
SF_RealSpeedS Statement
SF_RealSpeedS Function
Shutdown Function
SimGet Statement
SimSet Statement
SysErr Function

Appendix C: Commands of EPSON RC+7.0

902 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

SingularityAngle Statement
SingularityAngle Function
SingularityDist Statement
SingularityDist Function
SingularitySpeed Statement
SingularitySpeed Function
SoftCP Statement
SoftCP Function
SpeedFactor Statement
SpeedFactor Function
StartMain Statement
SyncRobots Statement
SyncRobots Function

Tab$ Function
TargetOK Function
TaskDone Function
TaskInfo Function
TaskInfo$ Function
TaskState Statement
TaskState Function
TaskWait Statement
TC Statement
TCLim Statement
TCLim Function
TCSpeed Statement
TCSpeed Function
TeachOn Function
TillOn Function
TlDef Function
Toff Statement
Ton Statement

UBound Function
UpdateDB Statement

VDefArm Statement
VDefLocal Statement
VDefSetMotionRange
Statement
VDefGetMotionRange
Statement
VDefTool Statement
VGoCenter Statement
VSD Statement
VSD Function
VxCalib Statement
VxCalDelete Statement
VxCalLoad Statement
VxCalInfo Function
VxCalSave Statement
VxTrans Function

WaitNet Statement
WaitPos Statement
Where Statement
WindosStatus Function
WriteBin Statement
Write Statement
WorkQue_Add Statement
WorkQue_AutoRemove
Statement
WorkQue_AutoRemove
Function
WorkQue_Get Function
WorkQue_Len Function
WorkQue_List Statement
WorkQue_Reject Statement
WorkQue_Reject Function
WorkQue_Remove Statement
WorkQue_Sort Statement
WorkQue_Sort Function
WorkQue_UserData Statement
WorkQue_UserData Function

XYLimClr Statement
XYLimDef Statement
XY Function

Appendix C: Commands of EPSON RC+7.0

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 903

C-2: List of Commands Added for Each Version of EPSON RC+ 7.0
Common with EPSON RC+ 6.0, 5.0, and 4.0

Version of
EPSON RC+7.0 New Commands

Ver.7.5.4

Cnv_AccelLim
Cnv_AccelLim Function
SF_GetParam Function
SF_GetParam$ Function
SF_GetStatus Function
SF_LimitSpeedS
SF_LimitSpeedS Function

SF_LimitSpeedEnable
SF_LimitSpeedEnable Function
SF_PeakSpeedS
SF_PeakSpeedS Function
SF_PeakSpeedSClear
SF_RealSpeedS
SF_RealSpeedS Function

Ver.7.5.3

AreaCorrection Function
AreaCorrectionClr
AreaCorrectionDef Function
AreaCorrectionInv Function

AreaCorrectionOffset Function
AreaCorrectionSet
Cnv_PosErrOffset

Ver.7.5.2 XYLimMode
XYLimMode Function

Ver.7.5.1 ArmCalib
ArmCalib Function
ArmCalibSet
ArmCalibSet Function
ArmCalibClr
ArmCalibDef Function
JointAccuracy
JointAccuracy Function
Hand_On Statement
Hand_On Function
Hand_Off Statement
Hand_Off Function

Hand_TW Function
Hand_Def Function
Hand_Type Function
Hand_Label$ Function
Hand_Number Function
HofsJointAccuracy
Cnv_Adjust
Cnv_AdjustClear
Cnv_AdjustGet
Cnv_AdjustSet
DiffPoint Function
ROTOK Function

Ver.7.4.3 AIO_TrackingSet
AIO_TrackingStart

AIO_TrackingEnd
AIO_TrackingOn Function

Ver.7.4.1 AutoOrientationFlag
AutoOrientationFlag Function

Ver.7.3.4 SimGet
SimSet

Ver.7.3.3 HealthCtrlWarningEnable
Statement
HealthCtrlWarningEnable
Function

HealthRBWarningEnable Statement
HealthRBWarningEnable Function

Ver.7.3.2 PDescription Statement PDescription Function

Ver.7.3.1 AIO_Out Statement
AIO_Out Function
AIO_OutW Statement
AIO_OutW Function
AIO_Set Statement

AIO_Set Function
AIO_In Function
AIO_InW Function
HealthCalcPeriod Statement
HealthCalcPeriod Function

Ver.7.3.0 VDefArm Statement
VDefGetMotionRange Statement
VDefLocal Statement

VDefSetMotionRange Statement
VDefTool Statement
VGoCenter Statement

Ver.7.2.0 CP_Offset Function
CP_Offset Statement
HealthCtrlAlarmOn Statement
HealthCtrlInfo Function
HealthCtrlInfo Statement

HealthRBReset HealthRBSpeed Function
HealthRBSpeed Statement
HealthRBStart Function
HealthRBStop Function
HealthRBTRQ Function

Appendix C: Commands of EPSON RC+7.0

904 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

HealthCtrlRateOffset Function
HealthCtrlReset Function
HealthRateCtrlInfo Statement
HealthRateRBInfo Statement
HealthRBAlarmOn Statement
HealthRBAnalysis Function
HealthRBAnalysis Statement
HealthRBDistance Function
HealthRBDistance Statement
HealthRBInfo Function
HealthRBInfo Statement
HealthRBRateOffset Function

HealthRBTRQ Statement
J4Angle Function
JumpTLZ Function
LimitTorqueLP Function
LimitTorqueLP Statement
LimitTorqueStop Function
LimitTorqueStop Statement
LimitTorqueStopLP Function
LimitTorqueStopLP Statement
VSD Function
VSD Statement

Ver.7.1.4 CollisionDetectStatement Function

Ver.7.1.3 CollisionDetect Function
MHourStatement Function

Ver.7.1.2 SingularityDist Function
SingularityDist Statement

ExportPoints Function

Ver.7.1.0 BClr64 Statement
BSet64 Statement
BTst64 Statement
FineDist Function
FineDist Statement
FineStatus Statement
Fmtstr Function
IODef Statement
LShift64 Statement
RealAccel Statement
RShift64 Statement
WorkQue_Add Function
WorkQue_AutoRemove Function

WorkQue_AutoRemove Statement
WorkQue_Get Statement
WorkQue_Len Statement
WorkQue_List Function
WorkQue_Reject Function
WorkQue_Reject Statement
WorkQue_Remove Function
WorkQue_Sort Function
WorkQue_Sort Statement
WorkQue_UserData Function
WorkQue_UserData Statement

Ver.7.0.3 PerformMode Function PerformMode Statement

Appendix C: Commands of EPSON RC+7.0

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 905

For EPSON RC+7.0 Ver.7.0.0, new commands are different from EPSON RC+ 6.0 and
EPSON RC+ 5.0.

Added commands for EPSON RC+ 6.0, 5.0.

Version of
EPSON RC+7.0 EPSON RC+ 6.0 EPSON RC+ 5.0

Ver.7.0.0
AutoLJM Function
AutoLJM Statement
AvoidSingularity Function
AvoidSingularity Statement

AbortMotion Function
AutoLJM Function
AutoLJM Statement
AvoidSingularity Function
AvoidSingularity Statement

Cnv_Accel Function
Cnv_Accel Statement
Cnv_Down Stream Function
Cnv_Mode Function
Cnv_Mode Statement
Cnv_Upstream Function

ChDisk Function
CloseDB Function
Cnv_Accel Function
Cnv_Accel Statement
Cnv_DownStream Function
Cnv_Mode Function
Cnv_Mode Statement
Cnv_Upstream Function

CR Function
CR Statement
CS Function
CS Statement
CT Function
CT Statement

DeleteDB Function DeleteDB Function
ElapsedTime Statement
Errb Statement

Errb Statement
Flush Function
GetRobotInsideBox Statement
GetRobotInsidePlane
Statement
J1Angle Function
J1Angle Statement

LimZMargin Function
LimZMargin Statement
LimitTorque Function
LimitTorqueStatement

LimZMargin Function
LimZMargin Statement
LimitTorque Function
LimitTorque Statement
OpenDB Function

PalletClr Function

PalletClr Function
PG_FastStop Function
PG_LSpeed Function
PG_LSpeed Statement
PG_Scan Function
PG_SlowStop Function
QPDECELR Function
QPDECELR Statement
QPDECELS Function
QPDECELS Statement
RecoverPos Statement
Recover Function

ResetElapsedTime Function
SelectDB Function
Shutdown Statement

NOTE

Appendix C: Commands of EPSON RC+7.0

906 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Version of

 EPSON RC+7.0 EPSON RC+ 6.0 EPSON RC+ 5.0

Ver.7.0.0 SingularityAngle Function
SingularityAngle Statement
SingularitySpeed Function
SingularitySpeed Statement
SpeedFactor Function
SpeedFactor Statement

SingularityAngle Function
SingularityAngle Statement
SingularitySpeed Function
SingularitySpeed Statement
SpeedFactor Function
SpeedFactor Statement

StartMain Function
SyncRobots Function
SyncRobots Statement
TeachOnStatement Function

UpdateDB Function UpdateDB Function
WindosStatus Statement

Added commands for EPSON RC+ 4.0.

