EPSON

~

EPSON RC+ 5.0
SPEL" Language
Reference

J

Rev.5 EM135S2515F J

EPSON RC+ 5.0 (Ver.5.4) SPEL" Language Reference Rev.5

EPSON RC+ 5.0 (Ver.5.4)

SPEL+ Lanquaqge Reference

Rev.5

Copyright © 2011-2013 SEIKO EPSON CORPORATION. All rights reserved.

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 i

FOREWORD

Thank you for purchasing our robot products.

This manual contains the information necessary for the correct use of the Manipulator.
Please carefully read this manual and other related manuals before installing the robot
system.

Keep this manual handy for easy access at all times.

WARRANTY

i

The robot and its optional parts are shipped to our customers only after being subjected to
the strictest quality controls, tests, and inspections to certify its compliance with our high

performance standards.

Product malfunctions resulting from normal handling or operation will be repaired free of
charge during the normal warranty period. (Please ask your Regional Sales Office for

warranty period information.)

However, customers will be charged for repairs in the following cases (even if they occur
during the warranty period):

1. Damage or malfunction caused by improper use which is not described in the manual,
or careless use.

2. Malfunctions caused by customers’ unauthorized disassembly.
3. Damage due to improper adjustments or unauthorized repair attempts.

4. Damage caused by natural disasters such as earthquake, flood, etc.

Warnings, Cautions, Usage:

1. If the robot or associated equipment is used outside of the usage conditions and
product specifications described in the manuals, this warranty is void.

2. If you do not follow the WARNINGS and CAUTIONS in this manual, we cannot be
responsible for any malfunction or accident, even if the result is injury or death.

3. We cannot foresee all possible dangers and consequences. Therefore, this manual
cannot warn the user of all possible hazards.

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

TRADEMARKS

Microsoft, Windows, and Windows logo are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries. Other brand and

product names are trademarks or registered trademarks of the respective holders.

TRADEMARK NOTATION IN THIS MANUAL

Microsoft® Windows® XP Operating system

Microsoft® Windows® Vista Operating system

Microsoft® Windows® 7 Operating system

Throughout this manual, Windows XP, Windows Vista, and Windows 7 refer to above
respective operating systems. In some cases, Windows refers generically to Windows XP,
and Windows Vista, and Windows 7.

NOTICE

No part of this manual may be copied or reproduced without authorization.

The contents of this manual are subject to change without notice.

Please notify us if you should find any errors in this manual or if you have any comments
regarding its contents.

INQUIRIES

Contact the following service center for robot repairs, inspections or adjustments.
If service center information is not indicated below, please contact the supplier
office for your region.

Please prepare the following items before you contact us.
-Your controller model and its serial number
-Your manipulator model and its serial number

-Software and its version in your robot system
-A description of the problem

SERVICE CENTER

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 iii

MANUFACTURER

SUPPLIERS

v

North & South America

Europe

China

Taiwan

SEIKO EPSON CORPORATION

Toyoshina Plant

Industrial Solutions Division
6925 Toyoshina Tazawa,
Azumino-shi, Nagano, 399-8285
JAPAN

TEL : +81-(0)263-72-1530
FAX : +81-(0)263-72-1495

EPSON AMERICA, INC.
Factory Automation/Robotics
18300 Central Avenue

Carson, CA 90746

USA

TEL 1 +1-562-290-5900

FAX 1 +1-562-290-5999
E-MAIL : info@robots.epson.com

EPSON DEUTSCHLAND GmbH
Factory Automation Division
Otto-Hahn-Str.4

D-40670 Meerbusch

Germany

TEL : +49-(0)-2159-538-1391
FAX : +49-(0)-2159-538-3170
E-MAIL : robot.infos@epson.de

EPSON China Co., Ltd

Factory Automation Division

7F, Jinbao Building No. 89 Jinbao Street
Dongcheng District, Beijing,

China, 100005

TEL : +86-(0)-10-8522-1199

FAX : +86-(0)-10-8522-1120

EPSON Taiwan Technology & Trading Ltd.
Factory Automation Division

14F, No.7, Song Ren Road, Taipei 110
Taiwan, ROC

TEL : +886-(0)-2-8786-6688

FAX : +886-(0)-2-8786-6677

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Southeast Asia EPSON Singapore Pte Ltd.

India Factory Automation System
1 HarbourFrontPlace, #03-02
HarbourFront Tower one, Singapore
098633
TEL : +65-(0)-6586-5696
FAX : +65-(0)-6271-3182

Korea EPSON Korea Co, Ltd.
Marketing Team (Robot Business)
27F DaeSung D-Polis A, 606,
Seobusaet-gil, Geumcheon-gu, Seoul, 153-803
Korea
TEL : +82-(0)-2-3420-6692

FAX :+82-(0)-2-558-4271

Japan EPSON SALES JAPAN CORPORATION
Factory Automation Systems Department
Nishi-Shinjuku Mitsui Bldg.6-24-1
Nishishinjuku. Shinjuku-ku. Tokyo. 160-8324

JAPAN
TEL : +81-(0)3-5321-4161

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

SAFETY PRECAUTIONS

vi

Installation of robots and robotic equipment should only be performed by qualified
personnel in accordance with national and local codes. Please carefully read this
manual and other related manuals when using this software.

Keep this manual in a handy location for easy access at all times.

/N

B This symbol indicates that a danger of possible serious

injury or death exists if the associated instructions are not

WARNING followed properly.
B This symbol indicates that a danger of possible harm to
A people or physical damage to equipment and facilities
exists if the associated instructions are not followed
CAUTION

properly.

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Table of Contents

TABLE OF CONTENTS

Summary of SPEL+ Commands 1
System Management Commands............ccoovvviiiiiiiiieeee e 1
Robot Control CommandS..........ouuiiiiiiiiii e 1
Torque COMMANGSuuiiiiieiieeice et e e e e e e e e e e e e eeeaaaaan 5
Input / Output ComMmMANASiiiiiiieece e 5
Point Management Commands...........cooooeiieiiiii e 7
Coordinate Change CommandS..........ccooiiiiiiiiiiiiieieee e 7
Program Control COmMmMaNdSeeeiiiiiiiiiiiiiiee e 8
Program Execution COMmMAaNAScccoiiiiiiiiiiiiiiieieeeeiiiee e 8
Pseudo Statements...... ... e 9
Numeric Value Commandscoooeeiiieiiiee e 9
(ol O o] 4910 0 F=T g To = 9
LOGICal OPEIAOrS ...t 10
Variable COMMANASuuiuuiiiiiiiiiii e 10
Commands used With VB GUIAEccouveeiiiiiiiiiiiiee e 10

SPEL+ Language Reference 11

SPEL+ Error Messages 483
BVENES s 483
R AT = T 11 o T 485
CoNtroller MaIN.......oooiiie e 486
OPErator PAnEl..........ooouuiiiiiiii e 492
Teach Pendant..........oooo i 492
L O SO PPRPOUPPR 493
SIMUIATOT ... 494
1105 o] =] (=] PSP SPPPPPPNE 496
=TS 515
1Y/ [o) (o T @0 o1 1 o ISP 524
1= Y TSR 533
Vision Calibrationooooiiiiiiiee e 539
P oINS - 540
FIEIADUSveiieceeeee et e 542
Y4 T I 543
GUI BUIIAET ..ottt ettt e e e et e e e s snsreeaeens 545
HArAWAE ... e 546
EPSON RCH ..ottt ettt et e e ennae e e ennes 550

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 vii

Table of Contents

viii

Precaution of EPSON RC+ Ver.4.* Compatibility 551
OVEIVIBW ..ottt ettt e e e e e et e e e e e e e e e e nnnreeeeaaaeeaannns 551
General DifferENCeS.ooiiueiiiiie e 552
Compatibility List of Commandseoiiiiiiiiiii e 553

List of New Commands

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Summary of SPEL+ Commands

Summary of SPEL+ Commands

The following is a summary of SPEL* commands.

System Management Commands

Reset Resets the controller.

SysConfig Displays controller setup.

SysErr Returns the latest error status or warning status.

Date Sets the system date.

Time Sets system time.

Date$ Returns the system date as a string.

Time$ Returns system time as a string.

Hour Displays / returns controller operation time.

Stat Returns controller status bits.

Ctrlinfo Returns controller information.

RobotInfo Returns robot information.

RobotInfo$ Returns robot text information.

TasklInfo Returns task information.

TaskInfo$ Returns task text information.

DispDev Sets the current display device.

EStopOn Return the Emergency Stop status.

CtriDev Returns the current control device number.

Cls Clears the EPSON RC+ 5.0 Run, Operator, or Command
window text area.
Clears the TP print panel.

Toff Turns off execution line display on the LCD.

Ton Specifies a task which shows a execution line on the LCD.

SafetyOn Return the Safety Door open status.

Robot Control Commands

Power Sets / returns servo power mode.

Motor Sets / returns motor status.

SFree Removes servo power from the specified servo axis.
SLock Restores servo power to the specified servo axis.
Jump Jumps to a point using point to point motion.

Jump3 Jumps to a point using 3D gate motion.

Jump3CP Jumps to a point using 3D motion in continuous path.
Arch Sets / returns arch parameters for Jump motion.
LimZ Sets the upper Z limit for the Jump command.
Sense

JS Returns status of Sense operation.

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 1

Summary of SPEL+ Commands

JT
Go
Pass

Pulse
BGo

BMove
TGo
TMove

Till
TillOn

Speed
Accel

Inertia
Weight

Arc
Arc3

Move
Curve

CV Move

SpeedS
AccelS

SpeedR
AccelR

AccelMax

Brake

Home
HomeClr
HomeDef
HomeSet
Hordr

AtHome

Returns the status of the most recent Jump command for
the current robot.

Moves the robot to a point using point to point motion.
Executes simultaneous four joint Point to Point motion,
passing near but not through the specified points.

Moves the robot to a position defined in pulses.

Executes Point to Point relative motion, in the selected
local coordinate system.

Executes linear interpolation relative motion, in the
selected local coordinate system.

Executes Point to Point relative motion, in the current tool
coordinate system.

Executes linear interpolation relative motion, in the
selected tool coordinate system.

Specifies motion stop when input occurs.

Returns the current Till status.

Process statements during motion.

Sets / returns speed for point to point motion commands.
Sets / returns acceleration and deceleration for point to
point motion.

Specifies or displays the inertia settings of the robot arm.
Specifies or displays the weight settings of the robot arm.

Moves the arm using circular interpolation.
Moves the arm in 3D using circular interpolation.

Moves the robot using linear interpolation.

Defines the data and points required to move the arm
along a curved path. Many data points

can be defined in the path to improve precision of the path.
Performs the continuous spline path motion defined by the
Curve instruction.

Sets / returns speed for linear motion commands.
Sets / returns acceleration and deceleration for linear
motion.

Sets / returns speed for tool rotation.

Sets / returns acceleration and deceleration for tool
rotation.

Returns maximum acceleration value limit available for
Accel.

Turns brake on or off for specified joint of the current robot.
Moves robot to user defined home position.

Clears the home position definition.

Returns status of home position definition.

Sets user defined home position.

Sets motion order for Home command.

Returns if the current robot is in its Home position or not.

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Summary of SPEL+ Commands

InPos
CurPos
TCPSpeed

Pallet

Fine
QP
QPDecelR

QPDecelS

CP

Box
BoxClr
BoxDef

Plane
PlaneClr
PlaneDef
InsideBox

InsidePlane
Find

FindPos

PosFound

WaitPos

RobotModel$
RobotName$
RobotSerial$
RobotType
TargetOK

JRange
Range

XYLim
XYLimClIr

XYLimDef
XY

Dist

PTPBoost

Checks if robot is in position (not moving).
Returns current position while moving.
Returns calculated current tool center point velocity.

Defines a pallet or returns a pallet point.

Sets positioning error limits.

Sets / returns Quick Pause status.

Sets the deceleration speed of quick pause for the change
of tool orientation during the CP motion.

Sets the deceleration speed of quick pause in the CP
motion.

Sets CP (Continuous Path) motion mode.

Specifies and displays the approach check area.
Clears the definition of approach check area.
Returns whether Box has been defined or not.

Specifies and displays the approach check plane.

Clears (undefines) a Plane definition.

Returns the setting of the approach check plane.

Displays a prompt in a dialog box, waits for the operator to
input text or choose a button, and returns the contents of
the box.

Returns the check status of the approach check plane.
Specifies or displays the condition to store coordinates
during motion.

Returns a robot point stored by Fine during a motion
command.

Returns status of Find operation.

Waits for robot to decelerate and stop at position before
executing the next statement
while path motion is active.

Returns the robot model name.

Returns the robot name.

Returns the robot serial number.

Returns the robot type.

Returns a status indicating whether or not the PTP (Point
to Point) motion from the current

position to a target position is possible.

Sets / returns joint limits for one joint.
Sets limits for all joints.

Sets / returns Cartesian limits of robot envelope.

Clears the XYLim definition.

Returns whether XYLim has been defined or not.

Returns a point from individual coordinates that can be
used in a point expression.

Returns the distance between two robot points.

Sets / returns boost values for small distance PTP motion.

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 3

Summary of SPEL+ Commands

PTPBoostOK Returns whether or not the PTP (Point to Point) motion
from a current position to a target
position is a small travel distance.

PTPTime Returns the estimated time for a point to point motion
command without executing it.

LJM Function Returns the point data with the orientation flags converted
to enable least joint motion when moving to a specified
point based on the reference point.

AutoLJM Sets the Auto LJIM

AutoLJM Function Returns the state of the Auto LJM

AvoidSingularity Sets the Singularity avoiding function

AvoidSingularity Function Returns the state of the Singularity avoiding function
SingularityAngle Sets the singularity neighborhood angle for the singularity

avoiding function

SingularityAngle Function Returns the singularity neighborhood angle for the
singularity avoiding function

SingularitySpeed Sets the singularity neighborhood speed for the singularity
avoiding function

SingularitySpeed Function Returns the singularity neighborhood speed for the
singularity avoiding function

Align Function Returns point data converted to align robot orientation with
the nearest coordinate axis in local coordinate system.
Returns point data converted to align robot orientation with
a nearest coordinate axis in ECP coordinate system.

AlignECP Function

SoftCP Sets / returns SoftCP motion mode.

CX Sets / returns the X axis coordinate of a point.

CY Sets / returns the Y axis coordinate of a point.

Cz Sets / returns the Z axis coordinate of a point.

Cu Sets / returns the U axis coordinate of a point.

Ccv Sets / returns the V axis coordinate of a point.

Cw Sets / returns the W axis coordinate of a point.

Pls Returns the pulse value of one joint.

Agl Returns joint angle at current position.

PAgl Return a joint value from a specified point.

JA Returns a robot point specified in joint angles.

AglIToPIs Converts robot angles to pulses.

DegToRad Converts degrees to radians.

RadToDeg Converts radians to degrees.

Joint Displays the current position for the robot in joint
coordinates.

JTran Perform a relative move of one joint.

PTran Perform a relative move of one joint in pulses.

RealPls Returns the pulse value of the specified joint.

RealPose Returns the current position of the specified robot.

PPIs Return the pulse position of a specified joint value from a
specified point.

Here Teach a robot point at the current position.

Where Displays current robot position data.

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Summary of SPEL+ Commands

Torque Commands

TC Returns the torque control mode setting and current mode.

TCSpeed Specifies the speed limit in the torque control.

TCLim Specifies the torque limit of each joint for the torque control
mode.

RealTorque Returns the current torque instruction value of the
specified joint.

ATCLR Clears and intializes the average torque for one or more
joints.

ATRQ Displays the average torque for the specified joint.

PTCLR Clears and intializes the peak torque for one or more joints.

PTRQ Displays the peak torque for the specified joint.

OLAccel Sets up the automatic adjustment of acceleration/
deceleration that is adjusted

OLRate Display overload rating for one or all joints for the current
robot.

Input / Output Commands

On Turns an output on.

Off Turns an output off.

Oport Reads status of one output bit.

Sw Returns status of input.

In Reads 8 bits of inputs. Used for I/O.

InW Returns the status of the specified input word port. Used
for 1/0.

InBCD Reads 8 bits of inputs in BCD format.

InReal Reads an input data of 2 words (32 bits) as a floating-point
data (IEEE754 compliant) of 32 bits.

Out Sets / returns 8 bits of outputs. Used for I/O.

Outw Simultaneously sets 16 output bits. Used for I/O.

OpBCD Simultaneously sets 8 output bits using BCD format.

OutReal Output the output data of real value as the floating-point

data (IEEE754 compliant) of 32 bits to the output port 2
words (32 bits).

MemOn Turns a memory bit on.

MemOff Turns a memory bit off.

MemSw Returns status of memory bit.

Memin Reads 8 bits of memory I/0.

MemOut Sets / returns 8 memory bits.

MemInW Returns the status of the specified memory I/O word port.
Each word port contains 16 memory 1/O bits.

MemOutW Simultaneously sets 16 memory 1/O bits.

Wait Wait for condition or time.

TMOut Sets default time out for Wait statement.

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 5

Summary of SPEL+ Commands

Tw

Input

Print

Line Input
Input #
Print #

Line Input #
Lof

Setln
SetinReal
SetinW

SetSw

IOLabel$

IONumber

OpenCom
CloseCom

SetCom
ChkCom

OpenNet
CloseNet
SetNet
ChkNet

WaitNet

Read
ReadBin
Write

WriteBin

Returns the status of the Wait condition and Wait timer
interval.

Input one or more variables from current display window.
Display characters on current display window.
Input a string from the current display window.

Input one or more variables from a communications port.
Output characters to a communications port.

Input a string from a communications port.

Returns the number of lines in a communications buffer.

For Virtual 10, sets specified input port (8 bits) to the
specified value.

Set a hypothetical I/0 input port (2 words (32 bits)) as a
floating-point data (IEEE789 compliant) of 32 bits.

For Virtual 10, sets specified input word (16 bits) to the
specified value.

For Virtual 10, sets specified input bit to the specified value.

Returns the I/O label for a specified input or output bit, byte,
or word.
Returns the I/O number of the specified 1/O label.

Open an RS-232 communication port.

Close the RS-232C port that has been opened with
OpenCom.

Sets or displays parameters for RS-232C port.

Returns number of characters in the reception buffer of a
communication port

Open a TCP/IP network port.

Close the TCP/IP port previously opened with OpenNet.
Sets parameters for a TCP/IP port.

Returns number of characters in the reception buffer of a
network port

Wait for TCP/IP port connection to be established.

Reads characters from a file or communications port.
Reads binary data from a file or communications port.
Writes characters to a file or communication port without
end of line terminator.

Writes binary data to a file or communications port.

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Summary of SPEL+ Commands

Point Management Commands

ClearPoints Clears all point data in memory.

LoadPoints Loads point data from a file in memory.

SavePoints Saves point data to a file in memory.

P# Defines a specified point.

PDef Returns the definition status of a specified point.

PDel Deletes specified position data.

PLabel Defines a label for a specified point.

PLabel$ Returns the point label associated with a point number.
PNumber Returns the point number associated with a point label.
PList Displays point data in memory for the current robot.
PLocal Sets the local attribute for a point.

Coordinate Change Commands

Arm Sets / returns current arm.

ArmSet Defines an arm.

ArmDef Returns status of arm definition.

ArmClr Clears an arm definition.

Tool Sets / returns the current tool number.

TLSet Defines or displays a tool coordinate system.
TLDef Returns status of tool definition.

TLCIr Clears a tool definition.

ECP Sets / returns the current ECP number

ECPSet Defines or displays an external control point.
ECPDef Returns status of ECP definition.

ECPCIr Clears an ECP definition.

Base Defines and displays the base coordinate system.
Local Define a local coordinate system.

LocalDef Returns status of local definition.

LocalClr Clears (undefines) a local coordinate system.
Elbow Sets / returns elbow orientation of a point.

Hand Sets / returns hand orientation of a point.

Wrist Sets / returns wrist orientation of a point.

J4Flag Sets / returns the J4Flag setting of a point.
J6Flag Sets / returns the J6Flag orientation of a point.
J1Flag Sets / returns the J1Flag setting of a point.
J2Flag Sets / returns the J2Flag orientation of a point.
VxCalib Creates the calibration data.

VxCalDelete Deletes the calibration data.

VxCallnfo Returns the calibration completion status / calibration data.
VxCallLoad Loads the calibration data from the file.
VxCalSave Saves the calibration data to the file.

VxTrans Converts the pixel coordinates to the robot coordinates

and returns the converted the point data.

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 7

Summary of SPEL+ Commands

Program Control Commands

Function
For...Next
GoSub
Return
GoTo

Call

If.. Then..Else..EndIf

Else

Select ... Send

Do...Loop

Trap
OnErr
Era

Erf$

Erl

Err

Ert
ErrMsg$
Signal
SyncLock
SynUnlock

WaitSig
ErrorOn
Error

EResume

PauseOn

Exit

Declare a function.