Version of
EPSON RC+7.0 EPSON RC+ 4.0

Ver.7.0.0 AbortMotion Function
AccelMax Statement
AglToPls Statement
Align Statement
AlignECP Statement
ArmDef Statement
ATCLR Function
AtHome Statement
ATRQ Function
ATRQ Statement
AutoLJM Function
AutoLJM Statement
AvoidSingularity Function
AvoidSingularity Statement

BClr Statement
Box Function
Box Statement
BoxClr Statement
BoxDef Statement
Brake Statement
BSet Statement
BTst Statement

ChDisk Function
ChkCom Statement
ChkNet Statement
CloseCom Function
CloseDB Function
CloseNet Function
Cls Function
CP Function
CP Statement

CR Function
CR Statement
CS Function
CS Statement
CT Function
CT Statement
CtrlDev Statement
Curve Function
CVMove Function
Cnv_Accel Function
Cnv_Accel Statement
Cnv_DownStream Function
Cnv_Mode Function
Cnv_Mode Statement
Cnv_OffsetAngle Function
Cnv_OffsetAngle Statement
Cnv_Upstream Function

DegToRad Statement
DeleteDB Function
DispDev Function
DispDev Statement
Dist Statement

EcpDef Statement
EResume Function
Errb Statement
ErrorOn Statement
Error Function
EStopOn Statement
Exit Function

Appendix C: Commands of EPSON RC+7.0

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 907

Version of
EPSON RC+7.0 EPSON RC+ 4.0

Ver.7.0.0 FindPos Statement
Find Function
FineStatus Statement
Fix Statement
Flush Function

GetRobotInsideBox
Statement
GetRobotInsidePlane
Statement

Here Function
Here Statement
Hex$ Statement
HomeClr Function
HomeDef Statement

InReal Statement
InsideBox Statement
InsidePlane Statement
InStr Statement
IOLabel$ Statement
IONumber Statement

J1Angle Function
J1Angle Statement
JA Statement
Joint Function
JTran Function

LatchEnable Function
LatchState Statement
LatchPos Statement
LimZMargin Function
LimZMargin Statement
LimitTorque Function
LimitTorque Statement
LJM Statement
LocalDef Statement

MemInW Statement
MemOutW Function

OLAccel Function
OLAccel Statement
OpenCom Function
OpenCom Statement
OpenDB Function
OpenNet Function
OpenNet Statement
OutReal Function
OutReal Statement

P# Function
PalletClr Function
PauseOn Statement
PDef Statement
PDel Function
PG_FastStop Function
PG_LSpeed Function
PG_LSpeed Statement
PG_Scan Function
PG_SlowStop Function
PLabel Function
PLabel$ Statement
PlaneClr Function
PlaneDef Function
Plane Function
Plane Statement
PList Function
PLocal Function
PLocal Statement
PNumber Statement
PosFound Statement
PTCLR Function
PTPBoostOK Statement
PTPTime Statement
PTran Function
PTRQ Function
PTRQ Statement

QPDECELR Function
QPDECELR Statement
QPDECELS Function
QPDECELS Statement

RadToDeg Statement
Randomize Function
ReadBin Function
Read Function
RealPls Statement
RealPos Statement
RealTorque Statement
RecoverPos Statement
Recover Function

Appendix C: Commands of EPSON RC+7.0

908 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Version of

EPSON RC+7.0 EPSON RC+ 4.0

Ver.7.0.0 Redim Function
RobotInfo Statement
RobotInfo$ Statement
RobotModel$ Statement
RobotName$ Statement
RobotSerial$ Statement
RobotType Statement

SafetyOn Statement
SelectDB Function
SetCom Function
SetInW Function
SetIn Function
SetNet Function
SetSw Function
Shutdown Statement
SingularityAngle Function
SingularityAngle Statement
SingularitySpeed Function
SingularitySpeed Statement
SoftCP Function
SoftCP Statement
SpeedFactor Function
SpeedFactor Statement
StartMain Function
SyncRobots Function
SyncRobots Statement
SysErr Statement

Tab$ Function
TargetOK Statement
TaskDone Statement
TaskInfo Statement
TaskInfo$ Statement
TaskState Function
TaskState Statement
TaskWait Function
TC Function
TCLim Function
TCLim Statement
TCSpeed Function
TCSpeed Statement
TeachOn Statement
TillOn Statement
TlDef Statement
Toff Function
Ton Function

UBound Statement
UpdateDB Function

VxCalib Function
VxCalDelete Function
VxCalLoad Function
VxCalInfo Statement
VxCalSave Function
VxTrans Statement

WaitNet Function
WaitPos Function
Where Function
WindosStatus Statement
WriteBin Function
Write Function

XYLimClr Function
XYLimDef Function
XY Statement

Appendix C: Commands of EPSON RC+7.0

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 909

C-3: Deletion Commands (Sort by Version)
Deletion commands of EPSON RC+ 6.0, 5.0, and 4.0.

Version of
EPSON RC+7.0 EPSON RC+ 6.0 EPSON RC+ 5.0 EPSON RC+ 4.0

Ver.7.1.2 SetLCD Function SetLCD Function SetLCD Function

Ver.7.0.0 Dir Function
Type Function - Dir Function

Type Function

Appendix D: Predefined Constants

910 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Appendix D: Predefined Constants
There are several predefined constants for use in SPEL+ program. A project build time, the values for these
constants are substituted for the constant name.

Constant name Value Use
TRUE -1 Boolean expression
FALSE 0 Boolean expression
High 1
Low 0
Off 0
On 1
Above 1
Below 2
NoFlip 1
Flip 2
Righty 1
Lefty 2
J1 1
J2 2
J3 4
J4 8
J5 16
J6 32
J7 64
CR CHR$(13)

CRLF CHR$(13)+
CHR$(10)

LF CHR$(10)
MB_OK 0 MsgBox flags
MB_OKCANCEL 1 MsgBox flags
MB_ABORTRETRYIGNORE 2 MsgBox flags
MB_YESNOCANCEL 3 MsgBox flags
MB_YESNO 4 MsgBox flags
MB_RETRYCANCEL 5 MsgBox flags
MB_ICONSTOP 16 MsgBox flags
MB_ICONQUESTION 32 MsgBox flags
MB_ICONEXCLAMATION 48 MsgBox flags
MB_ICONINFORMATION 64 MsgBox flags
MB_DEFBUTTON1 0 MsgBox flags
MB_DEFBUTTON2 256 MsgBox flags
IDOK 1 MsgBox return
IDCANCEL 2 MsgBox return
IDABORT 3 MsgBox return
IDRETRY 4 MsgBox return
IDIGNORE 5 MsgBox return
IDYES 6 MsgBox return
IDNO 7 MsgBox return
BACKCOLORMODE_VISUALSTYLE 0 For GUI Builder
BACKCOLORMODE_USER 1 For GUI Builder
BORDERSTYLE_NONE 0 For GUI Builder
BORDERSTYLE_FIXEDSINGLE 1 For GUI Builder
BORDERSTYLE_FIXED3D 2 For GUI Builder
CNV_QUELEN_ALL 0 Cnv_QueLen
CNV_QUELEN_UPSTREAM 1 Cnv_QueLen
CNV_QUELEN_PICKUPAREA 2 Cnv_QueLen
CNV_QUELEN_DOWNSTREAM 3 Cnv_QueLen
DEVID_SELF 21 CLS
DEVID_TP 24 CLS
DEVID_TP3 30 CLS
DIALOGRESULT_NOE 0 For GUI Builder
DIALOGRESULT_OK 1 For GUI Builder

Appendix D: Predefined Constants

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 911

Constant name Value Use
DIALOGRESULT_CANCEL 2 For GUI Builder
DLG_IOMON 102 RunDialog
DLG_ROBOTMNG 100 RunDialog
DLG_VGUIDE 110 RunDialog
DOCK_NONE 0 For GUI Builder
DOCK_TOP 1 For GUI Builder
DOCK_BOTTOM 2 For GUI Builder
DOCK_LEFT 3 For GUI Builder
DOCK_RIGHT 4 For GUI Builder
DOCK_FILL 5 For GUI Builder
DROPDOWNSTYLE_SIMPLE 0 For GUI Builder
DROPDOWNSTYLE_DROPDOWN 1 For GUI Builder
DROPDOWNSTYLE_DROPDOWNLIST 2 For GUI Builder
ERROR_DOINGMOTION 2999 For GUI Builder
ERROR_NOMOTION 2998 For GUI Builder
EVENTTASKTYPE_NORMAL 0 For GUI Builder
EVENTTASKTYPE_NOPAUSE 1 For GUI Builder
EVENTTASKTYPE_NOEMGABORT 2 For GUI Builder
FORCE_LESS 0 Force_SetTrigger
FORCE_GREATER 1 Force_SetTrigger
FORCE_XFORCE 2 Force_SetTrigger
FORCE_YFORCE 3 Force_SetTrigger
FORCE_ZFORCE 4 Force_SetTrigger
FORCE_XTORQUE 5 Force_SetTrigger
FORCE_YTORQUE 6 Force_SetTrigger
FORCE_ZTORQUE 7 Force_SetTrigger
FORMBORDERSTYLE_NONE 0 For GUI Builder
FORMBORDERSTYLE_FIXEDSINGLE 1 For GUI Builder
FORMBORDERSTYLE_FIXED3D 2 For GUI Builder
FORMBORDERSTYLE_FIXEDDIALOG 3 For GUI Builder
FORMBORDERSTYLE_SIZABLE 4 For GUI Builder
IMAGEALIGN_TOPLEFT 1 For GUI Builder
IMAGEALIGN_TOPCENTER 2 For GUI Builder
IMAGEALIGN_TOPRIGHT 3 For GUI Builder
IMAGEALIGN_MIDDLELEFT 4 For GUI Builder
IMAGEALIGN_MIDDLECENTER 5 For GUI Builder
IMAGEALIGN_MIDDLERIGHT 6 For GUI Builder
IMAGEALIGN_BOTTOMLEFT 7 For GUI Builder
IMAGEALIGN_BOTTOMCENTER 8 For GUI Builder
IMAGEALIGN_BOTTOMRIGHT 9 For GUI Builder
IOTYPE_INPUT 0 IOLabel function
IOTYPE_OUTPUT 1 IOLabel function
IOTYPE_MEMORY 2 IOLabel function
IOSIZE_BIT 1 IOLabel function
IOSIZE_BYTE 8 IOLabel function
IOSIZE_WORD 16 IOLabel function
LANGID_ENGLISH 0 ErrMsg$
LANGID_JAPANESE 1 ErrMsg$
LANGID_GERMAN 2 ErrMsg$
LANGID_FRENCH 3 ErrMsg$
LANGID_SIMPLIFIED_CHINESE 4 ErrMsg$
LANGID_TRADITIONAL_CHINESE 5 ErrMsg$
MODE_STANDARD 1 PerformMode
MODE_HIGH_SPEED 2 PerformMode
MODE_LOW_OSCILLATION 3 PerformMode
ORIENT_HORIZONTAL 0 For GUI Builder
ORIENT_VERTICAL 1 For GUI Builder
PROGRESSBAR_STYLE_BLOCKS 0 For GUI Builder
PROGRESSBAR_STYLE_CONT 1 For GUI Builder
PROGRESSBAR_STYLE_MARQUEE 2 For GUI Builder
SCROLLBARS_NONE 0 For GUI Builder

Appendix D: Predefined Constants

912 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Constant name Value Use
SCROLLBARS_HORIZ 1 For GUI Builder
SCROLLBARS_VERT 2 For GUI Builder
SCROLLBARS_BOTH 3 For GUI Builder
SETLATCH_PORT_CU_0 24 SetLatch
SETLATCH_PORT_CU_1 25 SetLatch
SETLATCH_PORT_DU1_0 56 SetLatch
SETLATCH_PORT_DU1_1 57 SetLatch
SETLATCH_PORT_DU2_0 280 SetLatch
SETLATCH_PORT_DU2_1 281 SetLatch
SETLATCH_TRIGGERMODE_LEADINGEDGE 1 SetLatch
SETLATCH_TRIGGERMODE_TRAILINGEDGE 0 SetLatch
SHUTDOWN_ALL 0 Shutdown
SHUTDOWN_RESTART 1 Shutdown
SHUTDOWN_EPSONRC 2 Shutdown
SING_NONE 0 AvoidSingularity
SING_THRU 1 AvoidSingularity
SING_THRUROT 2 AvoidSingularity
SING_VSD 3 AvoidSingularity
SING_AUTO 4 AvoidSingularity
SIZEMODE_NORMAL 0 For GUI Builder
SIZEMODE_STRETCHIMAGE 1 For GUI Builder
SIZEMODE_AUTOSIZE 2 For GUI Builder
SIZEMODE_CENTERIMAGE 3 For GUI Builder
SIZEMODE_ZOOM 4 For GUI Builder
STARTPOSITION_MANUAL 0 For GUI Builder
STARTPOSITION_CENTERSCREEN 1 For GUI Builder
STARTPOSITION_CENTERPARENT 2 For GUI Builder
TEXTALIGN_LEFT 1 For GUI Builder
TEXTALIGN_CENTER 2 For GUI Builder
TEXTALIGN_RIGHT 3 For GUI Builder
TEXTALIGN_TOPLEFT 1 For GUI Builder
TEXTALIGN_TOPCENTER 2 For GUI Builder
TEXTALIGN_TOPRIGHT 3 For GUI Builder
TEXTALIGN_MIDDLELEFT 4 For GUI Builder
TEXTALIGN_MIDDLECENTER 5 For GUI Builder
TEXTALIGN_MIDDLERIGHT 6 For GUI Builder
TEXTALIGN_BOTTOMLEFT 7 For GUI Builder
TEXTALIGN_BOTTOMCENTER 8 For GUI Builder
TEXTALIGN_BOTTOMRIGHT 9 For GUI Builder
TICKSTYLE_NONE 0 For GUI Builder
TICKSTYLE_TOPLEFT 1 For GUI Builder
TICKSTYLE_BOTTOMRIGHT 2 For GUI Builder
TICKSTYLE_BOTH 3 For GUI Builder
VISION_SORT_NONE 0 For Vision Guide
VISION_SORT_PIXELX 1 For Vision Guide
VISION_SORT_PIXELY 2 For Vision Guide
VISION_SORT_PIXELXY 3 For Vision Guide
VISION_SORT_CAMERAX 4 For Vision Guide
VISION_SORT_CAMERAY 5 For Vision Guide
VISION_SORT_CAMERAXY 6 For Vision Guide
VISION_SORT_ROBOTX 7 For Vision Guide
VISION_SORT_ROBOTY 8 For Vision Guide
VISION_SORT_ROBOTXY 9 For Vision Guide
VISION_SIZETOFIND_ANY 0 For Vision Guide
VISION_SIZETOFIND_LARGEST 1 For Vision Guide
VISION_SIZETOFIND_SMALLEST 2 For Vision Guide
VISION_BACKCOLOR_NONE 0 For Vision Guide
VISION_BACKCOLOR_BLACK 1 For Vision Guide
VISION_BACKCOLOR_WHITE 2 For Vision Guide
VISION_CAMORIENT_STANDALONE 1 For Vision Guide
VISION_CAMORIENT_FIXEDDOWN 2 For Vision Guide