Executes one or more statements for a specific count.
Execute a subroutine.

Returns from a subroutine.

Branch unconditionally to a line number or label.

Call a user function.

Conditional statement execution

Used with the If instruction to allow statements to be
executed when the condition used with the If instruction is
False. Else is an option for the If/Then instruction.

Executes one of several groups of statements, depending on the
value of an expression.

Do...Loop construct.

Specify a trap handler.

Defines an error handler.

Returns robot joint number for last error.

Returns the function name for last error.

Returns line number of error.

Returns error number.

Returns task number of error.

Returns error message.

Sends a signal to tasks executing WaitSig.
Synchronizes tasks using a mutual exclusion lock.
Unlocks a sync ID that was previously locked with
SyncLock.

Waits for a signal from another task.

Returns the error status of the controller.

Generates a user error.

Resumes execution after an error-handling routine is
finished.

Returns the pause status.

Exits a loop construct or function.

Program Execution Commands

Xqt
Pause
Cont

Halt
Quit
Resume
MyTask

TaskDone
TaskState
TaskWait

Execute a task.

Pause all tasks that have pause enabled.

Resumes the contoller after a Pause statement has been
executed and continues the execution of all tasks.
Suspend a task.

Quits a task.

Resume a task in the halt state.

Returns current task.

Returns the completion status of a task.
Returns the current state of a task.
Waits to for a task to terminate.

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Summary of SPEL+ Commands

Pseudo Statements

#define Defines a macro.
#ifdef ... #endif Conditional compile.
#ifndef ... #endif Conditional compile.
#include Include a file.

Numeric Value Commands

Ctr Return the value of a counter.

CTReset Resets a counter.

ElapsedTime Measures a takt time.

ResetElapsedTime Resets and starts a takt time measurement timer.

Tmr Returns the value of a timer.

TmReset Resets a timer to 0.

Sin Returns the sine of an angle.

Cos Returns cosine of an angle.

Tan Returns the tangent of an angle.

Acos Returns arccosine.

Asin Returns arcsine.

Atan Returns arctangent.

Atan2 Returns arctangent based on X, Y position.

Sqr Returns the square root of a number.

Abs Returns the absolute value of a number.

Sgn Returns the sign of a number.

Int Converts a real number to an integer.

BClr Clear one bit in a number and return the new value

BSet Sets a bit in a number and returns the new value.

BTst Returns the status of 1 bit in a number.

Fix Returns the integer portion of a real number.

Hex Returns a string representing a specified number in
hexadecimal format.

Randomize Initializes the random-number generator.

Redim Redimension an array at run-time.

Rnd Return a random number.

UBound Returns the largest available subscript for the indicated

dimension of an array.

String Commands

Asc Returns the ASCII value of a character.

Chr$ Returns the character of a numeric ASCII value.
Left$ Returns a substring from the left side of a string.
Mid$ Returns a substring.

Right$ Returns a substring from the right side of a string.
Len Returns the length of a string.

LSet$ Returns a string padded with trailing spaces.
RSet$ Returns a string padded with leading spaces.

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 9

Summary of SPEL+ Commands

Space$

Str$
Val

LCase$
UCase$
LTrim$
RTrim$
Trim$
ParseStr
FmtStr$

InStr
Tab$

Logical operators

Returns a string containing space characters.

Converts a number to a string.
Converts a numeric string to a number.

Converts a string to lower case.

Converts a string to upper case.

Removes spaces from beginning of string.
Removes spaces from end of string.

Removes spaces from beginning and end of string.
Parse a string and return array of tokens.

Format a number or string.

Returns position of one string within another.
Returns a string containing the specified number of tabs
characters.

Variable commands

And
Or

L Shift
Mod
Not
RShift
Xor
Mask

Performs logical and bitwise AND operation.

Or operator.

Shifts bits to the left.

Modulus operator.

Not operator.

Shifts bits to the right.

Exclusive Or operator.

Performs bitwise AND operation in Wait statements.

Boolean
Byte
Double
Global
Integer
Long
Real
String

Declares Boolean variables.
Declares byte variables.
Declares double variables.
Declares global variables.
Declares integer variables.
Declares long integer variables.
Declares real variables.
Declares string variables.

Commands used with VB Guide

10

SPELCom_Event

Fire an event in SpelNetLib client.

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

SPEL+ Language Reference

SPEL" Language Reference

This section describes each SPEL* command as follows:

Syntax Syntax describes the format used for each command. For some
commands, there is more than one syntax shown, along with a
number that is referenced in the command description. Parameters
are shown in italics.

Parameters Describes each of the parameters for this command.

Return Values Describes any values that the command returns.

Description Gives details about how the command works.

Notes Gives additional information that may be important about this
command.

See Also Shows other commands that are related to this command. Refer to

the Table of Contents for the page number of the related commands.

Example Gives one or more examples of using this command.

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 11

SPEL+ Language Reference

SYMBOLS

This manual uses the following symbols to show what context the command can
be used in:

S May be used from the command window.

S May be used as a statement in a SPEL" program.

F May be used as a Function in a SPEL" program.

12 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

1.1 Parallel Processing

1...! Parallel Processing

Processes input/output statements in parallel with motion.

>)(s]

Syntax
motion cmd statements !
Parameters
motion cmd Any valid motion command included in the following list: Arc, Arc3, Go, Jump,
Jump3, Jump3CP, Move.
statements Any valid parallel processing /O statement(s) which can be executed during
motion. (See table below)
Description

Parallel processing commands are attached to motion commands to allow I/O statements to execute
simultaneously with the beginning of motion travel. This means that I/O can execute while the arm is
moving rather than always waiting for arm travel to stop and then executing I/O. There is even a
facility to define when within the motion that the 1/O should begin execution. (See the Dn parameter
described in the table below.)

The table below shows all valid parallel processing statements. Each of these statements may be
used as single statements or grouped together to allow multiple I/O statements to execute during one

motion statement.

Used to specify %travel before the next parallel statement is executed. nis a
percentage between 0 and 100 which represents the position within the
motion where the parallel processing statements should begin. Statements
which follow the Dn parameter will begin execution after n% of the motion
travel has been completed.

Dn When used with the Jump, Jump3, and Jump3CP commands, %travel does
not include the depart and approach motion. To execute statements after the
depart motion has completed, include DO (zero) at the beginning of the
statement.

Dn may appear a maximum of 16 times in a parallel processing statement.

On/Offn Turn Output bit number n on or off.

MemOn / MemOff n | Turns memory I/O bit number n on or off.

Out p,d Outputs data d to output port p.

OpBCD p, d Outputs data d to output port p.

OutW p, d Outputs data d to output port p.

OutReal p, d Outputs data d to output port p.

MemOutW p, d Outputs data d to output port p.

MemOut p, d Outputs data d to memory I/O port p

Signal s Generates synchronizing signal.

Wait ¢ Delays for t seconds prior to execution of the next parallel processing
statement.

WaitSig s Waits for signal s before processing next statement.

Wait Sw(n) = j Delays execution of next parallel processing statement until the input bit n is

J equal to the condition defined by j. (On or Off)
. _ . | Delays execution of the next parallel processing statement until the memory

Wait MemSw(n) = J I/O bit n is equal to the condition defined by j. (On or Off)

Print / Input Prints data to and inputs data from the display device.

Print # / Input # Prints data to and inputs data from the specified communications port.

Pn = Point Updates the specified point data.

expression

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 13

1.1 Parallel Processing

Notes

When Motion is Completed before All /O Commands are Complete
If, after completing the motion for a specific motion command, all parallel processing statement
execution has not been completed, subsequent program execution is delayed until all parallel
processing statements execution has been completed. This situation is most likely to occur with short
moves with many I/O commands to execute in parallel.

What happens when the Till statement is used to stop the arm prior to completing the intended
motion

If Till is used to stop the arm at an intermediate travel position, the next statement after the motion
statement's execution is delayed until all the execution of all parallel processing statements has been
completed.

Whem the Trap is used to stop the arm before completing the motion
After the arm stops at an intermediate travel position, D statement cannot be executed.

Specifying n near 100% can cause path motion to decelerate

If a large value of n is used during CP motion, the robot may decelerate to finish the current motion.
This is because the position specified would normally be during deceleration if CP was not being used.
To avoid deceleration, consider placing the processing statement after the motion command. For
example, in the example below, the On 1 statement is moved from parallel processing during the jump
to P1 to after the jump.

CP On

Jump P1 !D96; On 1!
Go P2

CP On
Jump P1
On 1

Go P2

The Jump statement and Parallel Processing
It should be noted that execution of parallel processing statements which are used with the Jump
statement begins after the rising motion has completed and ends at the start of falling motion.

The Here statement and Parallel Processing

You cannot use both of the Here statement and parallel processing in one motion command like this:
Go Here :2(0) ! D10; MemOn 1 !

Be sure to change the program like this:
P999 = Here
Go P999 Here :7Z2(0) ! D10; MemOn 1 !

See Also
Arc, Arc3, Go, Jump, Jump3, Jump3CP, Move, Pulse

The following examples show various ways to use the parallel processing feature with Motion
Commands:.

Parallel processing with the Jump command causes output bit 1 to turn on at the end of the Z joint
rising travel and when the 1st, 2nd, and 4th axes begin to move. Then output bit 1 is turned off again
after 50% of the Jump motion travel has completed.

Function test
Jump P1 !DO; On 1; D50; Off 1!
Fend

Parallel processing with the Move command causes output bit 5 to turn on when the joints have
completed 10% of their move to the point P1. Then 0.5 seconds later turn output bit 5 off.

Function test2
Move Pl !D10; On 5; Wait 0.5; Off 5!
Fend

14 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

#define

Defines identifier to be replaced by specified replacement string. @

Syntax
#define identifier [(parameter, [parameter)] string

Parameters

identifier Keyword defined by user which is an abbreviation for the sfring parameter. Rules for
identifiers are as follows:

- The first character must be alphabetic while the characters which follow may be
alphanumeric or an underscore (_).

- Spaces or tab characters are not allowed as part of the identifier .

parameter Normally used to specify a variable (or multiple variables) which may be used by the
replacement string. This provides for a dynamic define mechanism which can be used
like a macro. A maximum of up to 8 parameters may be used with the #define command.
However, each parameter must be separated by a comma and the parameter list must
be enclosed within parenthesis.

string This is the replacement string which replaces the identifier when the program is compiled.
Rules regarding replacement strings are as follows:

- Spaces or tabs are allowed in replacement strings.

Identifiers used with other #define statements cannot be used as replacement strings.

- If the comment symbol (') is included, the characters following the comment symbol
will be treated as a comment and will not be included in the replacement string.

- The replacement string may be omitted. In this case the specified identifier is
replaced by "nothing" or the null string. This actually deletes the identifier from the
program

Description
The #define instruction causes a replacement to occur within a program for the specified identifier.
Each time the specified identifier is found the identifier is replaced with the replacement string prior to
compilation. However, the source code will remain with the identifier rather than the replacement
string. This allows code to become easier to read in many cases by using meaningful identifier names
rather than long difficult to read strings of code.

The defined identifier can be used for conditional compiling by combining with the #ifdef or #ifndef
commands.

If a parameter is specified, the new identifier can be used like a macro.

Notes

Using #define for variable declaration or label substitutions will cause an error:
It should be noted that usage of the #define instruction for variable declaration will cause an error.

See Also

#ifdef
#ifndef

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 15

#define

#define Example

' Uncomment next line for Debug mode.
' #define DEBUG

Input #1, AS
#ifdef DEBUG
Print "AS$ = ", AS
#endif
Print "The End"
#define SHOWVAL (x) Print "var = ", x
Integer a

a = 25

SHOWVAL (a)

16 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

#ifdef.. #else...#endif

#ifdef.. #else.. #endif

Provides conditional compiling capabilities. @

Syntax

#ifdef identifier

..put selected source code for conditional compile here.
[#else

...put selected source code for false condition here.]
#endif

Parameters

identifier Keyword defined by the user which when defined allows the source code defined
between #ifdef and #else or #endif to be compiled. Thus the identifier acts as the
condition for the conditional compile.

Description
#ifdef.. #else... #endif allows for the conditional compiling of selected source code. The condition as to
whether or not the compile will occur is determined based on the identifier. #ifdef first checks if the
specified identifier is currently defined by #define. The #else statement is optional.

If defined, and the #else statement is not used, the statements between #ifdef and #endif are
compiled. Otherwise, if #else is used, then the statements between #ifdef and #else are compiled.

If not defined, and the #else statement is not used, the statements between #ifdef and #endif are
skipped without being compiled. Otherwise, if #else is used, then the statements between #else and
#endif are compiled.

See Also
#define, #ifndef

#ifdef Example

A section of code from a sample program using #ifdef is shown below. In the example below, the
printing of the value of the variable A$ will be executed depending on the presence or absence of the
definition of the #define DEBUG pseudo instruction. If the #define DEBUG pseudo instruction was
used earlier in this source, the Print A$ line will be compiled and later executed when the program is
run. However, the printing of the string "The End" will occur regardless of the #define DEBUG pseudo
instruction.

' Uncomment next line for Debug mode.
' #define DEBUG

Input #1, AS
#ifdef DEBUG
Print "AS = ", AS
#endif
Print "The End"

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 17

#ifndef...#endif

#ifndef.. #endif

Provides conditional compiling capabilities. @

Syntax
#ifndef identifier
..Put selected source code for conditional compile here.
[#else
...put selected source code for true condition here.]
#endif

Parameters

identifier Keyword defined by the user which when Not defined allows the source code defined
between #ifndef and #else or #endif to be compiled. Thus the identifier acts as the
condition for the conditional compile.

Description

This instruction is called the "if not defined" instruction. #ifndef...#else...#endif allow for the conditional
compiling of selected source code. The #else statement is optional.

If defined, and the #else statement is not used, the statements between #ifndef and #endif are not
compiled. Otherwise, if #else is used, then the statements between #else and #endif are compiled.

If not defined, and the #else statement is not used, the statements between #ifndef and #endif are
compiled. Otherwise, if #else is used, then the statements between #else and #endif are not compiled.

Notes

Difference between #ifdef and #ifndef

The fundamental difference between #ifdef and #ifndef is that the #ifdef instruction compiles the
specified source code if the identifier is defined. The #ifndef instruction compiles the specified source
code if the identifier is not defined.

See Also
#define, #ifdef

#ifndef Example

A section of code from a sample program using #ifndef is shown below. In the example below, the
printing of the value of the variable A$ will be executed depending on the presence or absence of the
definition of the #define NODELAY pseudo instruction. If the #define NODELAY pseudo instruction
was used earlier in this source, the Wait 1 line will Not be compiled along with the rest of the source
for this program when it is compiled. (i.e. submitted for running.) If the #define NODELAY pseudo
instruction was not used (i.e. NODELAY is not defined) earlier in this source, the Wait 1 line will be
compiled and later executed when the program is run. The printing of the string "The End" will occur
regardless of the #define NODELAY pseudo instruction.

' Comment out next line to force delays.
#define NODELAY 1

Input #1, AS

#ifndef NODELAY
Wait 1

#endif

Print "The End"

18 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

#include

Includes the specified file into the file where the #include statement is used. @

Syntax
#include "fileName.INC"

Parameters

fileName fileName must be the name of an include file in the current project. All include files have
the INC extension. The filename specifies the file which will be included in the current file.

Description

#include inserts the contents of the specified include file with the current file where the #include
statement is used.

Include files are used to contain #define statements.
The #include statement must be used outside of any function definitions.

An include file may contain a secondary include file. For example, FILE2 may be included within
FILE1, and FILE3 may be included within FILE2. This is called nesting.

See Also
#define, #ifdef, #ifndef

#include Example
Include File (Defs.inc)

#define DEBUG 1
#define MAX_ PART COUNT 20

Program File (main.prg)

#include "defs.inc"

Function main
Integer 1

Integer Parts (MAX PART COUNT)

Fend

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 19

#undef

Undefines an identifier previously defined with #define. @

Syntax
#undef identifier

Parameters
identifier Keyword used in a previous #define statement.

See Also
#define, #ifdef, #ifndef

20 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Abs Function

Abs Function

Returns the absolute value of a number. @

Syntax
Abs(number)

Parameters
number Any valid numeric expression.

Return Values
The absolute value of a number.

Description

The absolute value of a number is its unsigned magnitude. For example, Abs(-1) and Abs(1) both
return 1.

See Also
Atan, Atan2, Cos, Int, Mod, Not, Sgn, Sin, Sqr, Str$, Tan, Val

Abs Function Example

The following examples are done from the command window using the Print instruction.
print abs (1)
print abs(-1)

print abs(-3.54)
.54

vV WV PV PV

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 21

Accel Statement

Accel Statement
Sets (or displays) the acceleration and deceleration rates for the point to point @

motion instructions Go, Jump and Pulse.

Syntax
(1) Accel accel, decel [, departAccel, departDecel, approAccel, approDecel]
(2) Accel

Parameters
accel Integer expression 1 or more representing a percentage of maximum acceleration rate.
decel Integer expression 1 or more representing a percentage of the maximum deceleration

rate.

departAccel Depart acceleration for Jump. Valid Entries are 1 or more.
Optional. Available only with Jump command.

departDecel Depart deceleration for Jump. Valid Entries are 1 or more.
Optional. Available only with Jump command.

approAccel Approach acceleration for Jump. Valid Entries are 1 or more.
Optional. Available only with Jump command.

approDecel Approach deceleration for Jump. Valid Entries are 1 or more.
Optional. Available only with Jump command.

Return Values
When parameters are omitted, the current Accel parameters are displayed.

Description

Accel specifies the acceleration and deceleration for all Point to Point type motions. This includes
motion caused by the Go, Jump and Pulse robot motion instructions.

Each acceleration and deceleration parameter defined by the Accel instruction may be an integer
value 1 or more. This number represents a percentage of the maximum acceleration (or
deceleration) allowed. Usually, the maximum value is 100. However, some robots allow setting
larger than 100. Use AccelMax function to get the maximum value available for Accel.

The Accel instruction can be used to set new acceleration and deceleration values or simply to
print the current values. When the Accel instruction is used to set new accel and decel values, the
first 2 parameters (accel and decel) in the Accel instruction are required.

The optional departAccel, departDecel, approAccel, and approDecel parameters are effective for
the Jump instruction only and specify acceleration and deceleration values for the depart motion at
the beginning of Jump and the approach motion at the end of Jump.

The Accel value initializes to the default values (low acceleration) when any one of the following
conditions occurs:

Controller Power On

Motor On

SFree, SLock

Reset

Stop button or Ctrl + C Key

22 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Accel Statement

Notes

Executing the Accel command in Low Power Mode (Power Low)

If Accel is executed when the robot is in low power mode (Power Low), the new values are stored, but
the current values are limited to low values.

The current acceleration values are in effect when Power is set to High, and Teach mode is OFF.

Accel vs. AccelS

It is important to note that the Accel instruction does not set the acceleration and deceleration rates
for straight line and arc motion. The AccelS instruction is used to set the acceleration and deceleration
rates for the straight line and arc type moves.

Accel setting larger than 100
Usually, the maximum value is 100. However, some robots allow setting larger than 100.
In general use, Accel setting 100 is the optimum setting that maintains the balance of acceleration and
vibration when positioning. However, you may require an operation with high acceleration to shorten
the cycle time by decreasing the vibration at positioning. In this case, set the Accel to larger than 100.
Except in some operation conditions, the cycle time may not change by setting Accel to larger than
100.

See Also
AccelR, AccelS, Go, Jump, Jump3, Power, Pulse, Speed, TGo

Accel Statement Example

The following example shows a simple motion program where the acceleration (Accel) and speed
(Speed) is set using predefined variables.

Function acctest
Integer slow, accslow, decslow, fast, accfast, decfast

slow = 20 'set slow speed variable
fast = 100 'set high speed variable
accslow = 20 'set slow acceleration variable
decslow = 20 'set slow deceleration variable
accfast = 100 'set fast acceleration variable
decfast = 100 'set fast deceleration wvariable

Accel accslow, decslow
Speed slow

Jump pick

On gripper

Accel accfast, decfast
Speed fast

Jump place

Fend

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 23

Accel Statement

24

<Example 2>

Assume the robot is currently in Low Power Mode (Power Low) and from the command window the
user tries to set the Accel value to 100. Because the robot is in Low Power Mode, a maximum
acceleration value of 10 will be set automatically. (The system will not allow an acceleration larger
than 10 when in Low Power Mode.)

>Accel 100,100
>

>Accel

Low Power Mode
100 100
100 100
100 100

<Example 3>
Set the Z joint downward deceleration to be slow to allow a gentle placement of the part when using
the Jump instruction. This means we must set the Zdnd parameter low when setting the Accel values.

>Accel 100,100,100,100,100,35

>Accel
100 100
100 100
100 35

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Accel Function

Accel Function
Returns specified acceleration value. @

Syntax
Accel(paramNumber)

Parameters
paramNumber Integer expression which can have the following values:

. acceleration specification value

: deceleration specification value

: depart acceleration specification value for Jump

: depart deceleration specification value for Jump

. approach acceleration specification value for Jump

o O A W N -

: approach deceleration specification value for Jump

Return Values
Integer 1% or more

See Also
Accel Statement

Accel Function Example
This example uses the Accel function in a program:

Integer currAccel, currDecel

' Get current accel and decel
currAccel = Accel (1)
currDecel = Accel(2)

Accel 50, 50

Jump pick

' Restore previous settings
Accel currAccel, currDecel

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 25

AccelMax Function

AccelMax Function
Returns maximum acceleration value limit available for Accel. @

Syntax
AccelMax(maxValueNumber)

Parameters
maxValueNumber Integer expression which can have the following values:

1: acceleration maximum value

: deceleration maximum value

: depart acceleration maximum value for Jump

: depart deceleration maximum value for Jump

: approach acceleration maximum value for Jump

o O A WN

: approach deceleration maximum value for Jump

Return Values
Integer 1% or more

See Also
Accel

AccelMax Function Example
This example uses the AccelMax function in a program:

' Get maximum accel and decel
Print AccelMax(l), AccelMax(2)

26 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

AccelR Statement

AccelR Statement
Sets or displays the acceleration and deceleration values for tool rotation control of @

CP motion.

Syntax

(1) AccelR accel [, decal]
(2) AccelR

Parameters
accel Real expression in degrees / second” (0.1 to 5000).
decel Real expression in degrees / second? (0.1 to 5000).

Return Values
When parameters are omitted, the current AccelR settings are displayed.
Description
AccelR is effective when the ROT modifier is used in the Move, Arc, Arc3, BMove, TMove, and

Jump3CP motion commands.

The AccelR value initializes to the default values when any one of the following conditions occurs:

Controller Power On

Motor On

SFree, SLock

Reset

Stop button or Ctrl + C Key

See Also
Arc, Arc3, BMove, Jump3CP, Power, SpeedR, TMove

AccelR Statement Example

AccelR 360, 200

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 27

AccelR Function

AccelR Function
Returns specified tool rotation acceleration value. @

Syntax
AccelR(paramNumber)

Parameters
paramNumber Integer expression which can have the following values:

1: acceleration specification value
2: deceleration specification value

Return Values
Real value in degrees / second?

See Also
AccelR Statement

AccelR Function Example

Real currAccelR, currDecelR
' Get current accel and decel

currAccelR = AccelR(1)
currDecelR = AccelR(2)

28 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

AccelS Statement

AccelS Statement
Sets the acceleration and deceleration rates for the Straight Line and Continuous Path @

robot motion instructions such as Move, Arc, Arc3, Jump3, etc.

Syntax

(1) AccelS accel, [decel][, departAccel, departDecel, approAccel, approDece]
(2) AccelS

Parameters

accel Real expression represented in mm/sec? units to define acceleration and
deceleration values for straight line and continuous path motion. If decel is omitted,
then accel is used to specify both the acceleration and deceleration rates.

decel Optional. Real expression represented in mm/sec? units to define the deceleration
value.

departAccel Optional. Real expression for depart acceleration value for Jump3, Jump3CP.

departDecel Optional. Real expression for depart deceleration value for Jump3, Jump3CP.

approAccel Optional. Real expression for approach acceleration value for Jump3, Jump3CP.

approDecel Optional. Real expression for approach deceleration value for Jump3, Jump3CP.

Valid entries range of the parameters differs by robot type as follows.

departAccel | departDecel

accel | decel approAccel | approDecel

SCARA robot 0.1 to 25000 0.1 to 25000
6-axis robot 0.1 to 25000 0.1 to 50000
(mm/sec?)

Return Values
Displays Accel and Decel values when used without parameters

Description

AccelS specifies the acceleration and deceleration for all interpolated type motions including linear
and curved interpolations. This includes motion caused by the Move and Arc motion instructions.

The AccelS value initializes to the default values when any one of the following conditions occurs:

Controller Power On

Motor On

SFree, SLock

Reset

Stop button or Ctrl + C Key

Notes

Executing the AccelS command in Low Power Mode (Power Low):

If AccelS is executed when the robot is in low power mode (Power Low), the new values are stored,
but the current values are limited to low values.

The current acceleration values are in effect when Power is set to High, and Teach mode is OFF.

Accel vs. AccelS:

It is important to note that the AccelS instruction does not set the acceleration and deceleration rates
for point to point type motion. (i.e. motions initiated by the Go, Jump, and Pulse instructions.) The
Accel instruction is used to set the acceleration and deceleration rates for Point to Point type motion.

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 29

AccelS Statement

See Also
Accel, Arc, Arc3, Jump3, Jump3CP, Power, Move, TMove, SpeedS

AccelS Example
The following example shows a simple motion program where the straight line/continuous path
acceleration (AccelS) and straight line/continuous path speed (SpeedS) are set using predefined
variables.

30

Function acctest

Integer slow,

slow = 20

fast = 100
accslow = 200
accfast = 5000
AccelS accslow
SpeedS slow
Move P1

On 1

AccelS accfast
SpeedS fast
Jump P2

Fend

<Example 2>
Assume the robot is currently in Low Power Mode (Power Low) and from the command window the
user tries to set the AccelS value to 1000. Because the robot is in Low Power Mode, a maximum
acceleration value of 200 will be set automatically. (The system will not allow an acceleration larger
than 200 when in Low Power Mode.)

>AccelS 1000

>AccelS
Low Power Mode

>

1000.000

accslow, fast, accfast

'set slow speed variable
'set high speed variable
'set slow acceleration variable
'set fast acceleration variable

1000.000

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

AccelS Function

AccelS Function
Returns acceleration or deceleration for CP motion commands. @

Syntax
AccelS(paramNumber)

Parameters
paramNumber Integer expression which can have the following values:
: acceleration value
: deceleration value
: depart acceleration value for Jump3, Jump3CP
: depart deceleration value for Jump3, Jump3CP
: approach acceleration value for Jump3, Jump3CP
: approach deceleration value for Jump3, Jump3CP

o O AW N -

Return Values
Real value from 0 - 5000 mm/sec/sec

See Also
AccelS Statement, Arc3, SpeedS, Jump3, Jump3CP

AccelS Function Example

Real savAccelS

savAccelS = Accels (1)

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 31

Acos Function

Returns the arccosine of a numeric expression. @

Syntax
Acos(number)

Parameters
number Numeric expression representing the cosine of an angle.

Return Values
Real value, in radians, representing the arccosine of the parameter number.

Description

Acos returns the arccosine of the numeric expression. Values range is from -1 to 1. The value
returned by Acos will range from O to Pl radians. If numberis < -1 or > 1, an error occurs.

To convert from radians to degrees, use the RadToDeg function.

See Also
Abs, Asin, Atan, Atan2, Cos, DegToRad, RadToDeg, Sgn, Sin, Tan, Val

Acos Function Example

Function acostest
Double x

x = Cos (DegToRad (30))

Print "Acos of ", x, " is ", Acos(x)
Fend

32 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Agl Function

Agl Function

Returns the joint angle for the selected rotational joint, or position for the selected linear joint. @

Syntax
Agl(jointNumber)

Parameters

JointNumber Integer expression representing the joint number. Values are from 1 to the
number of joints on the robot.

Return Values
The joint angle for selected rotational joint or position for selected linear joints.

Description

The Agl function is used to get the joint angle for the selected rotational joint or position for the
selected linear joint.

If the selected joint is rotational, Agl returns the current angle, as measured from the selected joint's 0
position, in degrees. The returned value is a real number.

If the selected joint is a linear joint, Agl returns the current position, as measured from the selected
joint's 0 position, in mm. The returned value is a real number.

If an auxiliary arm is selected with the Arm statement, Agl returns the angle (or position) from the
standard arm's 0 pulse position to the selected arm.

See Also
PAgl, Pls, PPIs

Agl Function Example
The following examples are done from the command window using the Print instruction.

> print agl(1l), agl(2)
17.234 85.355

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 33

AglToPIs Function

AglToPIs Function
Converts robot angles to pulses. @

Syntax
AgIToPIs(j1, j2, j3, j4, [j5], [i6])

Parameters
j1-j6 Real expressions representing joint angles.

Return Values
A robot point whose location is determined by joint angles converted to pulses.

Description
Use AgIToPIs to create a point from joint angles.

Note

Assignment to point can cause part of the joint position to be lost.

In certain cases, when the result of AgIToPIs is assigned to a point data variable, the arm moves to a
joint position that is different from the joint position specified by AgIToPIs.

For example:

P1 = AglToPls (0, 0, 0, 90, 0, 0)
Go Pl ' moves to AglToPls (0, 0, 0, 0, 0, 90) joint position

Similarly, when the AgIToPlIs function is used as a parameter in a CP motion command, the arm may
move to a different joint position from the joint position specified by AgIToPlIs.

Move AglToPls (O, O, 0, 90, 0, 0) ' moves to AglToPls (0, 0O, 0, 0, 0, 90)
joint position

When using the AgIToPlIs function as a parameter in a PTP motion command, this problem does not
occur.

See Also
Agl, JA, Pls

AglToPls Function Example

Go AglToPls (0, 0, 0, 90, 0, 0)

34 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Align Function

Align Function

Returns the point data converted to align the robot orientation (U, V, W) at the specified point @
in the tool coordinate system with the nearest axis of the specified local coordinate system.

Syntax
(1) Align (Point, [localNumber])

Parameters
Point The point data.
localNumber The local coordinate system number to be a reference for the alignment of
orientation.
If omitted, the base coordinate system is used.
Description

While operating the 6-axis robot, the robot orientation may have to be aligned with an axis of the
specified local coordinate system without changing the tool coordinate system position (origin) defined
with the point data.

Align Function converts the orientation data (U,V,W) of the specified point data and aligns with the
nearest axis of the specified local coordinate system.

For robots except the 6-axis robot, it returns a specified point.

See Also
AlignECP Function, LJM Function

Align Function Example

Move Align (P0) ROT

Pl = Align (PO, 1)
Move P1 ROT

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 35

AlignECP Function

AlignECP Function

Returns the point data converted to align the robot orientation (U, V, W) at the specified point @
in the tool coordinate system with the nearest axis of the specified ECP coordinate system.

Syntax
(2) AlignECP (Point, ECPNumber)

Parameters
Point The point data.
ECPNumber The ECP coordinate system number to be a reference for the alignment of
orientation.
Description

While operating the 6-axis robot, the robot orientation may have to be aligned with an axis of the
specified local coordinate system without changing the tool coordinate system position (origin) defined
with the point data.

AlignECP Function converts the orientation data (U,V,W) of the specified point data and aligns with
the nearest axis of the specified local coordinate system.

For robots except the 6-axis robot, it returns a specified point.

See Also
Align Function, LJM Function

AlignECP Function Example

Move AlignECP (P0) ROT

Pl = AlignECP (PO, 1)
Move P1 ROT

36 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

And Operator
And Operator

Operator used to perform a logical or bitwise And of 2 expressions.

Syntax
result = expr1 And expr2

Parameters

expr1, expr2 For logical And, any valid expression which returns a Boolean result. For bitwise And,
an integer expression.

result For logical And, result is a Boolean value. For bitwise And, result is an integer.

Description

A logical And is used to combine the results of 2 or more expressions into 1 single Boolean result.
The following table indicates the possible combinations.

expri expr2 result
True True True
True False False
False True False
False False False

A bitwise And performs a bitwise comparison of identically positioned bits in two numeric expressions
and sets the corresponding bit in result according to the following table:

If bit in expr1 is And bit in expr2 is The result is
0 0 0
0 1 0
1 0 0
1 1 1

See Also
LShift, Mask, Not, Or, RShift, Xor

And Operator Example

Function LogicalAnd(x As Integer, y As Integer)

If x = 1 And y = 2 Then

Print "The values are correct"
EndIf
Fend

Function BitWiseAnd ()

If (Stat(0) And &H800000) = &H800000 Then
Print "The enable switch is open"
EndIf
Fend

sprint 15 and 7
7

>

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 37

javascript:hhobj_7.Click()
javascript:hhobj_8.Click()

Arc, Arc3 Statements

Arc, Arc3 Statements
Arc moves the arm to the specified point using circular interpolation in the XY plane. @

Arc3 moves the arm to the specified point using circular interpolation in 3 dimensions.
These two commands are available for SCARA robots (including RS series) and 6-axis robots.

Syntax

(1) Arc midPoint, endPoint [ROT] [CP] [searchExpr][!...]]
(2) Arc3 midPoint, endPoint [ROT] [ECP] [CP] [searchExpr] [!...]]

Parameters
midPoint Point expression. The middle point (taught previously by the user) which the arm travels
through on its way from the current point to endPoint.

endPoint Point expression. The end point (taught previously by the user) which the arm travels to
during the arc type motion. This is the final position at the end of the circular move.

ROT Optional. :Decides the speed/acceleration/deceleration in favor of tool rotation.

ECP Optional. External control point motion. This parameter is valid when the ECP option is
enabled.

CcP Optional. Specifies continuous path motion.

searchExpr Optional. A Till or Find expression.
Till | Find
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

1.1 Parallel processing statements may be used with the Arc statement. These are optional.
(Please see the Parallel Processing description for more information.)

Description

Arc and Arc3 are used to move the arm in a circular type motion from the current position to endPoint
by way of midPoint. The system automatically calculates a curve based on the 3 points (current
position, endPoint, and midPoint) and then moves along that curve until the point defined by endPoint
is reached. The coordinates of midPoint and endPoint must be taught previously before executing the
instruction. The coordinates cannot be specified in the statement itself.

Arc and Arc3 use the SpeedS speed value and AccelS acceleration and deceleration values. Refer to
Using Arc3 with CP below on the relation between the speed/acceleration and the
acceleration/deceleration. If, however, the ROT modifier parameter is used, Arc and Arc3 use the
SpeedR speed value and AccelR acceleration and deceleration values. In this case SpeedS speed
value and AccelS acceleration and deceleration value have no effect.

Usually, when the move distance is 0 and only the tool orientation is changed, an error will occur.
However, by using the ROT parameter and giving priority to the acceleration and the deceleration of
the tool rotation, it is possible to move without an error. When there is not an orientational change with
the ROT modifier parameter and movement distance is not 0, an error will occur.

Also, when the tool rotation is large as compared to move distance, and when the rotation speed
exceeds the specified speed of the manipulator, an error will occur. In this case, please reduce the
speed or append the ROT modifier parameter to give priority to the rotational
speed/acceleration/deceleration.

When ECP is used (Arc3 only), the trajectory of the external control point coresponding to the ECP

number specified by ECP instruction moves circular with respect to the tool coordinate system. In this
case, the trajectory of tool center point does not follow a circular line.

38 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Arc, Arc3 Statements

ECP

\

Setting Speed and Acceleration for Arc Motion

SpeedS and AccelS are used to set speed and acceleration for the Arc and Arc3 instructions.
SpeedS and AccelS allow the user to specify a velocity in mm/sec and acceleration in mm/sec?.

Notes

Arc Instruction works in Horizontal Plane Only
The Arc path is a true arc in the Horizontal plane. The path is interpolated using the values for
endPoint as its basis for Z and U. Use Arc3 for 3 dimensional arcs.

Range Verification for Arc Instruction
The Arc and Arc3 statements cannot compute a range verification of the trajectory prior to the arc
motion. Therefore, even for target positions that are within an allowable range, en route the robot may
attempt to traverse a path which has an invalid range, stopping with a severe shock which may
damage the arm. To prevent this from occurring, be sure to perform range verifications by running the
program at low speeds prior to running at faster speeds.

Suggested Motion to Setup for the Arc Move

Because the arc motion begins from the current position, it may be necessary to use the Go, Jump or
other related motion command to bring the robot to the desired position prior to executing Arc or Arc3.

Using Arc, Arc3 with CP
The CP parameter causes the arm to move to the end point without decelerating or stopping at the
point defined by endPoint. This is done to allow the user to string a series of motion instructions
together to cause the arm to move along a continuous path while maintaining a specified speed
throughout all the motion. The Arc and Arc3 instructions without CP always cause the arm to
decelerate to a stop prior to reaching the end point.

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 39

Arc, Arc3 Statements

Potential Errors

Changing Hand Attributes
Pay close attention to the HAND attributes of the points used with the Arc instruction. If the hand
orientation changes (from Right Handed to Left Handed or vice-versa) during the circular interpolation
move, an error will occur. This means the arm attribute (/L Lefty, or /R Righty) values must be the
same for the current position, midPoint and endPoint points.

Attempt to Move Arm Outside Work Envelope

If the specified circular motion attempts to move the arm outside the work envelope of the arm, an
error will occur.

See Also
IParallel Processing!, AccelS, Move, SpeedS

Arc Example

The diagram below shows arc motion which originated at the point P100 and then moves through
P101 and ends up at P102. The following function would generate such an arc:

Function ArcTest
Go P100
Arc P101, P102
Fend

>0P102
P101

P100
Tip

When first trying to use the Arc instruction, it is suggested to try a simple arc with points directly in
front of the robot in about the middle of the work envelope. Try to visualize the arc that would be
generated and make sure that you are not teaching points in such a way that the robot arm would try
to move outside the normal work envelope.

40 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Arch Statement

Arch Statement

Defines or displays the Arch parameters for use with the Jump, Jump3, Jump3CP

instructions.

Syntax

(1) Arch archNumber, departDist, approDist
(2) Arch archNumber

(3) Arch

Parameters

>)(s]

archNumber Integer expression representing the Arch number to define. Valid Arch numbers are (0-
6) making a total of 7 entries into the Arch table. (see default Arch Table below)

The vertical distance moved (Z) at the beginning of the Jump move before beginning

departDist

approDist

Return Values

horizontal motion. (specified in millimeters)

The vertical distance required (as measured from the Z position of the point the arm is
moving to) to move in a completely vertical fashion with all horizontal movement

complete. (specified in millimeters)

Displays Arch Table when used without parameters.
The Arch table of the specified Arch number will be displayed when only the Arch number is

specified.

Description

The primary purpose of the Arch instruction is to define values in the Arch Table which is required for
use with the Jump motion instruction. The Arch motion is carried out per the parameters
corresponding to the arch number selected in the Jump C modifier. (To completely understand the
Arch instruction, the user must first understand the Jump instruction.)

The Arch definitions allow the user to "round corners" in the Z direction when using the Jump C
instruction. While the Jump instruction specifies the point to move to (including the final Z joint
position), the Arch table entries specify how much distance to move up before beginning horizontal
motion (riseDist) and how much distance up from the final Z joint position to complete all horizontal
motion (fallDist). (See diagram below)

Rise
Distance

1

EPSON RC+ 5.

Fall
Distance

0 (Ver.5.4) SPEL+ Language Reference Rev.5

41

Arch Statement

There are a total of 8 entries in the Arch Definition Table with 7 of them (0-6) being user definable.
The 8th entry (Arch 7)is the default Arch which actually specifies no arch at all which is referred to as
Gate Motion. (See Gate Motion diagram below) The Jump instruction used with the default Arch entry
(Entry 8) causes the arm to do the following:
1) Begin the move with only Z-joint motion until it reaches the Z-Coordinate value specified by the
LimZ command. (The upper Z value)
2) Next move horizontally to the target point position until the final X, Y and U positions are
reached.
3) The Jump instruction is then completed by moving the arm down with only Z-joint motion until
the target Z-joint position is reached.

Gate Motion
(Jump with Arch 7)

PO P1

Arch Table Default Values:

Arch Depart Approach
Number Distance Distance
0 30 30
1 40 40
2 50 50
3 60 60
4 70 70
5 80 80
6 90 90

Notes

Jump Motion trajectory changes depending on motion and speed

Jump motion trajectory is comprised of vertical motion and horizontal motion. It is not a continuous
path trajectory. The actual Jump trajectory of arch motion is not determined by Arch parameters alone.
It also depends on motion and speed.

Always use care when optimizing Jump trajectory in your applications. Execute Jump with the desired
motion and speed to verify the actual trajectory.

When speed is lower, the trajectory will be lower. If Jump is executed with high speed to verify an
arch motion trajectory, the end effector may crash into an obstacle with lower speed.

In a Jump trajectory, the depart distance increases and the approach distance decreases when the
motion speed is set high. When the fall distance of the trajectory is shorter than the expected, lower
the speed and/or the deceleration, or change the fall distance to be larger.

Even if Jump commands with the same distance and speed are executed, the trajectory is affected by
motion of the robot arms. As a general example, for a SCARA robot the vertical upward distance
increases and the vertical downward distance decreases when the movement of the first arm is large.
When the vertical fall distance decreases and the trajectory is shorter than the expected, lower the
speed and/or the deceleration, or change the fall distance to be larger.