Appendix D: Predefined Constants

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 913

Constant name Value Use
VISION_CAMORIENT_FIXEDUP 3 For Vision Guide
VISION_CAMORIENT_MOBILEJ2 4 For Vision Guide
VISION_CAMORIENT_MOBILEJ4 5 For Vision Guide
VISION_CAMORIENT_MOBILEJ5 6 For Vision Guide
VISION_CAMORIENT_MOBILEJ6 7 For Vision Guide
VISION_FOUNDCOLOR_LIGHTGREEN 1 For Vision Guide
VISION_FOUNDCOLOR_DARKGREEN 2 For Vision Guide
VISION_GRAPHICS_ALL 1 For Vision Guide
VISION_GRAPHICS_POSONLY 2 For Vision Guide
VISION_GRAPHICS_NONE 3 For Vision Guide
VISION_OPERATION_OPEN 1 For Vision Guide
VISION_OPERATION_CLOSE 2 For Vision Guide
VISION_OPERATION_ERODE 3 For Vision Guide
VISION_OPERATION_DILATE 4 For Vision Guide
VISION_OPERATION_SMOOTH 5 For Vision Guide
VISION_OPERATION_SHARPEN1 6 For Vision Guide
VISION_OPERATION_SHARPEN2 7 For Vision Guide
VISION_OPERATION_HORIZEDGE 8 For Vision Guide
VISION_OPERATION_VERTEDGE 9 For Vision Guide
VISION_OPERATION_EDGEDETECT1 10 For Vision Guide
VISION_OPERATION_EDGEDETECT2 11 For Vision Guide
VISION_OPERATION_LAPLACE1 12 For Vision Guide
VISION_OPERATION_LAPLACE2 13 For Vision Guide
VISION_OPERATION_THIN 14 For Vision Guide
VISION_OPERATION_THICKEN 15 For Vision Guide
VISION_OPERATION_BINARIZE 16 For Vision Guide
VISION_OPERATION_ROTATE 17 For Vision Guide
VISION_OPERATION_FLIPHORIZ 18 For Vision Guide
VISION_OPERATION_FLIPVERT 19 For Vision Guide
VISION_OPERATION_FLIPBOTH 20 For Vision Guide
VISION_OPERATION_COLORFILTER 21 For Vision Guide
VISION_OPERATION_SUBTRACTABS 22 For Vision Guide
VISION_OPERATION_ZOOM 23 For Vision Guide
VISION_ACQUIRE_NONE 0 For Vision Guide
VISION_ACQUIRE_STATIONARY 1 For Vision Guide
VISION_ACQUIRE_STROBED 2 For Vision Guide
VISION_TRIGGERMODE_LEADINGEDGE 1 For Vision Guide
VISION_TRIGGERMODE_TRAILINGEDGE 2 For Vision Guide
VISION_THRESHCOLOR_BLACK 1 For Vision Guide
VISION_THRESHCOLOR_WHITE 2 For Vision Guide
VISION_OBJTYPE_CORRELATIO 1 For Vision Guide
VISION_OBJTYPE_BLOB 2 For Vision Guide
VISION_OBJTYPE_EDGE 3 For Vision Guide
VISION_OBJTYPE_POLAR 4 For Vision Guide
VISION_OBJTYPE_LINE 5 For Vision Guide
VISION_OBJTYPE_POINT 6 For Vision Guide
VISION_OBJTYPE_FRAME 7 For Vision Guide
VISION_OBJTYPE_IMAGEOP 8 For Vision Guide
VISION_OBJTYPE_OCR 9 For Vision Guide
VISION_OBJTYPE_CODEREADER 10 For Vision Guide
VISION_OBJTYPE_GEOMETRIC 11 For Vision Guide
VISION_DETAILLEVEL_MEDIUM 1 For Vision Guide
VISION_DETAILLEVEL_HIGH 2 For Vision Guide
VISION_DETAILLEVEL_VERYHIGH 3 For Vision Guide
VISION_IMAGESOURCE_CAMERA 1 For Vision Guide
VISION_IMAGESOURCE_FILE 2 For Vision Guide
VISION_CODETYPE_AUTO 0 For Vision Guide
VISION_CODETYPE_EAN13 2 For Vision Guide
VISION_CODETYPE_CODE39 3 For Vision Guide
VISION_CODETYPE_INTERLEAVED25 4 For Vision Guide
VISION_CODETYPE_CODE128 5 For Vision Guide
VISION_CODETYPE_CODABAR 6 For Vision Guide

Appendix D: Predefined Constants

914 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Constant name Value Use
VISION_CODETYPE_PDF417 8 For Vision Guide
VISION_CODETYPE_QR 10 For Vision Guide
VISION_CODETYPE_EAN8 13 For Vision Guide
VISION_CODETYPE_UPCA 18 For Vision Guide
VISION_CODETYPE_UPCE 19 For Vision Guide
VISION_CODETYPE_UPC 20 For Vision Guide
VISION_EDGETYPE_SINGLE 1 For Vision Guide
VISION_EDGETYPE_PAIR 2 For Vision Guide
VISION_IMAGECOLOR_ALL 1 For Vision Guide
VISION_IMAGECOLOR_RED 2 For Vision Guide
VISION_IMAGECOLOR_GREEN 3 For Vision Guide
VISION_IMAGECOLOR_BLUE 4 For Vision Guide
VISION_IMAGECOLOR_GRAYSCALE 5 For Vision Guide
VISION_POINTTYPE_POINT 0 For Vision Guide
VISION_POINTTYPE_ENDPOINT 1 For Vision Guide
VISION_POINTTYPE_MIDPOINT 2 For Vision Guide
VISION_POINTTYPE_PERPTOLINE 3 For Vision Guide
VISION_POINTTYPE_STARTPOINT 4 For Vision Guide
VISION_POINTTYPE_PERPTOSTARTPOINT 5 For Vision Guide
VISION_POINTTYPE_PERPTOMIDPOINT 6 For Vision Guide
VISION_POINTTYPE_PERPTOENDPOINT 7 For Vision Guide
VISION_REFTYPE_TAUGHTPOINTS 1 For Vision Guide
VISION_REFTYPE_UPWARDCAMERA 2 For Vision Guide
VISION_IMAGESIZE_320X240 1 For Vision Guide
VISION_IMAGESIZE_640X480 2 For Vision Guide
VISION_IMAGESIZE_800X600 3 For Vision Guide
VISION_IMAGESIZE_1024X768 4 For Vision Guide
VISION_IMAGESIZE_1280X1024 5 For Vision Guide
VISION_IMAGESIZE_1600X1200 6 For Vision Guide
VISION_IMAGESIZE_2048X1536 7 For Vision Guide
VISION_IMAGESIZE_2560X1920 8 For Vision Guide
VISION_WINTYPE_RECTANGLE 1 For Vision Guide
VISION_WINTYPE_ROTATEDRECT 2 For Vision Guide
VISION_WINTYPE_CIRCLE 3 For Vision Guide
VISION_ORIENT_BOTH 1 For Vision Guide
VISION_ORIENT_HORIZ 2 For Vision Guide
VISION_ORIENT_VERT 3 For Vision Guide
VISION_DIRECTION_INSIDEOUT 1 For Vision Guide
VISION_DIRECTION_OUTSIDEIN 2 For Vision Guide
VISION_POLARITY_DARK 1 For Vision Guide
VISION_POLARITY_LIGHT 2 For Vision Guide
VISION_PASSTYPE_SOMEFOUND 1 For Vision Guide
VISION_PASSTYPE_ALLFOUND 2 For Vision Guide
VISION_PASSTYPE_SOMENOTFOUND 3 For Vision Guide
VISION_PASSTYPE_ALLNOTFOUND 4 For Vision Guide
WIN_IOMON -1 For GUI Builder
WIN_TASKMGR -2 For GUI Builder
WIN_FORCEMON -3 For GUI Builder
WIN_SIMULATOR -4 For GUI Builder
WINDOWSTATE_NORMAL 0 WindowsStatus
WINDOWSTATE_MINIMIZED 1 WindowsStatus
WINDOWSTATE_MAXIMIZED 2 WindowsStatus
WithMove 0 Recover
WithoutMove 1 Recover
DRYRUNOFF 1 SF_GetParam Function
SLS_1_HAND_EN 2 SF_GetParam Function
SLS_1_SPEED 3 SF_GetParam Function
SLS_1_ELBOW_EN 4 SF_GetParam Function
SLS_1_JOINT_EN 5 SF_GetParam Function
SLS_1_JOINTSPEED 6 SF_GetParam Function
SLS_1_WRIST_EN 7 SF_GetParam Function