42 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Arch Statement

Another Cause of Gate Motion

When the specified value of the Rising Distance or Falling Distance is larger than the actual Z-joint
distance which the robot must move to reach the target position, Gate Motion will occur. (i.e. no type
Arch motion will occur.)

Arch values are Maintained

The Arch Table values are permanently saved and are not changed until either the user changes
them.

See Also
Jump, Jump3, JumpCP

Arch Example
The following are examples of Arch settings done from the command window.

> arch 0, 15, 15

> arch 1, 25, 50

> jump pl cl

> arch
arch0 = 15.000 15.000
archl = 25.000 50.000
arch2 = 50.000 50.000
arch3 = 60.000 60.000
arch4 = 70.000 70.000
arch5 = 80.000 80.000
arche = 90.000 90.000

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 43

Arch Function

Arch Function
Returns arch settings. @

Syntax
Arch(archNumber, paramNumber)

Parameters
archNumber Integer expression representing arch setting to retrieve parameter from (0 to 6).
paramNumber 1: depart distance

2: approach distance

Return Value
Real number containing distance.

See Also
Arch statement

Arch Function Example

Real archValues (6, 1)
Integer i

' Save current arch values
For i = 0 to 6
archvValues (i, 0)
archvalues (i, 1)
Next i

Arch(i, 1)
Arch (i, 2)

44 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Arm Statement

Arm Statement
Selects or displays the arm number to use. @

Syntax

(1) Arm armNumber
(2) Arm

Parameters

armNumber Optional integer expression. Valid range is from 0 - 15. The user may select up
to 16 different arms. Arm 0O is the standard (default) robot arm. Arm 1 - 15 are
auxiliary arms defined by using the ArmSet instruction. When omitted, the
current arm number is displayed.

Return Values

When the Arm instruction is executed without parameters, the system displays the current arm
number.

Description

Allows the user to specify which arm to use for robot instructions. Arm allows each auxiliary arm to
use common position data. If no auxiliary arms are installed, the standard arm (arm number 0)
operates. Since at time of delivery the arm number is specified as 0, it is not necessary to use the
Arm instruction to select an arm. However, if auxiliary arms are used they must first defined with the
ArmSet instruction.

The auxiliary arm configuration capability is provided to allow users to configure the proper robot
parameters for their robots when the actual robot configuration is a little different than the standard
robot. For example, if the user mounted a 2nd orientation joint to the 2nd robot link, the user will
probably want to define the proper robot linkages for the new auxiliary arm which is formed. This will
allow the auxiliary arm to function properly under the following conditions:

- Specifying that a single data point be moved through by 2 or more arms.
- Using Pallet

- Using Continuous Path motion

- Using relative position specifications

- Using Local coordinates

For SCARA robots (including RS series) with rotating joints used with a Cartesian coordinate system,
joint angle calculations are based on the parameters defined by the ArmSet parameters. Therefore,
this command is critical if any auxiliary arm or hand definition is required.

Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

Notes

Arm 0

Arm 0 cannot be defined or changed by the user through the ArmSet instruction. It is reserved since it
is used to define the standard robot configuration. When the user sets Arm to 0 this means to use the
standard robot arm parameters.

Arm Number Not Defined

Selecting auxiliary arm numbers that have not been defined by the ArmSet command will result in an
error.

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 45

Arm Statement

See Also
ArmClIr, ArmSet, ECPSet, TLSet

Arm Statement Example

The following examples are potential auxiliary arm definitions using the ArmSet and Arm instructions.
ArmSet defines the auxiliary arm and Arm defines which Arm to use as the current arm. (Arm O is the
default robot arm and cannot be adjusted by the user.)

From the command window:

> ArmSet 1, 300, -12, -30, 300, O
> ArmSet

armO0O 250 O 0 300 O

arml 300 -12 -30 300 O

> Arm O

> Jump P1 '"Jump to Pl using the Standard Arm Config
> Arm 1

> Jump P1 'Jump to Pl using auxiliary arm 1

46 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Arm Function

Arm Function
Returns the current arm number for the current robot. @

Syntax
Arm

Return Values
Integer containing the current arm number.

See Also
Arm Statement

Arm Function Example

Print "The current arm number is: ", Arm

7

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 47

ArmCiIr Statement

ArmClr Statement
Clears (undefines) an arm definition. @

Syntax
ArmCir armNumber

Parameters
armNumber Integer expression representing which of 15 arms to clear (undefine). (Arm 0 is
the default arm and cannot be cleared.)
Description

Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

See Also
Arm, ArmSet, ECPSet, Local, LocalClr, Tool, TLSet

ArmCIr Example

ArmClr 1

48 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

ArmDef Function

ArmDef Function
Returns arm definition status. @

Syntax
ArmDef (armNumber)

Parameters
armNumber Integer expression representing which arm to return status for.

Return Values
True if the specified arm has been defined, otherwise False.

See Also
Arm, ArmClr, ArmSet, ECPSet, Local, LocalClr, Tool, TLCIr, TLSet

ArmDef Example

Function DisplayArmDef (armNum As Integer)

Integer 1

If ArmDef (armNum) = False Then

Print "Arm ", ArmNum, "is not defined"
Else

Print "Arm ", armNum, " Definition:"

For 1 = 1 to 5
Print ArmSet (armNum, i)
Next i
EndIf
Fend

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 49

ArmSet Statement

ArmSet Statement
Specifies and displays auxiliary arms. @

Syntax
(1) ArmSet armNumber , link2Dist, joint2Offset, zOffset, [link1Dist], [orientAngOffset]
(2) ArmSet armNumber
(3) ArmSet

Parameters
armNumber Integer expression: Valid range from 1-15. The user may define up to 15 different
auxiliary arms.

SCARA Robots (including RS series)

paramNumber Description

1 Horizontal distance from joint #2 to orientation center (mm)
2 Joint #2 angle offset (degree)

3 Height offset (mm)

4 Horizontal distance from joint #1 to joint #2 (mm)

5 Orientation joint angle offset in degrees.

Return Values

When the ArmSet instruction is initiated without parameters, the system displays all the auxiliary arm
numbers and parameters.
The specified arm numbers and parameters will be displayed when only the arm number is specified.

Description

Allows the user to specify auxiliary arm parameters to be used in addition to the standard arm
configuration. This is most useful when an auxiliary arm or hand is installed to the robot. When using
an auxiliary arm, the arm is selected by the Arm instruction.

The link1Dist and orientAngOffset parameters are optional. If they are omitted, the default values are
the standard arm values.

The auxiliary arm configuration capability is provided to allow users to configure the proper robot
parameters for their robots when the actual robot configuration is a little different than the standard
robot. For example, if the user mounted a 2nd orientation joint to the 2nd robot link, the user will
probably want to define the proper robot linkages for the new auxiliary arm which is formed. This will
allow the auxiliary arm to function properly under the following conditions:

- Specifying that a single data point be moved through by 2 or more arms.
- Using Pallet

- Using Continuous Path motion

- Using relative position specifications

- Using Local coordinates

For SCARA robots (including RS series) with rotating joints used with a Cartesian coordinate system,
joint angle calculations are based on the parameters defined by the ArmSet parameters. Therefore,
this command is critical if any auxiliary arm or hand definition is required.

Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

50 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

ArmSet Statement

Notes

Arm 0

Arm 0 cannot be defined or changed by the user. It is reserved since it is used to define the standard
robot configuration. When the user sets Arm to 0 this means to use the standard robot arm
parameters.

+ @ﬁz . Y RS Series:
- A\ View from this
- Auxiliary Arm -+ R direction
* l 2 =2 .
"* 1 Auxiliary J:L
X - \ qu1
L . + v
\ Y Axis ﬁ y TG
\ .
i -4 Jg
Joint #1 \ SR M- I
- !
"""""""""""""""" Joint #2 Auxiliary Arm Joint #1 \
4 >X | et Joint #2
X Axis '\e 4
\
SCARA Robot Cartesian Robot SCARA Robots (RS Series)
See Also
Arm, ArmClir

ArmSet Statement Example

The following examples are potential auxiliary arm definitions using the ArmSet and Arm instructions.

ArmSet defines the auxiliary arm and Arm defines which Arm to use as the current arm. (Arm 0 is the
default robot arm and cannot be adjusted by the user.)

From the command window:

> ArmSet 1, 300, -12, -30, 300, O
> ArmSet
Arm 0: 125.000, 0.000,

0.000, 225.000, 0.000
Arm 1: 300.000,

-12.000, -30.000, 300.000, 0.000
Arm O
Jump P1 '"Jump to P1 using the Standard Arm Config
Arm 1

Jump P1

V V. V V

'"Jump to Pl using auxiliary arm 1

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 51

See Also

ArmSet Function

ArmSet Function

Returns one ArmSet parameter.

LF)
Syntax

ArmSet(armNumber, paramNumber)

Parameters
armNumber Integer expression representing the arm number to retrieve values for.
paramNumber Integer expression representing the parameter to retrieve (0 to 5), as described
below.

SCARA Robots (including RS series)
paramNumber Value Returned

1 Horizontal distance from joint #2 to orientation center (mm)
2 Joint #2 angle offset (degree)
3 Height offset (mm)
4 Horizontal distance from joint #1 to joint #2 (mm)
5

Orientation joint angle offset in degrees.

Return Values

Real number containing the value of the specified parameter, as described above.

+ @ﬁz . v RS Series:
y N View from this
- Auxiliary Arm -+ R direction
(v & 2
. Auxiliary|
i 1
L~ N \ %Nm
X Y Axis ﬁ 4
i +} Bw.S
i o
Joint #1 4 — o @ Vile
\
X & - i
""""""""""""" Joint #2 Auxiliary Arm Joint #1 i
4 >X | et Joint #2
X Axis X&/ 4
\
SCARA Robot Cartesian Robot SCARA Robots (RS Series)

ArmClIr, ArmSet Statement

ArmSet Function Example

Real x

X

ArmSet (1, 1)

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Asc Function

Returns the ASCII value of the first character in a character string. [E

Syntax
Asc(string)

Parameters
string Any valid string expression of at least 1 character in length.

Return Values

Returns an integer representing the ASCII value of the 1st character in the string sent to the ASC
function.

Description

The Asc function is used to convert a character to its ASCIl numeric representation. The character
string send to the ASC function may be a constant or a variable.

Notes

Only the First Character ASCII Value is Returned

Although the Asc instruction allows character strings larger than 1 character in length, only the 1st
character is actually used by the Asc instruction. Asc returns the ASCII value of the 1st character only.

See Also
Chr$, InStr, Left$, Len, Mid$, Right$, Space$, Str$, Val

Asc Function Example
This example uses the Asc instruction in a program and from the command window as follows:

Function asctest
Integer a, b, c¢

a = Asc("a")

b = Asc("b")

c = Asc("c")

Print "The ASCII value of a is ", a

Print "The ASCII value of b is ", Db

Print "The ASCII value of ¢ is ", c¢
Fend

From the command window:

>print asc("a")
97
>print asc("b")
98
>

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 53

Asin Function

Returns the arcsine of a numeric expression. @

Syntax
Asin(number)

Parameters
number Numeric expression representing the sine of an angle.

Return Values
Real value, in radians, representing the arc sine of the parameter number.

Description

Asin returns the arcsine of the numeric expression. Values range is from -1 to 1. The value returned
by Asin will range from -P1/ 2 to Pl / 2 radians. If numberis < -1 or > 1, an error occurs.

To convert from radians to degrees, use the RadToDeg function.

See Also
Abs, Acos, Atan, Atan2, Cos, DegToRad, RadToDeg, Sgn, Sin, Tan, Val

Asin Function Example

Function asintest
Double x

X = Sin(DegToRad (45))

Print "Asin of ", x, " is ", Asin(x)
Fend

54 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Atan Function

Atan Function

Returns the arctangent of a numeric expression. @

Syntax
Atan(number)

Parameters
number Numeric expression representing the tangent of an angular value.

Return Values
Real value, in radians, representing the arctangent of the parameter number.

Description

Atan returns the arctangent of the numeric expression. The numeric expression (number) may be any
numeric value. The value returned by Atan will range from -Pl to Pl radans.

To convert from radians to degrees, use the RadToDeg function.

See Also
Abs, Acos, Asin, Atan2, Cos, DegToRad, RadToDeg, Sgn, Sin, Tan, Val

Atan Function Example

Function atantest

Real x, vy

x =0

y =1

Print "Atan of ", x, " is ", Atan (x)

Print "Atan of ", y, " is ", Atan(y)
Fend

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 55

Atan2 Function

Atan2 Function

Returns the angle of the imaginary line connecting points (0,0) and (X, Y) in radians. @
Syntax

Atan2(X, Y)
Parameters

X Numeric expression representing the X coordinate.

Y Numeric expression representing the Y coordinate.

Return Values
Numeric value in radians (-Pl to +Pl).

Description

Atan2(X, Y) returns the angle of the line which connects points (0, 0) and (X, Y). This trigonometric
function returns an arctangent angle in all four quadrants.

See Also
Abs, Acos, Asin, Atan, Cos, DegToRad, RadToDeg, Sgn, Sin, Tan, Val

Atan2 Function Example

Function at2test

Real x, y

Print "Please enter a number for the X Coordinate:"

Input x

Print "Please enter a number for the Y Coordinate:"

Input y

Print "Atan2 of ", x, ", ", y, " is ", Atan2(x, Yy)
Fend

56 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

ATCLR Statement

ATCLR Statement
Clears and intializes the average torque for one or more joints. @

Syntax
ATCLR [7], [12], /3], /41, 3], [j6]

Parameters
j1-j6 Optional. Integer expression representing the joint number. If no parameters are
supplied, then the average torque values are cleared for all joints.
Description

ATCLR clears the average torque values for the specified joints.

You must execute ATCLR before executing ATRQ.

See Also
ATRQ, PTRQ

ATCLR Statement Example

> atclr

> go pl

> atrg 1
0.028

> atrqg
0.028 0.008
0.029 0.009
0.000 0.000

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 57

AtHome Function

AtHome Function

Returns if the current robot is in its Home position or not. @

Syntax
AtHome

Return Values
True if the current robot is in its Home position, otherwise False.

Description

The AtHome function returns if the current robot is in its Home position or not. To register the Home
position, use HomeSet command or Robot Manager. To move to the Home position, use the Home
command.

See Also
Home, HomeClr, HomeDef, HomeSet, Hordr

58 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

ATRQ Statement

ATRQ Statement
Displays the average torque for the specified joint. @

Syntax
ATRQ [jointNumber]

Parameters
JjointNumber Optional. Integer expression representing the joint number.

Return Values
Displays current average torque values for all joints.

Description

ATRAQ displays the average RMS (root-mean-square) torque of the specified joint. The loading state
of the motor can be obtained by this instruction. The result is a real value from 0 to 1 with 1 being
maximum average torque.

You must execute ATCLR before this command is executed.

This instruction is time restricted. You must execute ATRQ within 60 seconds after ATCLR is
executed. When this time is exceeded, error 4030 occurs.

See Also
ATCLR, ATRQ Function, PTRQ

ATRQ Statement Example

> atclr

> go pl

> atrq 1
0.028

> atrq
0.028 0.008
0.029 0.009
0.000 0.000

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 59

ATRQ Function

ATRQ Function

Returns the average torque for the specified joint. @

Syntax
ATRQ (jointNumber)

Parameters
JointNumber Integer expression representing the joint number.

Return Values
Real value from 0 to 1.

Description
The ATRQ function returns the average RMS (root-mean-square) torque of the specified joint. The
loading state of the motor can be obtained by this instruction. The result is a real value from 0 to 1
with 1 being maximum average torque.

You must execute ATCLR before this function is executed.

This instruction is time restricted. You must execute ATRQ within 60 seconds after ATCLR is
executed. When this time is exceeded, error 4030 occurs.

See Also
ATRQ Statement, PTCLR, PTRQ Statement

ATRQ Function Example
This example uses the ATRQ function in a program:

Function CheckAvgTorque
Integer 1

Go P1
ATCLR
Go P2
Print "Average torques:"
For i = 1 To 4
Print "Joint ", i, " = ", ATRQ(i)
Next i
Fend

60 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

AutoLJM Statement

AutoLJM Statement
Sets the Auto LJM function. @

Syntax
AutoLJM { On | Off }

Parameter

On | Off On: Enables the Auto LJM.
Off: Disables the Auto LJM.

Description

AutoLJM is avairable for following commands.
Arc, Arc3, Go, Jump3, Jump3CP, Move

When AutoLJM is On, the manipulator operates with a least joint motion, just like using the LUM
function, whether the LJM function is applied to the position data to be passed to each command or
not. For example, to get the same effect as Go LUM(P1), you can write a program as follows.

AutoLJM On

Go P1

AutoLJM Off
Since AutoLJM can enable LJM within a particular section of a program, it is not necessary to edit
each motion command.

When AutoLJM is Off, the LJM function is only enabled when it is applied to the position data to be
passed to each motion command.

In any of the following cases, AutoLJM has the setting specified in the controller settings (factory
default: Off).

Controller startup

Reset

All task stop

Motor On

Switching the Auto / Programming operation mode

Notes

Double application of AutoLJM and LJM function

If LUM function is applied to the point data to be passed to the motion command while AutoLJM is On,
LJM will be doubly applied at the command execution.

For Move LUM(P1, Here) and Move LJM(P1), enabling AutoLJM will not affect the motion. However, if
AutoLJM is enabled for Move LUM(P1, P0), motion completion positions of Move LIM(LJM(P1, PO),
Here), which enabled AutoLJM, and the one of Move LUM(P1, P0), which did not enable AutoLJM,
may be different.

It is recommended to write a program not to duplicate AutoLJM and LJM functions.

AutoLJM Usage Precaution

You can set the AutoLJM function to be enabled at the controller startup by setting the controller
preferences. However, if Auto LUM is enabled at all times by controller preferences or commands, this
function automatically adjusts the posture of the manipulator to reduce the motion distance, even
when you intended to move the joint widely. Therefore, it is recommended to create a program to
apply the LJM function only when necessary by using LJM function or AutoLJM command.

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 61

AutoLJM Statement

See Also

AuoLJM Function, LUM Function

AutoLJM example

62

AutoLJM On
Go P1
Go P2
AutoLJM Off

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

AutoLJM Function

AutoLJM Function

Returns the state of the AutoLJM. @

Syntax
AutoLJM

Return Values

0 = AutoLJM OFF
1 = Auto LUM ON

See Also
AutoLJM

AutoLJM Function Example

If AutoLJM = Off Then
Print "AutoLJM is off"
EndIf

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 63

AvoidSingularity Statement

AvoidSingularity Statement

Sets the singularity avoiding function. @

Syntax
AvoidSingularity { 1|0}

Parameter
110 1: Enables the singularity avoiding function.
0: Disables the singularity avoiding function.
Description

AvoidSingularity is avairable for following commands.
Move, Arc, Arc3

A singurality avoiding function is to prevent accceleration errors when the vertical 6-axis robot
approaches to the singularity in CP motion by passing a different trajectory and returning to the
original trajectory after passing the singularity. This function is only applicable for the wrist singularity.
Since the singularity avoiding function is usually set to “1: Enabled” at the controller startup, it is not
necessary to change the setting. If you do not want a singurarity avoidance to ensure compatibility
with software which does not support the singularity avoiding function, or to avoid a trajectory gap,
disable the function.

If the AvoidSingularity parameter is changed, this function remains enabled until the next controller
startup.

At the controller startup, AvoidSingularity has the setting specified in the controller setting (factory
default: 1).

Notes

Condition setting of singularity neighborhood
To determine whether the manipulator approaches to the singularity neighborhood, angle of Joint #5
and angular velocity of Joint #4 are used. By default, Joint #5 angle is set to +5 degree, and Joint #4
angle is set to £10% with respect to the maximum joint velocity. To change these settings, use
SingularityAngle and SingularitySpeed commands.

See Also
AvoidSingularity Function, SingualrityAngle, SingularitySpeed

AvoidSingularity Example

AvoidSingularity 0 ‘Disables the singularity avoidance and operate the manipulator
Move P1

Move P2

AvoidSingularity 1

64 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

AvoidSingularity Function

AvoidSingularity Function

Returns the state of AvoidSingularity. @

Syntax
AvoidSingularity

Return values

0 = Singularity avoiding function disabled
1 = Singularity avoiding function enabled

See also
AvoidSingularity

AvoidSingularity Function Example

If AvoidSingularity = Off Then
Print "AvoidSingularity is off"
EndIf

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 65

Base Statement

Base Statement
Defines and displays the base coordinate system. @

Syntax

(1) Base pCoordinateData
(2) Base pOirigin, pXaxis, pYaxis, [{ X | Y }]

Parameters

pCoordinateData Point data representing the coordinate data of the origin and direction.

pOirigin Integer expression representing the origin point using robot coordinate system.

pXaxis Integer expression representing a point along the X axis using robot coordinate
system if X alignment is specified.

pYaxis Integer expression representing a point along the Y axis using robot coordinate
system if Y alignment is specified.

X|Y Optional. If X alignment is specified, then pXaxis is on the X axis of the new
coordinate system and only the Z coordinate of pYaxis is used. If Y alignment is
specified, then pYaxis is on the Y axis of the new coordinate system and only the
Z coordinate of pXaxis is used. If omitted, X alignment is assumed.

Description

Defines the robot base coordinate system by specifying base coordinate system origin and rotation
angle in relation to the robot absolute coordinate system.

To reset the Base coordinate system to default, execute the following statement. This will make the
base coordinate system the same as the robot absolute coordinate system.

Base XY(0, 0, 0, 0)
Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may

shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

Notes

Changing the base coordinate system affects all local definitions
When base coordinates are changed, all local coordinate systems must be re-defined.

See Also
Local

Base Statement Example
Define base coordinate system origin at 100 mm on X axis and 100 mm on Y axis

> Base XY (100, 100, 0, 0)

66 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

BCIr Function

BCIr Function

Clear one bit in a number and return the new value @

Syntax
BClIr (number, bitNum)

Parameters
number Specifies the numeric value to clear the bit by an expression or numeric value.
bitNum Specifies the bit (integer from 0 to 31) to be cleared by an expression or numeric value.

Return Values
Returns the new value of the specified numeric value (integer).

See Also
BSet, BTst

BCIr Example

flags = BClr(flags, 1)

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 67

BGo Statement

BGo Statement
Executes Point to Point relative motion, in the selected local coordinate system. @

Syntax
BGo destination [CP] [searchExpr] [!...1]

Parameters
destination The target destination of the motion using a point expression.
CP Optional. Specifies continuous path motion.
searchExpr Optional. A Till or Find expression.
Till | Find
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}
L. Optional. Parallel Processing statements can be added to execute I/O and
other commands during motion.
Description

Executes point to point relative motion, in the selected local coordinate system that is specified in the
destination point expression.

If a local coordinate system is not specified, relative motion will occur in local 0 (base coordinate
system).

Arm orientation attributes specified in the destination point expression are ignored. The manipulator
keeps the current arm orientation attributes. However, for a 6-Axis manipulator, the arm orientation
attributes are automatically changed in such a way that joint travel distance is as small as possible.

The Till modifier is used to complete BGo by decelerating and stopping the robot at an intermediate
travel position if the current Till condition is satisfied.

The Find modifier is used to store a point in FindPos when the Find condition becomes true during
motion.

When Till is used and the Till condition is satisfied, the manipulator halts immediately and the motion
command is finished. If the Till condition is not satisfied, the manipulator moves to the destination
point.

When Find is used and the Find condition is satisfied, the current position is stored. Please refer to
Find for details.

When parallel processing is used, other processing can be executed in parallel with the motion
command.

The CP parameter causes acceleration of the next motion command to start when the deceleration
starts for the current motion command. In this case the robot will not stop at the destination
coordinate and will continue to move to the next point.

See Also

68 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

BGo Statement

BGo Example

> BGo XY (100, 0, 0, 0) '"Move 100mm in X direction

'(in the local coordinate system)
Function BGoTest

Speed 50
Accel 50, 50
Power High

P1 = XY (300,
P2 = XY (300,

300,
300,

-20, 0)
-20, 0)

Local 1, XY (0, 0, 0, 45)
GoP1

Print Here

BGo XY (0, 50, 0, 0)

Print Here

Go P2
Print Here
BGo XY (0, 50, 0, 0)

Print Here

BGo XY (0,
Print Here

50, 0, 0) /1

Fend

[Output]

X: 300.000 Y: 300.000 Z: -20.000 U: 0.000 V: 0.000 wW: 0.000 /R /O
X: 300.000 Y: 350.000 Z: -20.000 U: 0.000 V: 0.000 wW: 0.000 /R /O
X: 300.000 Y: 300.000 Z: -20.000 U: 0.000 V: 0.000 wW: 0.000 /L /O
X: 300.000 Y: 350.000 Z: -20.000 U: 0.000 V: 0.000 wW: 0.000 /L /O
X: 264.645 Y: 385.355 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /L /O

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

69

BMove Statement

BMove Statement
Executes linear interpolation relative motion, in the selected local coordinate system @

Syntax

Parameters
destination The target destination of the motion using a point expression.
ROT Optional. :Decides the speed/acceleration/deceleration in favor of tool
rotation.
CP Optional. Specifies continuous path motion.
searchExpr Optional. A Till or Find expression.
Till | Find
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}
1! Optional. Parallel Processing statements can be added to execute 1/0 and
other commands during motion.
Description

Executes linear interpolated relative motion, in the selected local coordinate system that is specified in
the destination point expression.

If a local coordinate system is not specified, relative motion will occur in local 0 (base coordinate
system).

Arm orientation attributes specified in the destination point expression are ignored. The manipulator
keeps the current arm orientation attributes. However, for a 6-Axis manipulator, the arm orientation
attributes are automatically changed in such a way that joint travel distance is as small as possible.

BMove uses the SpeedS speed value and AccelS acceleration and deceleration values. Refer to
Using BMove with CP below on the relation between the speed/acceleration and the
acceleration/deceleration. If, however, the ROT modifier parameter is used, BMove uses the SpeedR
speed value and AccelR acceleration and deceleration values. In this case SpeedS speed value and
AccelS acceleration and deceleration value have no effect.

Usually, when the move distance is 0 and only the tool orientation is changed, an error will occur.
However, by using the ROT parameter and giving priority to the acceleration and the deceleration of
the tool rotation, it is possible to move without an error. When there is not an orientational change with
the ROT modifier parameter and movement distance is not 0, an error will occur.

Also, when the tool rotation is large as compared to move distance, and when the rotation speed
exceeds the specified speed of the manipulator, an error will occur. In this case, please reduce the
speed or append the ROT modifier parameter to give priority to the rotational
speed/acceleration/deceleration.

The Till modifier is used to complete BMove by decelerating and stopping the robot at an intermediate
travel position if the current Till condition is satisfied.

The Find modifier is used to store a point in FindPos when the Find condition becomes true during
motion.

When Till is used and the Till condition is satisfied, the manipulator halts immediately and the motion
command is finished. If the Till condition is not satisfied, the manipulator moves to the destination
point.

When Find is used and the Find condition is satisfied, the current position is stored. Please refer to
Find for details.

70 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

BMove Statement

When parallel processing is used, other processing can be executed in parallel with the motion
command.

Notes

Using BMove with CP

The CP parameter causes the arm to move to destination without decelerating or stopping at the point
defined by destination. This is done to allow the user to string a series of motion instructions together
to cause the arm to move along a continuous path while maintaining a specified speed throughout all
the motion. The BMove instruction without CP always causes the arm to decelerate to a stop prior to
reaching the point destination.

See Also

BMove Example

> BMove XY (100, 0, 0, 0) 'Move 100mm in the X
'direction (in the local coordinate system)

Function BMoveTest

Speed 50

Accel 50, 50
SpeedS 100

AccelS 1000, 1000
Power High

Pl = XY (300, 300, -20, 0)
P2 = XY (300, 300, -20, 0) /L
Local 1, XY(0O, 0, 0, 45)

Go P1

Print Here

BMove XY (0, 50, 0, 0)
Print Here

Go P2

Print Here

BMove XY (0, 50, 0, 0)
Print Here

BMove XY (0, 50, 0, 0) /1
Print Here

Fend

[Output]

X: 300.000 Y: 300.000 z: -20.000 U: 0.000 V: 0.000 wW: 0.000 /R /O
X: 300.000 Y: 350.000 z: =-20.000 U: 0.000 V: 0.000 wW: 0.000 /R /O
X: 300.000 Y: 300.000 Z: -20.000 U: 0.000 V: 0.000 wW: 0.000 /L /O
X: 300.000 Y: 350.000 z: -20.000 U: 0.000 V: 0.000 wW: 0.000 /L /O
X: 264.645 Y: 385.355 Z: -20.000 U: 0.000 V: 0.000 wW: 0.000 /L /O

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 71

Boolean Statement

Boolean Statement

Declares variables of type Boolean. (1 byte whole number). @

Syntax
Boolean varName [(subscripts)], [varName [(subscripts)]...]

Parameters
varName Variable name which the user wants to declare as type Boolean.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared.
The subscripts syntax is as follows
(ubound1, [ubound?2], [ubound3])
ubound1, ubound2, ubound3 each specify the maximum upper bound for the
associated dimension.
The elements in each dimension of an array are numbered from 0 to the upper
bound value.
The total available number of array elements for local and global preserve
variables is 1000.
The total available number of array elements for global and module variables is
10000.
To calculate the total elements used in an array, use the following formula. (If a
dimension is not used, substitute 0 for the ubound value.)
total elements = (ubound1 + 1) * (ubound2 + 1) * (ubound3 + 1)
Description

Boolean is used to declare variables as type Boolean. Variables of type Boolean can contain one of
two values, False and True. Local variables should be declared at the top of a function. Global and
module variables must be declared outside of functions.

See Also
Byte, Double, Global, Integer, Long, Real, String

Boolean Statement Example

Boolean partOK

Boolean A(10) 'Single dimension array of boolean
Boolean B(10, 10) 'Two dimension array of boolean
Boolean C(5, 5, 5) 'Three dimension array of boolean

partOK = CheckPart ()
If Not partOK Then

Print "Part check failed"
EndIf

72 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Box Statement

Box Statement
Specifies and displays the approach check area. @

Syntax
(1) Box AreaNum, minX, maxX, mixY, maxY, minZ, maxZ [,Remote output logic]
(2) Box AreaNum

(3) Box

Parameters
AreaNum Integer expression representing the area number from 1 to 15.
minX The minimum X coordinate position which can be set to the approach check area.
maxX The maximum X coordinate position which can be set to the approach check area.
minY The minimum Y coordinate position which can be set to the approach check area.
maxY The maximum Y coordinate position which can be set to the approach check area.
minZ The minimum Z coordinate position which can be set to the approach check area.
maxZ The maximum Z coordinate position which can be set to the approach check area.

Remote output logic On | Off

Set the Remote output logic. To set I/0O output to On when the Box approaches,
use On. To set I/O output to Off when the Box approaches, use Off. When the
parameter is omitted, On will be used.

Return Values

When only AreaNum is specified, the area setting of the specified area is displayed. When all the
parameters are omitted, the area settings for all area numbers are displayed.

Description

Box is used to set the approach check area. The approach check area is for checking approaches of
the robot end effector in the approach check area. The position of the end effector is calculated by the
current tool. The approach check area is set on the base coordinate system of the robot and is
between the specified maximum and minimum X, Y, and Z.

When the approach check area is used, the system detects approaches in any motor power status
during the controller is ON.

You can also use InsideBox function to get the result of the approach check. InsideBox can be used
for wait condition of Wait command. You can provide the check result to the I/O by setting the remote
output setting.

y Upper limit of axes X, Y, Z

100

100 200

Lower limit of axes X, Y, Z

Robot

VvV X

Configure the Box 1 from Robot 1 position
Box 1, 100, 200, 0, 100, O, 100

Lower limit of axes X, Y, Zis (100,0,0) and upper limit is (200,100,100)

Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 73

Box Statement

shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

Notes

Turning Off Approach Check Area by coordinate axis
You can turn off the approach check area of each coordinate axis. To turn off only the Z axis, definthe
minZ and maxZ to be 0. For example Box 1, 200, 300, 0, 500, 0, 0.

Default values of Approach Check Area
The default values for the Box statement are "0, 0, 0, 0, 0, 0". (Approach Check Area Checking is
turned off.)

Tool Selection

The approach check is executed for the current tool. When you change the tool, the approach check
may display the tool approach from inside to outside of the area or the other way although the robot is
not operating.

Tip

Set Box statement from Robot Manager

EPSON RC+ 5.0 has a point and click dialog box for defining the approach check area. The simplest
method to set the Box values is by using the Box page on the Robot Manager .

See Also
BoxClr, BoxDef, InsideBox, Plane

Box Statement Example
These are examples to set the approach check area using Box statement.

> Box 1, -200, 300, O, 500, -100, O

> Box
Box 1: -200.000, 300.000, 0.000, 500.000, -100.000, 0.0O0O

74 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Box Function

Returns the specified approach check area. @

Syntax
Box(AreaNum, limit)

Parameters
AreaNum Integer expression representing the area number from 1 to 15.
limit Integer expression that specifies which limit to return.

1: Lower limit
2: Upper limit
Return Values

When you select 1 for limit, the point contains the lower limit of the X, Y, Z coordinates.
When you select 2 for limit, the point contains the upper limit of the X, Y, Z coordinates.

See Also
Box, BoxClr, BoxDef, InsideBox

Box Function Example

P1
P2

Box (1, 1)
Box (1, 2)

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 75

BoxClIr Statement

BoxClIr Statement
Clears the definition of approach check area. @

Syntax
BoxClIr AreaNum

Parameters
AreaNum Integer expression representing the area number from 1 to 15.

Description

Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may

shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

See Also
Box, BoxDef, InsideBox

BoxCIr Function Example
This example uses BoxClr function in a program.
Function ClearBox
If BoxDef (1) = True Then
BoxClr 1

EndIf
Fend

76 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

BoxDef Function

BoxDef Function

Returns whether Box has been defined or not. @
Syntax

BoxDef(AreaNum)
Parameters

AreaNum Integer expression representing the area number from 1 to 15.

Return Values
True if approach check area is defined for the specified area number, otherwise False.

See Also
Box, BoxClr, InsideBox

BoxDef Function Example
This example uses BoxDef function in a program.
Function ClearBox
If BoxDef (1) = True Then
BoxClr 1

EndIf
Fend

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 77

Brake Statement

Brake Statement

Turns brake on or off for specified joint of the current robot.

Syntax
Brake status, jointNumber

Parameters

status The keyword On is used to turn the brake on. The keyword Off is used to turn the brake

off.
jointNumber The joint number from 1 to 6.

Description
The Brake command is used to turn brakes on or off for one joint. It can only be executed as a

command command. This command is intended for use by maintenance personel only.

properly supported, otherwise the joint can fall and cause damage to the

CE ® Use extreme caution when turning off a brake. Ensure that the joint is
robot and personel.

WARNING

Before releasing the brake, be ready to use the emergency stop switch so that you can immediately
press it. When the controller is in emergency stop status, the motor brakes are locked. Be aware that
the robot arm may fall by its own weight when the brake is turned off with Brake command.

See Also
Motor, Power, Reset, SFree, SLock

Brake Example

> brake on, 1

> brake off, 1

78 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Brake Function

Brake Function
Returns brake status for specified joint.

Syntax
Brake (jointNumber)

Parameters

jointNumber Integer expression representing the joint number. Value are from 1 to the number of
joints on the robot.

Return Values
0 = Brake off, 1 = Brake on.

See Also
Brake Statement

Brake Example

If Brake(l) = Off Then
Print “Joint 1 brake is off”
EndIf

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 79

BSet Function

BSet Function

Sets a bit in a number and returns the new value. @

Syntax
BSet (number, bitNum)

Parameters
number Specifies the value to set the bit with an expression or numeric value.
bitNum Specifies the bit (integer from 0 to 31) to be set by an expression or numeric value.

Return Values
Returns the bit set value of the specified numeric value (integer).

See Also
BCIr, BTst

BSet Example

flags = BSet(flags, 1)

80 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

BTst Function

BTst Function

Returns the status of 1 bit in a number. @

Syntax
BTst (number, bitNum)

Parameters
number Specifies the number for the bit test with an expression or numeric value.
bitNum Specifies the bit (integer from 0 to 31) to be tested.

Return Values
Returns the bit test results (integer 1 or 0) of the specified numeric value.

See Also
BCIr, Bset

BTst Example

If BTst(flags, 1) Then
Print "Bit 1 is set"
EndIf

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 81

Byte Statement

Byte Statement

Declares variables of type Byte. (1 byte whole number). @

Syntax
Byte varName [(subscripts)] [, varName [(subscripts)]...]

Parameters
varName Variable name which the user wants to declare as type Byte.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared.
The subscripts syntax is as follows
(ubound1, [ubound?2], [ubound3])
ubound1, ubound2, ubound3 each specify the maximum upper bound for the
associated dimension.
The elements in each dimension of an array are numbered from 0 to the upper
bound value.
The total available number of array elements for local and global preserve
variables is 1000.
The total available number of array elements for global and module variables is
10000.
To calculate the total elements used in an array, use the following formula. (If a
dimension is not used, substitute 0 for the ubound value.)
total elements = (ubound1 + 1) * (ubound2 + 1) * (ubound3 + 1)
Description

Byte is used to declare variables as type Byte. Variables of type Byte can contain whole numbers
ranging in value from -128 to +127. Local variables should be declared at the top of a function.
Global and module variables must be declared outside of functions.

See Also
Boolean, Double, Global, Integer, Long, Real, String

Byte Example

The following example declares a variable of type Byte and then assigns a value to it. A bitwise And is
then done to see if the high bit of the value in the variable test_ok is On (1) or Off (0). The result is
printed to the display screen. (Of course in this example the high bit of the variable test_ok will always
be set since we assigned the variable the value of 15.)

Function Test
Byte A(10) 'Single dimension array of byte
Byte B(10, 10) 'Two dimension array of byte
Byte C(5, 5, 5) 'Three dimension array of byte
Byte test ok
test ok = 15
Print "Initial Value of test ok = ", test ok
test ok = (test ok And 8)
If test ok <> 8 Then
Print "test ok high bit is ON"
Else
Print "test ok high bit is OFF"
EndIf
Fend

82 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Call Statement

Call Statement
Calls a user function. @

Syntax
Call funcName [(argList)]

Parameters

funcName The name of a Function which is being called.

arglList Optional. List of arguments that were specified in the Function declaration.
Description

The Call instruction causes the transfer of program control to a function (defined in Function...Fend).
This means that the Call instruction causes program execution to leave the current function and
transfer to the function specified by Call. Program execution then continues in that function until an
Exit Function or Fend instruction is reached. Control is then passed back to the original calling
function at the next statement after the Call instruction.

You may omit the Call keyword and argument parentheses. For example, here is a call statement
used with or without the Call keyword:

Call MyFunc(1l, 2)
MyFunc 1, 2

To execute a subroutine within a function, use GoSub...Return.

See Also
Function, GoSub

Call Statement Example

<File1: MAIN.PRG>

Function main
Call InitRobot
Fend

<File2: INIT.PRG>

Function InitRobot

If Motor = Off Then
Motor On
EndIf
Power High
Speed 50
Accel 75, 75
Fend

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 83

ChkCom Function

ChkCom Function

Returns number of characters in the reception buffer of a communication port @

Syntax
ChkCom (portNumber)

Parameters
portNumber Integer expression for port number to check.

Return Values
Number of characters received (integer).

If the port cannot receive characters, the following negative values are returned to report the current
port status:

-2 Port is used by another task
-3 Port is not open

See Also
CloseCom, OpenCom, Read, Write

ChkCom Example

Integer numChars

numChars = ChkCom (1)

84 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

ChkNet Function

ChkNet Function

Returns number of characters in the reception buffer of a network port @

Syntax
ChkNet (portNumber)

Parameters
portNumber Integer expression for port number to check.

Return Values
Number of characters received (integer).

If the port cannot receive characters, the following negative values are returned to report the current
port status:

-1 Port is open but communication has not been established
-2 Port is used by another task
-3 Port is not open

See Also
CloseNet, OpenNet, Read, Write

ChkNet Example

Integer numChars

numChars = ChkNet (201)

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 85

Chr$ Function

Chr$ Function

Returns the character specified by a numeric ASCII value. @
Syntax

Chr$(number)
Parameters

number An integer expression between 1 and 255.

Return Values
Returns a character that corresponds with the specified ASCII code specified by the value of number.

Description

Chr$ returns a character string (1 character) having the ASCII value of the parameter number. When
the number specified is outside of the range 1-255 an error will occur.

See Also
Asc, Instr, Left$, Len, Mid$, Right$, Space$, Str$, Val

Chr$ Function Example
The following example declares a variable of type String and then assigns the string "ABC" to it. The
Chr$ instruction is used to convert the numeric ASCII values into the characters "A", "B" and "C". The
&H means the number following is represented in hexadecimal form. (&H41 means Hex 41)

Function Test
String temp$
temp$ = Chr$ (&H41) + Chr$ (&H42) + Chr$(&H43)
Print "The value of temp = ", temp$

Fend

86 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

ClearPoints Statement

ClearPoints Statement

Erases the robot position data memory. @

Syntax
ClearPoints

Description

ClearPoints initializes the robot position data area. Use this instruction to erase point definitions
which reside in memory before teaching new points.