Appendix D: Predefined Constants

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 915

Constant name Value Use
SLS_1_SHOULDER_EN 8 SF_GetParam Function
SLS_2_HAND_EN 9 SF_GetParam Function
SLS_2_SPEED 10 SF_GetParam Function
SLS_2_ELBOW_EN 11 SF_GetParam Function
SLS_2_JOINT_EN 12 SF_GetParam Function
SLS_2_JOINTSPEED 13 SF_GetParam Function
SLS_2_WRIST_EN 14 SF_GetParam Function
SLS_2_SHOULDER_EN 15 SF_GetParam Function
SLS_3_HAND_EN 16 SF_GetParam Function
SLS_3_SPEED 17 SF_GetParam Function
SLS_3_ELBOW_EN 18 SF_GetParam Function
SLS_3_JOINT_EN 19 SF_GetParam Function
SLS_3_JOINTSPEED 20 SF_GetParam Function
SLS_3_WRIST_EN 21 SF_GetParam Function
SLS_3_SHOULDER_EN 22 SF_GetParam Function
SLS_T2_HAND_EN 23 SF_GetParam Function
SLS_T2_SPEED 24 SF_GetParam Function
SLS_T2_ELBOW_EN 25 SF_GetParam Function
SLS_T2_JOINT_EN 26 SF_GetParam Function
SLS_T2_JOINTSPEED 27 SF_GetParam Function
SLS_T2_WRIST_EN 28 SF_GetParam Function
SLS_T2_SHOULDER_EN 29 SF_GetParam Function
SLS_T_SPEED 30 SF_GetParam Function
SLS_T_JOINT_EN 31 SF_GetParam Function
SLS_T_JOINTSPEED 32 SF_GetParam Function
SLS_HAND_OFS_X 33 SF_GetParam Function
SLS_HAND_OFS_Y 34 SF_GetParam Function
SLS_HAND_OFS_Z 35 SF_GetParam Function
SLS_1_DELAY 36 SF_GetParam Function
SLS_2_DELAY 37 SF_GetParam Function
SLS_3_DELAY 38 SF_GetParam Function
SLS_JOINT_POS_EN 39 SF_GetParam Function
SLS_JOINT_POS_ANGLE 40 SF_GetParam Function
SLP_A_XU_EN 41 SF_GetParam Function
SLP_A_XU_POS 42 SF_GetParam Function
SLP_A_XL_EN 43 SF_GetParam Function
SLP_A_XL_POS 44 SF_GetParam Function
SLP_A_YU_EN 45 SF_GetParam Function
SLP_A_YU_POS 46 SF_GetParam Function
SLP_A_YL_EN 47 SF_GetParam Function
SLP_A_YL_POS 48 SF_GetParam Function
SLP_A_ZU_EN 49 SF_GetParam Function
SLP_A_ZU_POS 50 SF_GetParam Function
SLP_A_ZL_EN 51 SF_GetParam Function
SLP_A_ZL_POS 52 SF_GetParam Function
SLP_B_XU_EN 53 SF_GetParam Function
SLP_B_XU_POS 54 SF_GetParam Function
SLP_B_XL_EN 55 SF_GetParam Function
SLP_B_XL_POS 56 SF_GetParam Function
SLP_B_YU_EN 57 SF_GetParam Function
SLP_B_YU_POS 58 SF_GetParam Function
SLP_B_YL_EN 59 SF_GetParam Function
SLP_B_YL_POS 60 SF_GetParam Function
SLP_B_ZU_EN 61 SF_GetParam Function
SLP_B_ZU_POS 62 SF_GetParam Function
SLP_B_ZL_EN 63 SF_GetParam Function
SLP_B_ZL_POS 64 SF_GetParam Function

Appendix D: Predefined Constants

916 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Constant name Value Use
SLP_C_XU_EN 65 SF_GetParam Function
SLP_C_XU_POS 66 SF_GetParam Function
SLP_C_XL_EN 67 SF_GetParam Function
SLP_C_XL_POS 68 SF_GetParam Function
SLP_C_YU_EN 69 SF_GetParam Function
SLP_C_YU_POS 70 SF_GetParam Function
SLP_C_YL_EN 71 SF_GetParam Function
SLP_C_YL_POS 72 SF_GetParam Function
SLP_C_ZU_EN 73 SF_GetParam Function
SLP_C_ZU_POS 74 SF_GetParam Function
SLP_C_ZL_EN 75 SF_GetParam Function
SLP_C_ZL_POS 76 SF_GetParam Function
SLP_J2_MON_RAD 77 SF_GetParam Function
SLP_J3_MON_RAD 78 SF_GetParam Function
SLP_J5_MON_RAD 79 SF_GetParam Function
SLP_J6_MON_RAD 80 SF_GetParam Function
SLP_J1_RANGE_MAX 81 SF_GetParam Function
SLP_J1_RANGE_MIN 82 SF_GetParam Function
SLP_J2_RANGE_MAX 83 SF_GetParam Function
SLP_J2_RANGE_MIN 84 SF_GetParam Function
SLP_J3_RANGE_MAX 85 SF_GetParam Function
SLP_J3_RANGE_MIN 86 SF_GetParam Function
SLP_J4_RANGE_MAX 87 SF_GetParam Function
SLP_J4_RANGE_MIN 88 SF_GetParam Function
SLP_J5_RANGE_MAX 89 SF_GetParam Function
SLP_J5_RANGE_MIN 90 SF_GetParam Function
SLP_J6_RANGE_MAX 91 SF_GetParam Function
SLP_J6_RANGE_MIN 92 SF_GetParam Function
SIN_1_SLS_1_EN 93 SF_GetParam Function
SIN_1_SLS_2_EN 94 SF_GetParam Function
SIN_1_SLS_3_EN 95 SF_GetParam Function
SIN_1_SLP_A_EN 96 SF_GetParam Function
SIN_1_SLP_B_EN 97 SF_GetParam Function
SIN_1_SLP_C_EN 98 SF_GetParam Function
SIN_1_SG_EN 99 SF_GetParam Function
SIN_1_ESTOP_EN 100 SF_GetParam Function
SIN_2_SLS_1_EN 101 SF_GetParam Function
SIN_2_SLS_2_EN 102 SF_GetParam Function
SIN_2_SLS_3_EN 103 SF_GetParam Function
SIN_2_SLP_A_EN 104 SF_GetParam Function
SIN_2_SLP_B_EN 105 SF_GetParam Function
SIN_2_SLP_C_EN 106 SF_GetParam Function
SIN_2_SG_EN 107 SF_GetParam Function
SIN_2_ESTOP_EN 108 SF_GetParam Function
SIN_3_SLS_1_EN 109 SF_GetParam Function
SIN_3_SLS_2_EN 110 SF_GetParam Function
SIN_3_SLS_3_EN 111 SF_GetParam Function
SIN_3_SLP_A_EN 112 SF_GetParam Function
SIN_3_SLP_B_EN 113 SF_GetParam Function
SIN_3_SLP_C_EN 114 SF_GetParam Function
SIN_3_SG_EN 115 SF_GetParam Function
SIN_3_ESTOP_EN 116 SF_GetParam Function
SIN_4_SLS_1_EN 117 SF_GetParam Function
SIN_4_SLS_2_EN 118 SF_GetParam Function
SIN_4_SLS_3_EN 119 SF_GetParam Function
SIN_4_SLP_A_EN 120 SF_GetParam Function
SIN_4_SLP_B_EN 121 SF_GetParam Function