See Also
Plist, LoadPoints, SavePoints

ClearPoints Statement Example

The example below shows simple examples of using the ClearPoints command (from the command
window). Notice that no teach points are shown when initiating the Plist command once the
ClearPoints command is given.

>P1=100,200,-20,0/R
>P2=0,300,0,20/L
>plist
P1=100,200,-20,0/R
P2=0,300,0,20/L
>clearpoints

>plist

>

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 87

CloseCom Statement

CloseCom Statement

Close the RS-232C port previously opened with OpenCom. @

Syntax
CloseCom #portNum | All

Parameters
portNum Integer expression for port number to close.
The task will close all the open RS-232C port when All is specified.
See Also

ChkCom, OpenCom

CloseCom Statement Example

CloseCom #1

88 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

CloseNet Statement

CloseNet Statement

Close the TCP/IP port previously opened with OpenNet. @

Syntax
CloseNet #portNumber

Parameters
portNumber Integer expression for port number to close. Range is 201 - 208.
The task will close all the open TCP/IP port when All is specified.
See Also

ChkNet, OpenNet

CloseNet Statement Example

CloseNet #201

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 89

Cls Statement

Cls Statement

Clears the EPSON RC+ 5.0 Run, Operator, or Command window text area. @
Syntax
(1) Cls #devicelD
(2) ClIs
Parameters
devicelD 21 RC+
23 OP
24 TP

When devicelD is omitted, the display device is cleared.

Description

Cls clears either the current EPSON RC+ Run or Operator window text area, depending on where the
program was started from.

If Cls is executed from a program that was started from the Command window, the command window
text area is cleared.

When devicelD is omitted, the display of the current display device is cleared.

Cls Example
If this example is run from the Run window or Operator window, the text area of the window will be
cleared when Cls executes.

Function main
Integer 1

Do

For i = 1 To 10
Print i

Next i
Wait 3
Cls

Loop

Fend

90 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Cont Statement

Cont Statement

Resumes the contoller after a Pause statement has been executed and continues the @
execution of all tasks.

This command is for the experienced user and you need to understand the command specification
before the use.

Syntax
Cont

Description

This command can be executed only when it is called from the event handler function. It cannot be
executed from the normal command or command line.

The Cont command resumes the controller tasks paused by the Pause statement or safeguard open
and continues all tasks execution. It has the same function as the <Continue> button on the Run
Window, Operator Window, and the Continue Remote input.

command specification and confirm that the system has the proper conditions for
the Cont command. Improper use such as continuous execution of a command
within a loop may deteriorate the system safety.

j B When executing Cont command from a program, you must understand the

CAUTION

See Also
Pause

Cont Example

Function frmmain btnCont Click(Senders As String)
Cont
Fend

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 91

Cos Function

Returns the cosine of a numeric expression. @

Syntax
Cos(number)

Parameters
number Numeric expression in Radians.

Return Values
Numeric value in radians representing the cosine of the numeric expression number.

Description

Cos returns the cosine of the numeric expression. The numeric expression (number) must be in
radian units. The value returned by the Cos function will range from -1 to 1

To convert from degrees to radians, use the DegToRad function.

See Also
Abs, Atan, Atan2, Int, Mod, Not, Sgn, Sin, Sqr, Str$, Tan, Val

Cos Function Example
The following example shows a simple program which uses Cos.

Function costest

Real x
Print "Please enter a value in radians"
Input x
Print "COS of ", x, " is ", Cos(x)
Fend

The following examples use Cos from the Command window.

Display the cosine of 0.55:

>print cos(0.55)
0.852524522059506
>

Display cosine of 30 degrees:
>print cos (DegToRad(30))

0.866025403784439
>

92 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

CP Statement

CP Statement

Sets CP (Continuous Path) motion mode.

(s

Syntax
CP{On | Off}
Parameters
On | Off The keyword On is used to enable path motion. The keyword Off is used to disable CP
mode.
Description

CP (Continuous Path) motion mode can be used for the Arc, Arc3, Go, Jump, Jump3, Jump3CP, and
Move robot motion instructions.

When CP mode is On, each motion command executes the next statement as deceleration starts.
Continuous path motion will continue regardless of whether the CP parameter is specified in each

motion command or not.

When CP is Off, this function is active only when the CP parameter is specified in each motion
command.

Normal Motion
A

speed

o

timg
Path Motion Start deceleration

speed

\

[

»
tart acceleration time

o

V\ s
When CP is On, path motion will continue without full deceleration between two CP motions (Arc, Arc3,

Jump3, Jump3CP, Move), or two PTP motions (Go, Jump).
In contrast, full deceleration will occur between a CP motion and a PTP motion.

CP will be set to Off in the following cases
Controller startup
Reset
All task stop
Switching the Auto / Programming operation mode
Motor On
SFree, SLock

See Also
CP Function, Arc, Move, Go

CP Statement Example
CP On
Move P1
Move P2
CP Off

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 93

CP Function

CP Function
Returns status of path motion. @

Syntax
CP

Return Values
0 = Path motion off, 1 = Path motion on.

See Also
CP Statement

CP Function Example

If CP = Off Then
Print "CP is off"
EndIf

94 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Ctr Function

Ctr Function

Returns the counter value of the specified Hardware Input counter. @
Syntax

Ctr(bitNumber)
Parameters

bitNumber Number of the Hardware Input bit set as a counter. Only 16 counters can be

active at the same time.

Return Values
The current count of the specified Hardware Input Counter. (Integer expression from 0-65535)

Description
Ctr works with the CTReset statement to allow Hardware inputs to be used as counters.

Each time a hardware input specified as a counter is switched from the Off to On state that input
causes the counter to increment by 1.

The Ctr function can be used at any time to get the current counter value for any counter input. Any of
the Hardware Inputs can be used as counters. However, only 16 counters can be active at the same
time.

Counter Pulse Input Timing Chart

High (ON)
4 msec or longer
Low (OFF) 4 msec or longer
See Also
CTReset

Ctr Function Example

The following example shows a sample of code which could be used to get a hardware input counter
value.

CTReset 3 'Reset counter for input 3 to 0
On 0 'Turn an output switch on

Do While Ctr(3) < 5

Loop

Off O 'When 5 input cycles are counted for Input 3 turn
'switch off (output 0 off)

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 95

CTReset Statement

CTReset Statement
Resets the counter value of the specified input counter and enables the input to be @

a counter input.

Syntax
CTReset(bitNumber)
Parameters
bitNumber Number of the input bit set as a counter. This must be an integer expression
representing a valid input bit. Only 16 counters can be active at the same time.
Description

CTReset works with the CTR function to allow inputs to be used as counters. CTReset sets the
specified input bit as a counter and then starts the counter. If the specified input is already used as a
counter, it is reset and started again.

Notes

Turning Off Power and Its Effect on Counters
Turning off main power releases all counters.
Using the Ctr Function
Use the Ctr Function to retrieve current Hardware Input counter values.

See Also
Ctr

CTReset Example

The following example shows a sample of code which could be used to get a hardware input counter
value.

CTReset 3 'Reset Counter 3 to O

On 0 'Turn an output switch on

Do While Ctr(3) < 5

Loop

Off 0 'When 5 input cycles are counted for Input 3 turn

'switch off (output 0 off)

96 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

CtriDev Function

CtrIDev Function

Returns the current control device number.

Syntax
CtriDev

Return Values

21
22
23
26
29

See Also

PC

Remote I/O

OoP

Remote Ethernet
Remote RS232

Ctrlinfo Function

CtriDev Function Example

Print "The current control device is:

7

CtrlDev

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

LF)

97

Ctrlinfo Function

Ctrlinfo Function
Returns controller information. @

Syntax
Ctrlinfo (index)

Parameters
index Integer expression that represents the index of the information to retrieve.
Description
The following table shows the information that is available from the Ctrlinfo function:
Index Bit Value Description
0 N/A Obtained for compatibility.

Use index 9 to get the firmware version of the controller.

0 &H1 Ready state
1 &H?2 Start state
2 &H4 Pause state
3-7 Undefined
1 8 &H100 | Estop state
9 &H200 | Safeguard open

10 &H400 | Error state
11 &HB800 | Critical error state
12 &H1000 | Warning

13-31 Undefined
2 0 &H1 Enable switch is on
1-31 Undefined
0 &H1 Teach mode circuit problem detected
3 1 &H2 Safeguard circuit problem detected
2 &H4 Estop circuit problem detected
3-31 Undefined
0 - Normal mode
4 N/A 1 - Dry run mode
Control device:
21 -RC+
5 N/A 22 - Remote
23-0P
6 N/A Undefined
Operation mode:
7 N/A 0 - Program mode
1 - Auto mode
8 N/A 1 - Motors off

0 - Hold (motor setting is on, but currently held off)

Firmware verision of the Controller

9 N/A Major No.*1000000 + Minor No.*10000 + Rev No.*100 + Build No.
(Example) Version 1.6.2.4 is 1060204

Return Values
Long value of the desired data

See Also
Ctrlinfo$, RobotInfo, TaskInfo

Ctrlinfo Function Example
Print "The controller version: ", CtrlInfo(0)

98 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

CurPos Function

CurPos Function

Returns the current target position of the specified robot. @

Syntax
CurPos

Return Values
A robot point representing the current target position of the specified robot.

See Also
InPos, FindPos, RealPos

CurPos Function Example

Function main

Xgt showPosition
Do
Jump PO
Jump P1
Loop
Fend

Function showPosition

Do
P99 = CurPos
Print CX(P99), CY(P99)
Loop
Fend

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 99

Curve Statement

Curve Statement

Defines the data and points required to move the arm along a curved path. Many data points @
can be defined in the path to improve precision of the path.

Syntax
Curve fileName, closure, mode, numAxes, pointList

Parameters
fileName A string expression for the name of the file in which the point data is stored. The
specified fileName will have the extension .CVT appended to the end so no extension is
to be specified by the user. When the Curve instruction is executed, file will be created.

closure Specifies whether or not the defined Curve is Closed or left Open at the end of the
curved motion. This parameter must be set to one of two possible values, as shown
below.

C - Closed Curve

O - Open Curve
When specifying the open curve, the Curve instruction creates the data to stop the arm
at the last point of the specified point series. When specifying the closed curve, the
Curve instruction creates the data required to continue motion through the final specified
point and then stopping motion after returning the arm to the starting point of the
specified point series for the Curve instruction.

mode Specifies whether or not the arm is automatically interpolated in the tangential direction of
the U-Axis. It can also specify the ECP number in the upper four bits.

Mode Setting Tangential ECP
Hexadecimal Decimal Correction Number

&HO00 0 0

&H10 16 1

&H20 32 2

&HAO 160 No 10
&HBO 176 11
&HCO 192 12
&HDO 208 13
&HEOD 224 14
&HFO 240 15
&H02 2 0

&H12 18 1

&H22 34 2

&HA2 162 Yes 10
&HB2 178 11
&HC2 194 12
&HD2 210 13
&HE2 226 14
&HF2 242 15

100 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Curve Statement

When specifying tangential correction, Curve uses only the U-Axis coordinate of the
starting point of the point series. Tangential correction continuously maintains tool
alignment tangent to the curve in the XY plane. It is specified when installing tools such
as cutters that require continuous tangential alignment. When specifying a closed curve
(using the closure parameter) with Automatic Interpolation in the tangential direction of
the U-Axis, the U-Axis rotates 360 degrees from the start point. Therefore, before
executing the CVMove instruction, set the U-Axis movement range using the Range
instruction so the 360 degree rotation of the U-Axis does not cause an error.

When using ECP, specify the ECP number in the upper four bits.

numAxes Integer number 2, 3, 4, or 6 which specifies the number of axes controlled during the
curve motion as follows:

2 - Generate a curve in the XY plane with no Z Axis movement or U Axis rotation.
3 - Generate a curve in the XYZ space with no U axis rotation.
4 - Generate a curve in the XYZ space with U-Axis rotation.

6 - Generate a curve in the XYZ space with U, V, and W axes rotation (6-Axis
robots only).

The axes not selected to be controlled during the Curve motion maintain their previous
encoder pulse positions and do not move during Curve motion.

pointList { point expression | P(start:finish) } [, output command] ...
This parameter is actually a series of Point Numbers and optional output statements
either separated by commas or an ascended range of points separated by a colon.
Normally the series of points are separated by commas as shown below:
Curve "MyFile", O, 0, 4, Pl1, P2, P3, P4

Sometimes the user defines a series of points using an ascending range of points as
shown below:
Curve "MyFile", O, 0, 4, P(1l:4)

In the case shown above the user defined a curve using points P1, P2, P3, and P4.
output command is optional and is used to control output operation during curve motion.
The command can be On or Off for digital outputs or memory outputs. Entering an
output command following any point number in the point series causes execution of the
output command when the arm reaches the point just before the output command. A
maximum of 16 output commands may be included in one Curve statement. In the
example below, the "On 2" command is executed just as the arm reaches the point P2,
then the arm continues to all points between and including P3 and P10.

Curve "MyFile", C, 0, 4, P1, P2, ON 2, P(3:10)

Description
Curve creates data that moves the manipulator arm along the curve defined by the point series
pointList and stores the data in a file on the controller. The CVMove instruction uses the data in the file
created by Curve to move the manipulator in a continuous path type fashion.

Curve calculates independent X, Y, Z, U, V, W coordinate values for each point using a cubic spline
function to create the trajectory. Therefore, if points are far apart from each other or the orientation of
the robot is changed suddenly from point to point, the desired trajectory may not to be realized.

It is not necessary to specify speeds or accelerations prior to executing the Curve instruction. Arm
speed and acceleration parameters can be changed anytime prior to executing CVMove by using the
SpeedS or AccelS instructions.

Points defined in a local coordinate system may be used in the series to locate the curve at the
desired position. By defining all of the specified points in the point series for the Curve instruction as
points with local attributes, the points may be changed as points on the local coordinate system by the
Local instruction following the Curve instruction.

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 101

Curve Statement

Note

Use tangential correction when possible
It is recommended that you use tangential correction whenever possible, especially when using
CVMove in a continuous loop throught the same points. If you do not use tangential correction, the
robot may not follow the correct path at higher speeds.

Open Curve Min and Max Number of Points Allowed
Open Curves may be specified by using from 3 to 200 points.

Closed Curve Min and Max Number of Points Allowed
Closed Curves may be specified by using from 3 to 50 points.

Potential Errors

Attempt to Move Arm Outside Work Envelope

The Curve instruction cannot check the movement range for the defined curve path. This means that
a user defined path may cause the robot arm to move outside the normal work envelope. In this case
an "out of range" error will occur.

See Also
AccelS Function, Arc, CVMove, ECP, Move, SpeedS

Curve Statement Example

The following example designates the free curve data file name as MYCURVE.CVT, creates a curve
tracing P1-P7, switches ON output port 2 at P2, and decelerates the arm at P7.

Set up curve

> curve "mycurve", O, 0, 4, Pl, P2, On 2, P(3:7)
Move the arm to P1 in a straight line

> jump P1

Move the arm according to the curve definition called mycurve

> cvmove "mycurve"

102 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

CVMove Statement

CVMove Statement

Performs the continuous spline path motion defined by the Curve instruction. @

Syntax
CVMove fileName [CP] [searchExpr]

Parameters

fileName String expression for the path and name of the file to use for the continuous path motion
data. This file must be previously created by the Curve instruction and stored on a PC

hard disk.
CP Optional. Specifies continuous path motion after the last point.
searchExpr Optional. A Till or Find expression.

Till | Find

Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

Description

CVMove performs the continuous spline path motion defined by the data in the file fileName, which is
located in the controller memory. The file must be previously created with the Curve command.

Multiple files may exist at the same time on the system. If there is no file name extension, then CVT is
assumed.

The user can change the speed and acceleration for the continuous path motion for CVMove by using
the SpeedS and AccelS instructions.

When the Curve instruction has been previously executed using points with Local definitions, you can
change the operating position by using the Local instruction.

When executing CVMove, be careful that the robot doesn’t collide with peripheral equipment. When
you attempt to change the hand orientation of the 6-axis robot between adjacent points suddenly, due
to the nature of cubic spline function, the 6-axis robot may start changing its orientation from the
previous and following points and move in an unexpected trajectory. Verify the trajectory thoroughly
prior to a CVMove execution and be careful that the robot doesn’t collide with peripheral equipment.
Specify points closely each other and at equal interval. Do not change the hand orientation between
adjacent points suddenly.

The CP parameter causes acceleration of the next motion command to start when the deceleration
starts for the current motion command. In this case the robot will not stop at the destination
coordinate and will continue to move to the next point.

See Also
AccelS Function, Arc, Curve, Move, SpeedsS, Till, TillOn

CVMove Statement Example

The following example designates the free curve data file name as MYCURVE.CVT, creates a curve
tracing P1-P7, switches ON output port 2 at P2, and decelerates the arm at P7.

Set up curve
> curve "mycurve", O, 0, 4, P1l, P2, On 2, P(3:7)

Move the arm to P1 in a straight line
> jump P1

Move the arm according to the curve definition called mycurve
> cvmove "mycurve"

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 103

CX, CY, CZ, CU, CV, CW Statements

CX, CY, CZ, CU, CV, CW Statements

Sets the coordinate of a point. @

Syntax
CX(point) = value
CY(point) = value
CZ(point) = value
CU(point) = value
CV(point) = value
CW(point) = value

Parameters

point Pnumber or P(expr) or point label.

value Real expression representing the new coordinate value in millimeters.
See Also

CX, CY, CZ, CU, CV, CW Functions

CX, CY, CZ, CU, CV, CW StatementS Example

CX (pick) = 25.34

104 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

CX, CY, CZ, CU, CV, CW Functions

CX, CY, CZ, CU, CV, CW Functions

Retrieves a coordinate value from a point @

Syntax
CX(point)
CY(point)
CZ(point)
CU(point)
CV(point)
CW(point)

Parameters
point Point expression.

Return Values

Returns the specified coordinate value. The return values for CX, CY, CZ are real numbers in
millimeters. The return values for CU, CV, CW are real numbers in degrees.

Description
Used to retrieve an individual coordinate value from a point.

To obtain the coordinate from the current robot position, use Here for the point parameter.

See Also

Point expression
CX, CY, CZ, CU, CV, CW Statements

CX, CY, CZ, CU, CV, CW Functions Example

The following example extracts the X axis coordinate value from point "pick" and puts the coordinate
value in the variable x.

Function cxtest

Real x

x = CX(pick)

Print "The X Axis Coordinate of point 'pick' is", x
Fend

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 105

Date Statement

Date Statement
Specifies and displays the current date in the controller.

Syntax
Date yyyy, mm, dd
Date

Parameters
yyyy Integer expression for year.
mm Integer expression for month.
dd Integer expression for day.

Return Values
When the Date command is entered without any parameters, the current date is displayed.

Description

Specifies the current Date for the controller. This date is used for the files inside the controller. All files

residing in the controller are date stamped. Date automatically calculates the day of the week for the
Date display.

See Also
Time, Date$

Date Example
The following examples are done from the command window.

> Date
2006/09/27

> Date 2006,10,1

> Date
2006/10/01

106 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Date$ Function

Date$ Function
Returns the system date. @

Syntax
Date$

Return Values
A string containing the date in the format yyyy/mm/dd.

Description

Date$ is used to get the controller system date in a program statement. To set the system date, you
must use the Date statement.

See Also
Date, Time, Time$

Date$ Function Example

Print "Today's date: ", Date$

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 107

DegToRad Function

DegToRad Function
Converts degrees to radians. @

Syntax
DegToRad(degrees)

Parameters
degrees Real expression representing the degrees to convert to radians.

Return Values
A double value containing the number of radians.

See Also
ATan, ATan2, RadToDeg Function

DegToRad Function Example

s = Cos (DegToRad (x))

108 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

DispDev Statement

DispDev Statement
Sets the current display device. @

Syntax
DispDev (devicelD)
Parameters
devicelD The device ID for the desired display device.
21 RC+
23 0P
24 TP
See Also

DispDev Function

DispDev Statement Example

DispDev 23

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 109

DispDev Function

DispDev Function

Returns the current display device. @

Syntax
DispDev

Return Values
Integer value containing the devicelD.
21 RC+
23 OP
24 TP

See Also
DispDev Statement

DispDev Function Example

Print "The current display device is ", DispDev

110 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Dist Function

Dist Function

Returns the distance between two robot points. @

Syntax
Dist (point1, point2)

Parameters
point1, point2 Specifies two robot point expressions.
Return Values

Returns the distance between both points (real value in mm).