Appendix D: Predefined Constants

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8 917

Constant name Value Use
SIN_4_SLP_C_EN 122 SF_GetParam Function
SIN_4_SG_EN 123 SF_GetParam Function
SIN_4_ESTOP_EN 124 SF_GetParam Function
SIN_5_SLS_1_EN 125 SF_GetParam Function
SIN_5_SLS_2_EN 126 SF_GetParam Function
SIN_5_SLS_3_EN 127 SF_GetParam Function
SIN_5_SLP_A_EN 128 SF_GetParam Function
SIN_5_SLP_B_EN 129 SF_GetParam Function
SIN_5_SLP_C_EN 130 SF_GetParam Function
SIN_5_SG_EN 131 SF_GetParam Function
SIN_5_ESTOP_EN 132 SF_GetParam Function
SOUT_1_STO 133 SF_GetParam Function
SOUT_1_SLS_1 134 SF_GetParam Function
SOUT_1_SLS_2 135 SF_GetParam Function
SOUT_1_SLS_3 136 SF_GetParam Function
SOUT_1_SLS_T2 137 SF_GetParam Function
SOUT_1_SLS_T 138 SF_GetParam Function
SOUT_1_SLP_A 139 SF_GetParam Function
SOUT_1_SLP_B 140 SF_GetParam Function
SOUT_1_SLP_C 141 SF_GetParam Function
SOUT_1_EP_RC 142 SF_GetParam Function
SOUT_1_EP_TP 143 SF_GetParam Function
SOUT_1_EN_SW 144 SF_GetParam Function
SOUT_2_STO 145 SF_GetParam Function
SOUT_2_SLS_1 146 SF_GetParam Function
SOUT_2_SLS_2 147 SF_GetParam Function
SOUT_2_SLS_3 148 SF_GetParam Function
SOUT_2_SLS_T2 149 SF_GetParam Function
SOUT_2_SLS_T 150 SF_GetParam Function
SOUT_2_SLP_A 151 SF_GetParam Function
SOUT_2_SLP_B 152 SF_GetParam Function
SOUT_2_SLP_C 153 SF_GetParam Function
SOUT_2_EP_RC 154 SF_GetParam Function
SOUT_2_EP_TP 155 SF_GetParam Function
SOUT_2_EN_SW 156 SF_GetParam Function
SOUT_3_STO 157 SF_GetParam Function
SOUT_3_SLS_1 158 SF_GetParam Function
SOUT_3_SLS_2 159 SF_GetParam Function
SOUT_3_SLS_3 160 SF_GetParam Function
SOUT_3_SLS_T2 161 SF_GetParam Function
SOUT_3_SLS_T 162 SF_GetParam Function
SOUT_3_SLP_A 163 SF_GetParam Function
SOUT_3_SLP_B 164 SF_GetParam Function
SOUT_3_SLP_C 165 SF_GetParam Function
SOUT_3_EP_RC 166 SF_GetParam Function
SOUT_3_EP_TP 167 SF_GetParam Function
SOUT_3_EN_SW 168 SF_GetParam Function
POS_ROT_U 169 SF_GetParam Function
POS_ROT_V 170 SF_GetParam Function
POS_ROT_W 171 SF_GetParam Function
POS_OFS_X 172 SF_GetParam Function
POS_OFS_Y 173 SF_GetParam Function
POS_OFS_Z 174 SF_GetParam Function
SF_TOOLVERSION 1 SF_GetParam$ Function
SF_CHECKSUM 2 SF_GetParam$ Function
SF_LAST_MODIFIED 3 SF_GetParam$ Function
SF_ROBOT_MODEL_NAME 4 SF_GetParam$ Function

Appendix D: Predefined Constants

918 EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.8

Constant name Value Use
SF_ROBOT_CHECKSUM 5 SF_GetParam$ Function
SF_HOFS 6 SF_GetParam$ Function
SF_HOFS_LAST_MODIFIED 7 SF_GetParam$ Function

SLS_1 1 SF_LimitSpeedS,
SF_LimitSpeedSEnable

SLS_2 2 SF_LimitSpeedS,
SF_LimitSpeedSEnable

SLS_3 3 SF_LimitSpeedS,
SF_LimitSpeedSEnable

SLS_T 9 SF_LimitSpeedS,
SF_LimitSpeedSEnable

SLS_T2 10 SF_LimitSpeedS,
SF_LimitSpeedSEnable

	ENM238S5868F_EPSON RC+ 7.0 SPEL+ Language Reference_Rev.8
	PREFACE
	FOREWORD
	TRADEMARKS
	TRADEMARK NOTATION IN THIS MANUAL
	NOTICE
	MANUFACTURER
	CONTACT INFORMATION
	SAFETY PRECAUTIONS

	Table of Contents
	Summary of SPEL+ Commands 1
	System Management Commands 1
	Robot Control Commands 2
	Torque Commands 7
	Input / Output Commands 7
	Point Management Commands 9
	Coordinate Change Commands 10
	Program Control Commands 11
	Program Execution Commands 12
	Pseudo Statements 12
	File Management Commands 13
	Fieldbus Commands 14
	Numeric Value Commands 14
	String Commands 15
	Logical Operators 15
	Variable Commands 16
	Security Commands 16
	Conveyor Tracking Commands 16
	Force Sensing Commands 17
	DB Commands 17
	PG Commands 17
	Collision Detection Commands 18
	Parts Consumption Commands 18
	Simulator Commands 19
	Hand Commands 19
	Safety Function Commands 20

	SPEL+ Language Reference 21
	Appendix A: SPEL+ Command Use Condition List 857
	Appendix B: Precaution of Compatibility 868
	B-1: Precaution of EPSON RC+ 6.0 Compatibility 868
	B-2: Precaution of EPSON RC+ 5.0 Compatibility 878
	B-3: Precaution of EPSON RC+ Ver.4.* Compatibility 889

	Appendix C: Commands of EPSON RC+7.0 900
	C-1: List of Commands Added EPSON RC+4.0 or Later 900
	C-2: List of Commands Added for Each Version of EPSON RC+ 7.0 903
	C-3: Deletion Commands (Sort by Version) 909

	Appendix D: Predefined Constants 910

	Summary of SPEL+ Commands
	SPEL+ Language Reference
	Operators
	!
	!...! Parallel Processing

	#
	#define
	#ifdef...#else...#endif
	#ifndef...#endif
	#include
	#undef

	A
	AbortMotion Statement
	Abs Function
	Accel Statement
	Accel Function
	AccelMax Function
	AccelR Statement
	AccelR Function
	AccelS Statement
	AccelS Function
	Acos Function
	Agl Function
	AglToPls Function
	AIO_In Function
	AIO_InW Function
	AIO_Out Statement
	AIO_Out Function
	AIO_OutW Statement
	AIO_OutW Function
	AIO_Set Statement
	AIO_Set Function
	AIO_TrackingSet Statement
	AIO_TrackingStart Statement
	AIO_TrackingEnd Statement
	AIO_TrackingOnFunction
	Align Function
	AlignECP Function
	And Operator
	AOpen Statement
	Arc, Arc3 Statements
	Arch Statement
	Arch Function
	AreaCorrection Function
	AreaCorrectionClr Statement
	AreaCorrectionDef Function
	AreaCorrectionInv Function
	AreaCorrectionOffset Function
	AreaCorrectionSet Statement
	Arm Statement
	Arm Function
	ArmCalib Statement
	ArmCalib Function
	ArmCalibClr Statement
	ArmCalibDef Statement
	ArmCalibSet Statement
	ArmCalibSet Function
	ArmClr Statement
	ArmDef Function
	ArmSet Statement
	ArmSet Function
	Asc Function
	Asin Function
	AtHome Function
	Atan Function
	Atan2 Function
	ATCLR Statement
	ATRQ Statement
	ATRQ Function
	AutoLJM Statement
	AutoLJM Function
	AutoOrientationFlag Statement
	AutoOrientationFlag Function
	AvgSpeedClear Statement
	AvgSpeed Statement
	AvgSpeed Function
	AvoidSingularity Statement
	AvoidSingularity Function