See Also
CU, CV, CW, CX, CY, Ccz

Dist Function Example

Real distance

distance = Dist (P1l, P2)

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 111

Do...Loop Statement

Do...Loop Statement

Repeats a block of statements while a condition is True or until a condition becomes True. @

Syntax
Do [{ While | Until } condition]
[statements]
[Exit Do]
[statements]
Loop

Or, you can use this syntax:

Do
[statements]
[Exit Do]
[statements]
Loop [{ While | Until } condition]

The Do Loop statement syntax has these parts:

Part Description

condition Optional. Numeric expression or string expression that is True or False. If condition is
Null, condition is treated as False.

statements One or more statements that are repeated while, or until, condition is True.

Description
Any number of Exit Do statements may be placed anywhere in the Do...Loop as an alternate way to

exit a Do...Loop. Exit Do is often used after evaluating some condition, for example, If...Then, in
which case the Exit Do statement transfers control to the statement immediately following the Loop.

When used within nested Do...Loop statements, Exit Do transfers control to the loop that is one
nested level above the loop where Exit Do occurs. Nesting of Do...Loop statements is supported
up to 256 levels deep including other statements (If...Then...Else...EndlIf, Select...Send).

See Also
For...Next, Select...Send

Do Example

Do While Not Lof (1)
Line Input #1, tLine$
Print tLine$

Loop

112 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Double Statement

Double Statement

Declares variables of type Double. (8 byte double precision number). @

Syntax
Double varName [(subscripts)] [, varName [(subscripts)]...]

Parameters
varName Variable name which the user wants to declare as type Double.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared.
The subscripts syntax is as follows
(ubound1, [ubound?2], [ubound3])
ubound1, ubound2, ubound3 each specify the maximum upper bound for the
associated dimension.
The elements in each dimension of an array are numbered from 0 to the upper
bound value.
The total available number of array elements for local and global preserve
variables is 1000.
The total available number of array elements for global and module variables is
10000.
To calculate the total elements used in an array, use the following formula. (If a
dimension is not used, substitute 0 for the ubound value.)
total elements = (ubound1 + 1) * (ubound2 + 1) * (ubound3 + 1)
Description

Double is used to declare variables as type Double. Local variables should be declared at the top of
a function. Global and module variables must be declared outside of functions.
Valid number of digits for Double is 14.

See Also
Boolean, Byte, Global, Integer, Long, Real, String

Double Example
The following example shows a simple program which declares some variables using Double.

Function doubletest
Double varl

Double A(10) 'Single dimension array of double
Double B(10, 10) 'Two dimension array of double
Double C(5, 5, 5) 'Three dimension array of double

Double arrayvar (10)
Integer 1
Print "Please enter a Number:"
Input wvarl
Print "The variable varl = ", varl
For i = 1 To 5
Print "Please enter a Number:"
Input arrayvar (i)
Print "Value Entered was ", arrayvar(i)
Next i
Fend

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 113

ECP Statement

ECP Statement
Selects or displays the current ECP (external control point). @

Syntax
(1) ECP ECPNumber
(2) ECP
Parameters
ECPNumber Optional. Integer expression from 0-15 representing which of 16 ECP definitions
to use with subsequent motion instructions. ECP 0 makes the ECP selection
invalid.

Return Values
Displays current ECP when used without parameters.

Description
ECP selects the external control point specified by the ECPnumber (ECPNumber).

Note
This command will only work if the External Control Point option is installed.

Power Off and Its Effect on the ECP Selection
Turning main power off clears the ECP selection.

See Also
ECPSet

ECP Statement Example

>ecpset 1, 100, 200, 0, O
>ecp 1

114 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

ECP Function

ECP Function

Returns the current ECP (external control point) number.

Syntax
ECP

Return Values
Integer containing the current ECP number.

Note
This command will only work if the External Control Point option is installed.

See Also
ECP Statement

ECP Function Example

Integer savECP

savECP = ECP
ECP 2

Call Dispense
ECP savECP

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 115

ECPCIr Statement

ECPCIr Statement
Clears (undefines) an external control point. @

Syntax
ECPCIr ECPNumber

Parameters
ECPNumber Integer expression representing which of the 15 external control points to clear
(undefine). (ECPO is the default and cannot be cleared.)
Description

Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

Note
This command will only work if the External Control Point option is installed.

See Also
Arm, ArmClr, ArmSet, ECPSet, Local, LocalClr, Tool, TLSet

ECPCIr Example

ECPClr 1

116 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

ECPDef Function

ECPDef Function
Returns ECP definition status. @

Syntax
ECPDef (ECPNumber)
Parameters
ECPNumber Integer expression representing which ECP to return status for.

Return Values
True if the specified ECP has been defined, otherwise False.

See Also
Arm, ArmClr, ArmSet, ECPSet, Local, LocalClr, Tool, TLCIr, TLSet

ECPDef Example

Function DisplayECPDef (ecpNum As Integer)

If ECPDef (ecpNum) = False Then
Print "ECP ", ecpNum, "is not defined"
Else
Print "ECP ", ecpNum, ": ",
Print ECPSet (ecpNum)
EndIf
Fend

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 117

ECPSet Statement

ECPSet Statement
Defines or displays an external control point. @

Syntax

(1) ECPSet ECPNum, ECPPoint
(2) ECPSet ECPNum

(3) ECPSet

Parameters
ECPNum Integer number from 1-15 representing which of 15 external control points to define.
ECPPoint Pnumber or P(expr) or point label or point expression.

Return Values

When parameters are omitted, displays the current ECPSet definitions.
When only the ECP number is specified, displays the specified ECPSet definitions.

Description
Defines an external control point.

Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may

shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

Note
This command will only work if the External Control Point option is installed.

ECPSet Example

ECPSet 1, P1
ECPSet 2, 100, 200, 0, O

118 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

ECPSet Function

ECPSet Function

Returns a point containing the external control point definition for the specified ECP. @

Syntax
ECPSet(ECPNumber)

Parameters
ECPNumber Integer expression representing the number of the ECP to retrieve.

Return Values
A point containing the ECP definition.

Note
This command will only work if the External Control Point option is installed.

See Also
ECPSet Statement

ECPSet Function Example

P1 = ECPSet (1)

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 119

ElapsedTime Function

ElapsedTime Function

Returns the elapsed time since the takt time measurement timer starts in seconds. @

Syntax
ElapsedTime

Return Values

An actual value representing an elapsed time of a takt time measurement timer. (Unit: second)
Valid range is 0 — approx. 1.7E+31. Timer resolution is 0.001 seconds.

Description

Returns an elapsed time since the takt time measurement timer starts. Unlike the Tmr function, the
ElapsedTime function does not count the time while the program is halted.

The takt time measurement timer can be reset by uing ResetElapsedTime statement.
Real overhead

ResetElapsedTime
overHead = ElapsedTime

See Also
ResetElapsedTime, Tmr Function

ElapsedTime Function Example

ResetElapsedTime 'Resets the takt time measurement timer
For i = 1 To 10 'Executes 10 times

GoSub Cycle
Next

Print ElapsedTime / 10 'Measures a takt time and displays it

120 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Elbow Statement

Elbow Statement
Sets the elbow orientation of a point. @

Syntax
(1) Elbow point, [value]
(2) Elbow
Parameters
point Pnumber or P(expr) or point label.
value Integer expression.
1 = Above (/A)
2 = Below (/B)

Return Values

When both parameters are omitted, the elbow orientation is displayed for the current robot position.
If value is ommited, the elbow orientation for the specified point is displayed.

See Also
Elbow Function, Hand, J4Flag, J6Flag, Wrist

Elbow Statement Example

Elbow PO, Below
Elbow pick, Above
Elbow P (myPoint), myElbow

P1 = 0.000, 490.000, 515.000, 90.000, -40.000, 180.000

Elbow P1l, Above
Go P1

Elbow P1l, Below
Go P1

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 121

Elbow Function

Elbow Function

Returns the elbow orientation of a point. @

Syntax
Elbow [(point)]

Parameters

point Optional. Point expression. If point is omitted, then the elbow orientation of the current
robot position is returned.

Return Values

1 Above (/A)
2 Below (/B)

See Also
Elbow Statement, Hand, Wrist, J4Flag, J6Flag

Elbow Function Example

Print Elbow (pick)
Print Elbow (P1)
Print Elbow

Print Elbow (P1 + P2)

122 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Era Function

Returns the joint number for which an error occurred. @
Syntax

Era[(taskNum)]
Parameters

taskNum Integer expression representing a task number from 0-16.

Task number omission or 0 specifies the current task.

Return Values
The joint number that caused the error in the range 0-6 as described below:

0 - The current error was not caused by a servo axis.
1 - The error was caused by joint number 1
2 - The error was caused by joint number 2
3 - The error was caused by joint number 3
4 - The error was caused by joint number 4
5 - The error was caused by joint number 5
6 - The error was caused by joint number 6

Description

Era is used when an error occurs to determine if the error was caused by one of the robot joints and to
return the number of the joint which caused the error. If the current error was not caused by any joint,
Era returns zero.

See Also
Erl, Err, ErrMsg$, Ert, OnErr, Trap

Era Function Example

Function main
OnErr Goto eHandler
Do
Call PickPlace
Loop
Exit Function
eHandler:
Print "The Error code is ", Err
Print "The Error Message is ", ErrMsg$ (Err)
errTask = Ert
If errTask > 0 Then

Print "Task number in which error occurred is ", errTask
Print "The line where the error occurred is Line ", Erl (errTask)
If Era(errTask) > 0 Then
Print "Joint which caused the error is ", Era(errTask)
EndIf
EndIf

Fend

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 123

EResume Statement

EResume Statement

Resumes execution after an error-handling routine is finished. @

Syntax
EResume [{ label | Next }]

Description

EResume

If the error occurred in the same procedure as the error handler, execution resumes with the
statement that caused the error. If the error occurred in a called procedure, execution resumes at the
Call statement in the procedure containing the error handler.

EResume Next

If the error occurred in the same procedure as the error handler, execution resumes with the
statement immediately following the statement that caused the error. If the error occurred in a called
procedure, execution resumes with the statement immediately following the Call statement that last in
the procedure containing the error handler.

EResume { /abel }
If the error occurred in the same procedure as the error handler, execution resumes at the statement
containing the label.

See Also
OnErr

EResume Statement Example

Function main
Integer retry

OnErr GoTo eHandler
Do
RunCycle
Loop
Exit Function

eHandler:
Select Err
Case MyError
retry = retry + 1
If retry < 3 Then
EResume ' try again
Else
Print "MyError has occurred ", retry, " times
EndIf
Send
Fend

124 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Erf$ Function

Erf$ Function

Returns the name of the function in which the error occurred. @
Syntax

Erf$[(taskNumber)]
Parameters

taskNumber Integer expression representing a task number from 0-16.

Task number omission or 0 specifies the current task.

Return Values
The name of thefunction where the last error occurred.

Description

Erf$ is used with OnErr. Erf$ returns the function name in which the error occurred. Using

Erf$ combined with Err, Ert, Erl and Era the user can determine much more about the error which
occurred.

See Also
Era, Erl, Err, ErrMsg$, Ert, OnErr

Erf$ Function Example

The following example shows a simple program using the Ert function to determine which task the
error occurred in along with; Erf$: the name of the function the error occurred in; Erl: the line number
where the error occurred; Era: if a joint caused the error....

Function main
OnErr Goto eHandler
Do
Call PickPlace
Loop
Exit Function
eHandler:
Print "The Error code is ", Err
Print "The Error Message is ", ErrMsg$ (Err)
errTask = Ert
If errTask > 0 Then

Print "Task number in which error occurred is ", errTask
Print "Function at which error occurred is ", Erf$ (errTask)
Print "The line where the error occurred is Line ", Erl (errTask)
If Era(errTask) > 0 Then
Print "Joint which caused the error is ", Era(errTask)
EndIf
EndIf

Fend

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 125

Erl Function

Erl Function

Returns the line number in which the error occurred. @
Syntax

Erl[(taskNumber)]
Parameters

taskNumber Integer expression representing a task number from 0-16.

Task number omission or 0 specifies the current task.

Return Values
The line number where the last error occurred.

Description

Erl is used with OnErr. Erl returns the line number in which the error occurred. Using Erl combined
with Err, Ert and Era the user can determine much more about the error which occurred.

See Also
Era, Erf$, Err, ErrMsg$, Ert, OnErr

Erl Function Example

The following example shows a simple program using the Ert function to determine which task the
error occurred in along with; Erl: where the error occurred; Era: if a joint caused the error....

Function main
OnErr Goto eHandler
Do
Call PickPlace
Loop
Exit Function
eHandler:
Print "The Error code is ", Err
Print "The Error Message is ", ErrMsg$ (Err)
errTask = Ert
If errTask > 0 Then

Print "Task number in which error occurred is ", errTask
Print "The line where the error occurred is Line ", Erl (errTask)
If Era(errTask) > 0 Then
Print "Joint which caused the error is ", Era(errTask)
EndIf
EndIf
Fend

126 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Err Function

Returns the most recent error status. @

Syntax
Err [(taskNumber)]

Parameters

taskNumber Optional. Integer expression representing a task number from 0-16. 0 specifies
the current task.

Return Values
Returns a numeric error code in integer form.

Description

Err allows the user to read the current error code. This along with the SPEL" Error Handling
capabilities allows the user to determine which error occurred and react accordingly. Err is used with
OnErr.

To get the controller error, use SysErr function.

See Also
Era, Erf$, Erl, ErrMsg$, EResume, Ert, OnErr, Return, SysErr

Err Example

The following example shows a simple utility program which checks whether points P0-P399 exist. If
the point does not exist, then a message is printed on the screen to let the user know this point does
not exist. The program uses the CX instruction to test each point for whether or not it has been
defined. When a point is not defined control is transferred to the error handler and a message is
printed on the screen to tell the user which point was undefined.

Function errtest
Integer i, errnum
Real x

OnErr GoTo eHandle
For 1 = 0 To 399

x = CX(P(1))
Next i
Exit Function

Thkkkkx*x

'* Error Handler *
IEE S S SR EEEEEE SR EEEEEEEEEEREEREEEEEEEEEEEEEEEEEEES
eHandle:

errnum = Err

' Check if using undefined point
If errnum = 78 Then

Print "Point number P", 1, " is undefined!"
Else

Print "ERROR: Error number ", errnum, " Occurred."
EndIf
EResume Next

Fend

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 127

ErrMsg$ Function

ErrMsg$ Function

Returns the error message which corresponds to the specified error number. @

Syntax
ErrMsg$(errNumber, langID)

Parameters
errNumber Integer expression containing the error number to get the message for.
langID Optional. Integer expression containing the language ID based on the following values.
0 - English
1 - Japanese
2 - German
3 - French

4 - Simplified Chinese
5 - Traditional Chinese
If omitted, English is used.

Return Values
Returns the error message which is described in the Error Codes table.

See Also
Era, Erl, Err, Ert, OnErr, Trap

ErrMsg$ Example

The following example shows a simple program using the Ert function to determine which task the
error occurred in along with; Erl: where the error occurred; Era: if a joint caused the error....

Function main
OnErr Goto eHandler
Do
Call PickPlace
Loop
Exit Function
eHandler:
Print "The Error code is ", Err
Print "The Error Message is ", ErrMsg$ (Err)
errTask = Ert
If errTask > 0 Then

Print "Task number in which error occurred is ", errTask
Print "The line where the error occurred is Line ", Erl (errTask)
If Era(errTask) > 0 Then
Print "Joint which caused the error is ", Era(errTask)
EndIf
EndIf

Fend

128 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

ErrorOn Funcion

ErrorOn Funcion

Returns the error status of the controller. @

Syntax
ErrorOn

Return Values
True if the controller is in error status, otherwise False.

DeThis scription
ErrorOn function is used only for NoEmgAbort task (special task using NoEmgAbort at Xqt).

See Also
ErrorOn, SafetyOn, SysErr, Wait, Xqt

ErrorOn Function Example
The following example shows a program that monitors the controller error and switches the 1/0 On/Off
according to the error number when error occurs.

Notes

Forced Flag
This program example uses Forced flag for On/Off command.
Be sure that the 1/0O outputs change during error, or at Emergency Stop or Safety Door Open when
designing the system.
After Error Occurence
As this program, finish the task promptly after completing the error handling.

Function main

Xgt ErrorMonitor, NoEmgAbort

Fend

Function ErrorMonitor
Wait ErrorOn
If 4000 < SysErr Then
Print "Motion Error = ", SysErr
Off 10, Forced
On 12, Forced

Else
Print "Other Error = ", SysErr
Off 11, Forced
On 13, Forced
EndIf
Fend

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 129

Error Statement

Error Statement
Generates a user error. @

Syntax

(1) Error task Number, errorNumber
(2) Error errorNumber

Parameters
taskNumber Optional. Integer expression representing a task number. Range from 0 to 16.
0 specifies the current task.
errorNumber Integer expression representing a valid error number. User error numbers range
is from 8000 to 8999.
Description

Use the Error statement to generate system or user defined errors. You can define user error labels
and descriptions by using the User Error Editor in the EPSON RC+ 5.0 development environment.

See Also
Era, Erl, Err, OnErr

Error Statement Example

#define ER VAC 8000
If Sw(vacuum) = Off Then

Error ER VAC
EndIf

130 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Ert Function

Ert Function
Returns the task number in which an error occurred. @

Syntax
Ert

Return Values
The task number in which the error occurred.

Description

Ert is used when an error occurs to determine in which task the error occurs. The number returned
will be between 1and 16.

See Also
Era, Erl, Err, ErrMsg$, OnErr, Trap

Ert Function Example

The following example shows a simple program using the Ert function to determine which task the

error occurred in along with; Erl: where the error occurred; Err: what error occurred; Era: if a joint
caused the error....

Function main
OnErr Goto eHandler
Do
Call PickPlace
Loop
Exit Function
eHandler:
Print "The Error code is ", Err
Print "The Error Message is ", ErrMsg$ (Err)
errTask = Ert
If errTask > 0 Then

Print "Task number in which error occurred is ", errTask
Print "The line where the error occurred is Line ", Erl (errTask)
If Era(errTask) > 0 Then
Print "Joint which caused the error is ", Era(errTask)
EndIf
EndIf
Fend

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 131

EStopOn Function

EStopOn Function

Return the Emergency Stop status. @

Syntax
EstopOn

Return Values
True if the status is Emergency Stop, otherwise False.

Description
EStopOn function is used only for NoEmgAbort task (special task using NoEmgAbort at Xqt).

See Also
ErrorOn, SafetyOn, Wait, Xqt

EstopOn Function Example

The following example shows a program that monitors the Emergency Stop and switches the 1/O
On/Off when Emergency Stop occurs.

Notes

Forced Flag

This program example uses Forced flag for On/Off command.
Be sure that the I/O outputs change during error, or at Emergency Stop or Safety Door Open when
designing the system.

Error Handling
As this program, finish the task promply after completing the error handling.

Outputs OFF during Emergency Stop
As this program example, when the task executes I/O On/Off after the Emergency Stop, uncheck the
[Controller]-[Preferences]-[Outputs off during emergency stop] check box. If this check box is checked,
the execution order of turn Off by the controller and turn On using the task are not guaranteed.

Function main

Xgt EStopMonitor, NoEmgAbort

Fend

Function EStopMonitor
Wait EStopOn
Print "EStop !!!"
Off 10, Forced
On 12, Forced

Fend

132 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Exit Statement

Exit Statement
Exits a loop construct or function. @

Syntax
Exit { Do | For | Function }

Description
The Exit statement syntax has these forms:

Statement Description

Exit Do Provides a way to exit a Do...Loop statement. It can be used only inside a Do...Loop
statement. Exit Do transfers control to the statement following the Loop statement.
When used within nested Do...Loop statements, Exit Do transfers control to the loop
that is one nested level above the loop where Exit Do occurs.

Exit For Provides a way to exit a For loop. It can be used only in a For...Next loop. Exit For
transfers control to the statement following the Next statement. When used within
nested For loops, Exit For transfers control to the loop that is one nested level above
the loop where Exit For occurs.

Exit Function Immediately exits the Function procedure in which it appears. Execution continues
with the statement following the statement that called the Function.

See Also
Do...Loop, For...Next, Function...Fend

Exit Statement Example

For i = 1 To 10

If Sw(l) = On Then
Exit For
EndIf
Jump P (i)
Next i

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 133

Find Statement

Find Statement
Specifies or displays the condition to store coordinates during motion. @

Syntax
Find [inputCondition]

Parameters
inputCondition The following functions and operators are available.

Functions : Sw, In, InW, Oport, Out, OutW, MemSw, MemIn, MemW, Ctr
Operators : And, Or, Xor
<Example> Find Sw(5) = On

Find Sw(5) = On And Sw(6) = Off

Description
Find statement can be used by itself or as a modifier of a motion command.
The Find condition must include at least one of the functions above.

When variables are included in the Find condition, their values are computed when setting the Find
condition. No use of variable is recommended. Otherwise, the condition may be an unintended
condition. Multiple Find statements are permitted. The most recent Find condition remains current.