	B
	Base Statement
	BClr Function
	BClr64 Function
	BGo Statement
	BMove Statement
	Boolean Statement
	BOpen Statement
	Box Statement
	Box Function
	BoxClr Statement
	BoxDef Function
	Brake Statement
	Brake Function
	BSet Function
	BSet64 Function
	BTst Function
	BTst64 Function
	Byte Statement

	C
	Calib Statement
	Call Statement
	CalPls Statement
	CalPls Function
	ChDir Statement
	ChDisk Statement
	ChDrive Statement
	ChkCom Function
	ChkNet Function
	Chr$ Function
	ClearPoints Statement
	Close Statement
	CloseCom Statement
	CloseDB Statement
	CloseNet Statement
	Cls Statement
	Cnv_AbortTrack Statement
	Cnv_Accel Statement
	Cnv_Accel Function
	Cnv_AccelLim Statement
	Cnv_AccelLim Function
	Cnv_Adjust Statement
	Cnv_AdjustClear Statement
	Cnv_AdjustGet Function
	Cnv_AdjustSet Statement
	Cnv_Downstream Statement
	Cnv_Downstream Function
	Cnv_Fine Statement
	Cnv_Fine Function
	Cnv_Flag Function
	Cnv_LPulse Function
	Cnv_Mode Statement
	Cnv_Mode Function
	Cnv_Name$ Function
	Cnv_Number Function
	Cnv_OffsetAngle Statement
	Cnv_OffsetAngle Function
	Cnv_Point Function
	Cnv_PosErr Function
	Cnv_PosErrOffset Statement
	Cnv_Pulse Function
	Cnv_QueAdd Statement
	Cnv_QueGet Function
	Cnv_QueLen Function
	Cnv_QueList Statement
	Cnv_QueMove Statement
	Cnv_QueReject Statement
	Cnv_QueReject Function
	Cnv_QueRemove Statement
	Cnv_QueUserData Statement
	Cnv_QueUserData Function
	Cnv_RobotConveyor Function
	Cnv_Speed Function
	Cnv_Trigger Statement
	Cnv_Upstream Statement
	Cnv_Upstream Function
	CollisionDetect Statement
	CollisionDetect Function
	Cont Statement
	Copy Statement
	Cos Function
	CP Statement
	CP Function
	CP_Offset Statement
	CP_Offset Function
	Ctr Function
	CTReset Statement
	CtrlDev Function
	CtrlInfo Function
	CurDir$ Function
	CurDisk$ Function
	CurDrive$ Function
	CurPos Function
	Curve Statement
	CVMove Statement
	CX, CY, CZ, CU, CV, CW, CR, CS, CT Statements
	CX, CY, CZ, CU, CV, CW, CR, CS, CT Functions

	D
	Date Statement
	Date$ Function
	Declare Statement
	DegToRad Function
	Del Statement
	DeleteDB Statement
	DiffPoint Function
	DiffToolOrientation Function
	DispDev Statement
	DispDev Function
	Dist Function
	Do...Loop Statement
	Double Statement

	E
	ECP Statement
	ECP Function
	ECPClr Statement
	ECPDef Function
	ECPSet Statement
	ECPSet Function
	ElapsedTime Function
	Elbow Statement
	Elbow Function
	Eof Function
	Era Function
	EResume Statement
	Erf$ Function
	Erl Function
	Err Function
	Errb Function
	ErrMsg$ Function
	Error Statement
	ErrorOn Function
	Ert Function
	EStopOn Function
	Eval Function
	Exit Statement
	ExportPoints Statement

	F
	FbusIO_GetBusStatus Function
	FbusIO_GetDeviceStatus Function
	FbusIO_SendMsg Statement
	FileDateTime$ Function
	FileExists Function
	FileLen Function
	Find Statement
	FindPos Function
	Fine Statement
	Fine Function
	FineDist Statement
	FineStatus Function
	Fix Function
	Flush Statement
	FmtStr Statement
	FmtStr$ Function
	FolderExists Function
	For...Next Statement
	Force_Calibrate Statement
	Force_ClearTrigger Statement
	Force_GetForces Statement
	Force_GetForce Function
	Force_Sensor Statement
	Force_Sensor Function
	Force_SetTrigger Statement
	FreeFile Function
	Function...Fend Statement

	G
	GetCurrentUser$ Function
	GetRobotInsideBox Function
	GetRobotInsidePlane Function
	Global Statement
	Go Statement
	GoSub...Return Statement
	GoTo Statement

	H
	Halt Statement
	Hand Statement
	Hand Function
	HealthCalcPeriod Statement
	HealthCalcPeriod Function
	HealthCtrlAlarmOn Function
	HealthCtrlInfo Statement
	HealthCtrlInfo Function
	HealthCtrlRateOffset Statement
	HealthCtrlReset Statement
	HealthCtrlWarningEnable Statement
	HealthCtrlWarningEnable Function
	HealthRateCtrlInfo Function
	HealthRateRBInfo Function
	HealthRBAlarmOn Function
	HealthRBAnalysis Statement
	HealthRBAnalysis Function
	HealthRBDistance Statement
	HealthRBDistance Function
	HealthRBInfo Statement
	HealthRBInfo Function
	HealthRBRateOffset Statement
	HealthRBReset Statement
	HealthRBSpeed Statement
	HealthRBSpeed Function
	HealthRBStart Statement
	HealthRBStop Statement
	HealthRBTRQ Statement
	HealthRBTRQ Function
	HealthRBWarningEnable Statement
	HealthRBWarningEnable Function
	Here Statement
	Here Function
	Hex$ Function
	Hofs Statement
	Hofs Function
	HofsJointAccuracy Statement
	Home Statement
	HomeClr Function
	HomeDef Function
	HomeSet Statement
	HomeSet Function
	Hordr Statement
	Hordr Function
	Hour Statement
	Hour Function

	I
	If…Then…Else…EndIf Statement
	ImportPoints Statement
	In Function
	InBCD Function
	Inertia Statement
	Inertia Function
	InPos Function
	Input Statement
	Input # Statement
	InputBox Statement
	InReal Function
	InsideBox Function
	InsidePlane Function
	InStr Function
	Int Function
	Int32 Statement
	Int64 Statement
	Integer Statement
	InW Function
	IODef Function
	IOLabel$ Function
	IONumber Function

	J
	J1Angle Statement
	J1Angle Function
	J1Flag Statement
	J1Flag Function
	J2Flag Statement
	J2Flag Function
	J4Angle Statement
	J4Angle Function
	J4Flag Statement
	J4Flag Function
	J6Flag Statement
	J6Flag Function
	JA Function
	Joint Statement
	JointAccuracy Statement
	JointAccuracy Function
	JRange Statement
	JRange Function
	JS Function
	JT Function
	JTran Statement
	Jump Statement
	Jump3, Jump3CP Statements
	JumpTLZ Statement

	L
	LatchEnable Statement
	LatchState Function
	LatchPos Function
	LCase$ Function
	Left$ Function
	Len Function
	LimitTorque Statement
	LimitTorque Function
	LimitTorqueLP Statement
	LimitTorqueLP Function
	LimitTorqueStop Statement
	LimitTorqueStop Function
	LimitTorqueStopLP Statement
	LimitTorqueStopLP Function
	LimZ Statement
	LimZ Function
	LimZMargin Statement
	LimZMargin Function
	Line Input Statement
	Line Input # Statement
	LJM Function
	LoadPoints Statement
	Local Statement
	Local Function
	LocalClr Statement
	LocalDef Function
	Lof Function
	LogIn Statement
	Long Statement
	LSet$ Function
	LShift Function
	LShift64 Function
	LTrim$ Function

	M
	Mask Operator
	MCal Statement
	MCalComplete Function
	MCordr Statement
	MCordr Function
	MemIn Function
	MemInW Function
	MemOff Statement
	MemOn Statement
	MemOut Statement
	MemOutW Statement
	MemSw Function
	MHour Function
	Mid$ Function
	MkDir Statement
	Mod Operator
	Motor Statement
	Motor Function
	Move Statement
	MsgBox Statement
	MyTask Function

	N
	Next Statement
	Not Operator

	O
	Off Statement
	OLAccel Statement
	OLAccel Function
	OLRate Statement
	OLRate Function
	On Statement
	OnErr Statement
	OpBCD Statement
	OpenDB Statement
	OpenCom Statement
	OpenCom Function
	OpenNet Statement
	OpenNet Function
	Oport Function
	Or Operator
	Out Statement
	Out Function
	OutReal Statement
	OutReal Function
	OutW Statement
	OutW Function

	P
	P# (1. Point Definition) Statement
	P# (2. Point Expression) Statement
	PAgl Function
	Pallet Statement
	Pallet Function
	PalletClr Statement
	ParseStr Statement / Function
	Pass Statement
	Pause Statement
	PauseOn Function
	PDef Function
	PDel Statement
	PDescription Statement
	PDescription$ Function
	PeakSpeedClear Statement
	PeakSpeed Statement
	PeakSpeed Function
	PerformMode Statement
	PerformMode Function
	PG_FastStop Statement
	PG_LSpeed Statement
	PG_LSpeed Function
	PG_Scan Statement
	PG_SlowStop Statement
	PLabel Statement
	PLabel$ Function
	Plane Statement
	Plane Function
	PlaneClr Statement
	PlaneDef Function
	PList Statement
	PLocal Statement
	PLocal Function
	Pls Function
	PNumber Function
	PosFound Function
	Power Statement
	Power Function
	PPls Function
	Print Statement
	Print # Statement
	PTCLR Statement
	PTPBoost Statement
	PTPBoost Function
	PTPBoostOK Function
	PTPTime Function
	PTran Statement
	PTRQ Statement
	PTRQ Function
	Pulse Statement
	Pulse Function

	Q
	QP Statement
	QPDecelR Statement
	QPDecelR Function
	QPDecelS Statement
	QPDecelS Function
	Quit Statement

	R
	RadToDeg Function
	Randomize Statement
	Range Statement
	Read Statement
	ReadBin Statement
	Real Statement
	RealAccel Function
	RealPls Function
	RealPos Function
	RealTorque Function
	Recover Statement
	Recover Function
	RecoverPos Function
	Redim Statement
	Rename Statement
	RenDir Statement
	Reset Statement
	ResetElapsedTime Statement
	Restart Statement
	Resume Statement
	Return Statement
	Right$ Function
	RmDir Statement
	Rnd Function
	Robot Statement
	Robot Function
	RobotInfo Function
	RobotInfo$ Function
	RobotModel$ Function
	RobotName$ Function
	RobotSerial$ Function
	RobotType Function
	ROpen Statement
	ROTOK Function
	RSet$ Function
	RShift Function
	RShift64 Function
	RTrim$ Function
	RunDialog Statement

	S
	SafetyOn Function
	SavePoints Statement
	Seek Statement
	Select...Send Statement
	SelectDB Statement
	Sense Statement
	SetCom Statement
	SetLatch Statement
	SetIn Statement
	SetInW Statement
	SetNet Statement
	SetSw Statement
	SF_GetParam Function
	SF_GetParam$ Function
	SF_GetStatus Function
	SF_LimitSpeedS Statement
	SF_LimitSpeedS Function
	SF_LimitSpeedSEnable Statement
	SF_LimitSpeedSEnable Function
	SF_PeakSpeedS Statement
	SF_PeakSpeedS Function
	SF_PeakSpeedSClear Statement
	SF_RealSpeedS Statement
	SF_RealSpeedS Function
	SFree Statement
	SFree Function
	Sgn Function
	Short Statement
	ShutDown Statement
	ShutDown Function
	Signal Statement
	SimGet Statement
	SimSet Statement
	Sin Function
	SingularityAngle Statement
	SingularityAngle Function
	SingularityDist Statement
	SingularityDist Function
	SingularitySpeed Statement
	SingularitySpeed Function
	SLock Statement
	SoftCP Statement
	SoftCP Function
	Space$ Function
	Speed Statement
	Speed Function
	SpeedFactor Statement
	SpeedFactor Function
	SpeedR Statement
	SpeedR Function
	SpeedS Statement
	SpeedS Function
	Sqr Function
	ST Function
	StartMain Statement
	Stat Function
	Str$ Function
	String Statement
	Sw Function
	SyncLock Statement
	SyncUnlock Statement
	SyncRobots Statement
	SyncRobots Function
	SysConfig Statement
	SysErr Function

	T
	Tab$ Function
	Tan Function
	TargetOK Function
	TaskDone Function
	TaskInfo Function
	TaskInfo$ Function
	TaskState Function
	TaskWait Statement
	TC Statement
	TCLim Statement
	TCLim Function
	TCPSpeed Function
	TCSpeed Statement
	TCSpeed Function
	TeachOn Function
	TGo Statement
	Till Statement
	TillOn Function
	Time Statement
	Time Function
	Time$ Function
	TLClr Statement
	TLDef Function
	TLSet Statement
	TLSet Function
	TMOut Statement
	TMove Statement
	Tmr Function
	TmReset Statement
	Toff Statement
	Ton Statement
	Tool Statement
	Tool Function
	Trap Statement (User defined trigger)
	Trap Statement (System status trigger)
	Trim$ Function
	TW Function

	U
	UBound Function
	UByte Statement
	UCase$ Function
	UInt32 Statement
	UInt64 Statement
	UOpen Statement
	UpdateDB Statement
	UShort Statement

	V
	Val Function
	VSD Statement
	VSD Function
	VxCalib Statement
	VxCalDelete Statement
	VxCalLoad Statement
	VxCalInfo Function
	VxCalSave Statement
	VxTrans Function

	W
	Wait Statement
	WaitNet Statement
	WaitPos Statement
	WaitSig Statement
	Weight Statement
	Weight Function
	Where Statement
	WindowsStatus Function
	WOpen Statement
	WorkQue_Add Statement
	WorkQue_AutoRemove Statement
	WorkQue_AutoRemove Function
	WorkQue_Get Function
	WorkQue_Len Function
	WorkQue_List Statement
	WorkQue_Reject Statement
	WorkQue_Reject Function
	WorkQue_Remove Statement
	WorkQue_Sort Statement
	WorkQue_Sort Function
	WorkQue_UserData Statement
	WorkQue_UserData Function
	Wrist Statement
	Wrist Function
	Write Statement
	WriteBin Statement

	X
	Xor Operator
	Xqt Statement
	XY Function
	XYLim Statement
	XYLim Function
	XYLimClr Statement
	XYLimDef Function
	XYLimMode Statement
	XYLimMode Function

	Appendix A: SPEL+ Command Use Condition List
	Appendix B: Precaution of Compatibility
	B-1: Precaution of EPSON RC+ 6.0 Compatibility
	Overview
	General Differences
	Compatibility List of Commands

	B-2: Precaution of EPSON RC+ 5.0 Compatibility
	Overview
	General Differences
	Compatibility List of Commands
	Commands from EPSON RC+ Ver.4.* (Not supported in EPSON RC+ 5.0)

	B-3: Precaution of EPSON RC+ Ver.4.* Compatibility
	Overview
	General Differences
	Compatibility List of Commands

	Appendix C: Commands of EPSON RC+7.0
	C-1: List of Commands Added EPSON RC+4.0 or Later
	C-2: List of Commands Added for Each Version of EPSON RC+ 7.0
	C-3: Deletion Commands (Sort by Version)

	Appendix D: Predefined Constants