When parameters are omitted, the current Find definition is displayed.

Notes

Find Setting at Main Power On
At power on, the Find condition is:
Find Sw(0) = On 'Input bit 0 is on
Use of PosFound Function to Verify Find

Use PosFound function to verify if the Find condition has been satisfied after executing a motion
command using Find modifier.

See Also
Sw, In, InW, Oport, Out, FindPos, Go, Jump, PosFound

Find Statement Example

Find Sw(5) = On
Go P10 Find
If PosFound Then
Go FindPos
Else
Print "Cannot find the sensor signal."
EndIf

134 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

FindPos Function

FindPos Function

Returns a robot point stored by Fine during a motion command. @

Syntax
FindPos

Return Values
A robot point that was stored during a motion command using Find.

See Also
Find, Go, Jump, PosFound, CurPos, InPos

FindPos Function Example

Find Sw(5) = On

Go P10 Find

If PosFound Then
Go FindPos

Else

Print "Cannot find the sensor signal."
EndIf

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 135

Fine Statement

Fine Statement
Specifies and displays the positioning accuracy for target points. @

Syntax
(1) Fine axis1, axis2, axis3, axis4, [axis5], [axis6]
(2) Fine
Parameters
axis1 Integer expression ranging from (0-65535) which represents the allowable positioning
error for the 1st joint.
axis2 Integer expression ranging from (0-65535) which represents the allowable positioning
error for the 2nd joint.
axis3 Integer expression ranging from (0-65535) which represents the allowable positioning
error for the 3rd joint.
axis4 Integer expression ranging from (0-65535) which represents the allowable positioning
error for the 4th joint.
axisb Optional. Integer expression ranging from (0-65535) which represents the allowable
positioning error for the 5th joint.
axis6 Optional. Integer expression ranging from (0-65535) which represents the allowable

positioning error for the 6th joint.

Return Values

When used without parameters, Fine displays the current fine values for each of the 4 or 6 axes,
depending on the robot type.

Description

Fine specifies, for each joint, the allowable positioning error for detecting completion of any given
move.

This positioning completion check begins after the CPU has completed sending the target position
pulse to the servo system. Due to servo delay, the robot will not yet have reached the target position.
This check continues to be executed every few milliseconds until each joint has arrived within the
specified range setting. Positioning is considered complete when all axes have arrived within the
specified ranges. Once positioning is complete program control is passed to the next statement,
however, servo system keeps the control of the robot target position.

When relatively large ranges are used with the Fine instruction, the positioning will be confirmed
relatively early in the move, and executes the next statement.

The default Fine settings depend on the robot type. Refer to your robot manual for details.

Notes

Cycle Times and the Fine Instruction

The Fine value does not affect the acceleration or deceleration control of the manipulator arm.
However, smaller Fine values can cause the system to run slower because it may take the servo
system extra time (a few milliseconds) to get within the acceptable position range. Once the arm is
located within the acceptable position range (defined by the Fine instruction), the CPU executes the
next user instruction. (Keep in mind that all activated axes must be in position before the CPU can
execute the next user instruction.)

136 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Fine Statement

Initialization of Fine (by Motor On, SLock, SFree)

Any time the following commands are used the Fine value is initialized to default values: SLock,
SFree, Motor instructions.

Make sure that you reset Fine values after one of the above commands execute.

Potential Errors

If Fine positioning is not completed within about 2 seconds, Error 4024 will occur. This error normally
means the servo system balance needs to be adjusted. (Call your distributor for assistance)

See Also
Accel, AccelR, AccelS, Arc, Go, Jump, Move, Speed, SpeedR, SpeedS, Pulse

Fine Statement Example

The examples below show the Fine statement used in a program function, and used from the monitor
window.

Function finetest
Fine 5, 5, 5, 5 'reduce precision to +/- 1 Pulse
Go P1
Go P2

Fend

> Fine 10, 10, 10, 10
>

> Fine

10, 10, 10, 10

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 137

Fine Function

Returns Fine setting for a specified joint. @
Syntax
Fine(joint)
Parameters
Jjoint Integer expression representing the joint number for which to retrieve the Fine setting.

Return Values
Real value.

See Also
Accel, AccelS, Arc, Go, Jump, Move, Speed, SpeedS, Pulse

Fine Function Example
This example uses the Fine function in a program:
Function finetst
Integer a

a = Fine (1)
Fend

138 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Fix Function

Returns the integer portion of a real number. @

Syntax
Fix(number)

Parameters
number Real expression containing number to fix.

Return Values
An integer value containing the integer portion of the real number.

See Also
Int

Fix Function Example

>print Fix(1.123)
1
>

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 139

FmtStr$ Function

FmtStr$ Function
Format a numeric expression. @

Syntax

FmtStr$ (numeric expression, strFormat)

Parameters

numeric expression Numaric expression to be formatted.

strFormat

Return Values

Format specification string.

A string containing the formatted expression.

Description

Use FmtStr$ to format a numeric expression into a string.

Numeric Format Specifiers
Fromat a numeric expression.

Character

Description

None

(0)

#)

()

()

140

Display the number with no formatting.

Digit placeholder. Display a digit or a zero. If the expression has a digit in the position
where the 0 appears in the format string, display it; otherwise, display a zero in that
position. If the number has fewer digits than there are zeros (on either side of the
decimal) in the format expression, display leading or trailing zeros. If the number has
more digits to the right of the decimal separator than there are zeros to the right of the
decimal separator in the format expression, round the number to as many decimal places
as there are zeros. If the number has more digits to the left of the decimal separator than
there are zeros to the left of the decimal separator in the format expression, display the
extra digits without modification.

Digit placeholder. Display a digit or nothing. If the expression has a digit in the position
where the # appears in the format string, display it; otherwise, display nothing in that
position. This symbol works like the 0 digit placeholder, except that leading and trailing
zeros aren't displayed if the number has the same or fewer digits than there are #
characters on either side of the decimal separator in the format expression.

Decimal placeholder. In some locales, a comma is used as the decimal separator. The
decimal placeholder determines how many digits are displayed to the left and right of the
decimal separator. If the format expression contains only number signs to the left of this
symbol, numbers smaller than 1 begin with a decimal separator. To display a leading
zero displayed with fractional numbers, use 0 as the first digit placeholder to the left of
the decimal separator. The actual character used as a decimal placeholder in the
formatted output depends on the Number Format recognized by your system.

Thousand separator. In some locales, a period is used as a thousand separator. The
thousand separator separates thousands from hundreds within a number that has four or
more places to the left of the decimal separator. Standard use of the thousand separator
is specified if the format contains a thousand separator surrounded by digit placeholders
(0 or #). Two adjacent thousand separators or a thousand separator immediately to the
left of the decimal separator (whether or not a decimal is specified) means "scale the
number by dividing it by 1000, rounding as needed." For example, you can use the
format string "##0,," to represent 100 million as 100. Numbers smaller than 1 million are
displayed as 0. Two adjacent thousand separators in any position other than immediately
to the left of the decimal separator are treated simply as specifying the use of a thousand
separator. The actual character used as the thousand separator in the formatted output
depends on the Number Format recognized by your system.

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

FmtStr$ Function

See Also
Left$, Right$, Str$

FmtStr$ Example

Function SendDateCode
String d$, £S

fS = FmtStr$ (10, "000.00")
OpenCom #1
Print #1, £$
CloseCom #1
Fend

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 141

For...Next Statement

For...Next Statement

The For...Next instructions are used together to create a loop where instructions located @
between For and Next are executed multiple times as specified by the user.

Syntax
For var = initValue To finalValue [Step increment]
statements
Next [var]
Parameters
var The counting variable used with the For...Next loop. This variable is normally
defined as an integer but may also be defined as a Real variable.
initValue The initial value for the counter var.
finalValue The final value of the counter var. Once this value is met, the For...Next loop is
complete and execution continues starting with the statement following the Next
instruction.
increment An optional parameter which defines the counting increment for each time the
Next statement is executed within the For...Next loop. This variable may be
positive or negative. However, if the value is negative, the initial value of the
variable must be larger than the final value of the variable. If the increment value
is left out the system automatically increments by 1.
statements Any valid SPEL" statements can be inserted inside the For...Next loop.
Description

For...Next executes a set of statements within a loop a specified number of times. The beginning of
the loop is the For statement. The end of the loop is the Next statement. A variable is used to count
the number of times the statements inside the loop are executed.

The first numeric expression (initValue) is the initial value of the counter. This value may be positive
or negative as long as the finalValue variable and Step increment correspond correctly.

The second numeric expression (finalValue) is the final value of the counter. This is the value which
once reached causes the For...Next loop to terminate and control of the program is passed on to the
next instruction following the Next instruction.

Program statements after the For statement are executed until a Next instruction is reached. The
counter variable (var) is then incremented by the Step value defined by the increment parameter. If
the Step option is not used, the counter is incremented by 1 (one).

The counter variable (var) is then compared with the final value. If the counter is less than or equal to
the final value, the statements following the For instruction are executed again. If the counter variable
is greater than the final value, execution branches outside of the For...Next loop and continues with
the instruction immediately following the Next instruction.

142 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

For...Next Statement

Notes

Negative Step Values:
If the value of the Step increment (increment) is negative, the counter variable (var) is decremented
(decreased) each time through the loop and the initial value must be greater than the final value for
the loop to work.

Variable Following Next is Not Required:
The variable name following the Next instruction may be omitted. However, for programs that contain
nested For...Next loops, it is recommended to include the variable name following the Next instruction
to aid in quickly identifying loops.

See Also
Do...Loop

For...Next Example

Function fornext
Integer counter
For counter = 1 to 10
Go Pctr
Next counter

For counter = 10 to 1 Step -1
Go Pctr
Next counter
Fend

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 143

Function...Fend Statement

Function...Fend Statement

A function is a group of program statements which includes a Function statement as the first @
statement and a Fend statement as the last statement.

Syntax
Function funcName [(argList)] [As type]
statements
Fend
Parameters
funcName The name which is given to the specific group of statements bound between the
Function and Fend instructions. The function name must contain alphanumeric
characters and may be up to 32 characters in length. Underscores are also
allowed.
arglList Optional. List of variables representing arguments that are passed to the
Function procedure when it is called. Multiple variables are separated by
commas.

The arglist argument has the following syntax:
[{ByRef | ByVal}] varName [()] As type

ByRef Optional. Specify ByRef when you want any changes in the value of the variable
to be seen by the calling function.

ByVal Optional. Specify ByVal when you do not want any changes in the value of the
variable to be seen by the calling function. This is the default.

varName Required. Name of the variable representing the argument; follows standard

variable naming conventions.
As type Required. You must declare the type of argument.

Return Values
Value whose data type is specified with the As clause at the end of the function declaration.

Description

The Function statement indicates the beginning of a group of SPEL" statements. To indicate where a
function ends we use the Fend statement. All statements located between the Function and Fend
statements are considered part of the function.

The Function...Fend combination of statements could be thought of as a container where all the

statements located between the Function and Fend statements belong to that function. Multiple
functions may exist in one program file.

See Also
Call, Fend, Halt, Quit, Return, Xqt

144 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Function...Fend Statement

Function...Fend Example

The following example shows 3 functions which are within a single file. The functions called task2 and
task3 are executed as background tasks while the main task called main executes in the foreground.

Function main
Xgt 2, task2 'Execute task2 in background
Xgt 3, task3 'Execute task3 in background
'....more statements here

Fend

Function task2
Do
On 1
Oon 2
Ooff 1
Off 2
Loop
Fend

Function task3
Do
On 10
Wait 1
Off 10
Loop
Fend

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 145

Global Statement

Global Statement

Declares variables with the global scope. Global variables can be accessed from anywhere. @

Syntax
Global [Preserve] dataType varName [(subscripts)] [, varName [(subscripts)], ...]

Parameters

Preserve If Preserve is specified, then the variable retains its values. The values are
cleared by project changes. If Preserve is omitted, the variable doesn’t retain its
values.

dataType Data type including Boolean, Integer, Long, Real, Double, Byte, or String.

varName Variable name. Names may be up to 32 characters in length.

subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared.
The subscripts syntax is as follows
(ubound1, [ubound2], [ubound3])
ubound1, ubound2, ubound3 each specify the maximum upper bound for the
associated dimension.
The elements in each dimension of an array are numbered from 0 to the upper
bound value.
The total available number of array elements for global preserve variables is 100
for strings and 1000 for all other types.
The total available number of array elements for global variables is 1000 for
strings and 10000 for all other types.
To calculate the total elements used in an array, use the following formula. (If a
dimension is not used, substitute 0 for the ubound value.)
total elements = (ubound1 + 1) * (ubound2 + 1) * (ubound3 + 1)

Description

Global variables are variables which can be used in more than 1 file within the same project. They are
cleared whenever a function is started from the Run window or Operator window unless they are
declared with the Preserve option.

When declared in Preserve option, the variable retains the value at turning off the controller.

Global Preserve variables can be used with the VB Guide option.

It is recommended that global variable names begin with a "g_" prefix to make it easy to recognize
globals in a program. For example:

Global Long g_PartsCount

See Also
Boolean, Byte, Double, Integer, Long, Real, String

146 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Global Statement

Global Statement Example

The following example shows 2 separate program files. The first program file defines some global
variables and initializes them. The second file then uses these global variables.

FILE1 (MAIN.PRG)
Global Integer status1
Global Real numsts

Function Main
Integer |

status1 =10
The following example shows 2 separate program files. The first program file defines some global
variables and initializes them. The second file then also uses these global variables.

FILE1 (MAIN.PRG)

Global Integer g Status
Global Real g MaxValue

Function Main

g _Status = 10
g MaxValue = 1.1

Fend.
FILE2 (TEST.PRG)
Function Test

Print "statusl = , g Status
Print "MaxValue = , g MaxValue

Fend

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 147

Go Statement

Go Statement
Moves the arm using point to point motion from the current position to the specified @

point or X,Y,Z,U, V, W position. The Go instruction can move any combination of
1-6 joints at the same time.

Syntax

Parameters
destination The target destination of the motion using a point expression.
CP Optional. Specifies continuous path motion.
LJM Optional. Convert the target destination using LJM function.
orientationFlag Optional. Specifies a parameter that selects an orientation flag for LJM function.
searchExpr Optional. A Till or Find expression.
Till | Find
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}
1.1 Optional. Parallel Processing statements can be added to execute I/O and other
commands during motion.
Description

Go simultaneously moves all joints of the robot arm using point to point motion. The destination for the
Go instruction can be defined in a variety of ways:

- Using a specific point to move to. For example: Go P1.

- Using an explicit coordinate position to move to. For example: Go XY(50, 400, 0, 0).

- Using a point with a coordinate offset. For example: Go P1 +X(50).

- Using a point but with a different coordinate value. For example: Go P1 :X(50).

The path is not predictable because the each joint interpolates between the current point and the
target point. Be careful of the interference with peripherals.

The Speed instruction determines the arm speed for motion initiated by the Go instruction. The Accel
instruction defines the acceleration.

With CP parameter, the arm can accelerate for the next motion command while the arm starts
decelerating to a stop. In this case, the arm is not positioned at the target point.

With LJM parameter, the arm moves to the point into where the target point is converted using LM
function, with the current point as reference point,

Go LJM (P1l, Here,1l)

can be
Go P1 LJM 1

At this point, the original point data P1 does not change.
LJM parameter is available for the 6-axis and RS series robots.
When using orientationFlag with the default value, it can be ommited.

Go P1 LJM

148 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Go Statement

Notes

Difference between Go and Move

The Move instruction and the Go instruction each cause the robot arm to move. However, the primary
difference between the 2 instructions is that the Go instruction causes point to point motion where as
the Move instruction causes the arm to move in a straight line. The Go instruction is used when the
user is primarily concerned with the orientation of the arm when it arrives on point. The Move
instruction is used when it is important to control the path of the robot arm while it is moving.

Difference between Go and Jump

The Jump instruction and the Go instruction each cause the robot arm to move in a point to point type
fashion. However, the JUMP instruction has 1 additional feature. Jump causes the robot end effector
to first move up to the LimZ value, then in a horizontal direction until it is above the target point, and
then finally down to the target point. This allows Jump to be used to guarantee object avoidance and
more importantly to improve cycle times for pick and place motions.

Proper Speed and Acceleration Instructions with Go
The Speed and Accel instructions are used to specify the speed and acceleration of the manipulator
during motion caused by the Go instruction. Pay close attention to the fact that the Speed and Accel
instructions apply to point to point type motion (like that for the Go instruction) while linear and circular
interpolation motion uses the SpeedS and AccelS instructions.

Using Go with the Optional Till Modifier

The optional Till modifier allows the user to specify a condition to cause the robot to decelerate to a
stop at an intermediate position prior to completing the motion caused by the Go instruction. If the Till
condition is not satisfied, the robot travels to the target position. The Go with Till modifier can be used
in 2 ways as described below:

(1) Go with Till Modifier
Checks if the current Till condition becomes satisfied. If satisfied, this command completes by
decelerating and stopping the robot at an intermediate position prior to completing the motion
caused by the Go instruction.

(2) Go with Till Modifier, Sw(Input bit number) Modifier, and Input Condition

This version of the Go with Till modifier allows the user to specify the Till condition on the
same line with the Go instruction rather than using the current definition previously defined
for Till. The condition specified is simply a check against one of the inputs. This is
accomplished through using the Sw instruction. The user can check if the input is On or Off
and cause the arm to stop based on the condition specified. This feature works almost like an
interrupt where the motion is interrupted (stopped) once the Input condition is met. If the input
condition is never met during the robot motion then the arm successfully arrives on the point
specified by destination.

Using Go with the Optional Find Modifier

The optional Find modifier allows the user to specify a condition to cause the robot to record a position
during the motion caused by the Go instruction. The Go with Find modifier can be used in 2 ways as
described below:
(1) Go with Find Modifier:
Checks if the current Find condition becomes satisfied. If satisfied, the current position is
stored in the special point FindPos.
(2) Go with Find Modifier, Sw(Input bit number) Modifier, and Input Condition:
This version of the Go with Find modifier allows the user to specify the Find condition on the
same line with the Go instruction rather than using the current definition previously defined
for Find. The condition specified is simply a check against one of the inputs. This is
accomplished through using the Sw instruction. The user can check if the input is On or Off
and cause the current position to be stored in the special point FindPos.

Go Instruction Always Decelerates to a Stop

The Go instruction always causes the arm to decelerate to a stop prior to reaching the final destination
of the move.

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 149

Go Statement

Potential Errors

Attempt to Move Outside of Robots Work Envelope
When using explicit coordinates with the Go instruction, you must make sure that the coordinates

defined are within

the robots valid work envelope. Any attempt to move the robot outside of the valid

work envelope will result in an error.

See Also

I...I Parallel Processing, Accel, Find, Jump, Move, Pass, Pn= (Point Assignment), Pulse, Speed, Sw,

Till

Go Example

The example shown below shows a simple point to point move between points PO and P1 and then
moves back to PO in a straight line. Later in the program the arm moves in a straight line toward point
P2 until input #2 turns on. If input #2 turns On during the Move, then the arm decelerates to a stop
prior to arriving on point P2 and the next program instruction is executed.

Function sample

Integer 1

Home

Go PO

Go P1

For i = 1 to 10
Go P (i)

Next 1

Go P2 Till Sw(2) = On

If Sw(2) = On Then
Print "Input #2 came on during the move and"
Print "the robot stopped prior to arriving on"
Print "point P2."

Else
Print "The move to P2 completed successfully."
Print "Input #2 never came on during the move."

EndIf

Fend

Some syntax examples from the command window are shown below:

>Go Here +X(50) ' Move only in the X direction 50 mm from

>Go P1

>Go P1 :U(30)

>Go Pl /L

>Go XY (50,

current position

Simple example to move to point P1

Move to Pl but use +30 as the position for
the U joint to move to

Move to Pl but make sure the arm ends up
in lefty position

Move to position X=50, Y=450, Z=0, U=30

450, 0, 30)

<Another Coding Example>

Till Sw(1)
Go P1 Till

Go P2 Till
Go P3 Till

150

inputs 1 & 2

Stop if current Till condition
defined on previous line is met
Stop if Input Bit 2 is On

Stop if current Till condition
defined on previous line is met

= Off And Sw(2) = On ' Specifies Till conditions for
!
Sw(2) = On !

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

GoSub...Return

GoSub...Return

GoSub transfers program control to a subroutine. Once the subroutine is complete, program @
control returns back to the line following the GoSub instruction which initiated the subroutine.

Syntax
GoSub { /abel}

{ label:}
statements
Return

Parameters

label When the user specifies a label, the program execution will jump to the line on
which this label resides. The label can be up to 32 characters in length.
However, the first character must be an alphabet character (not numeric).

Description

The GoSub instruction causes program control to branch to the user specified statement label. The
program then executes the statement on that line and continues execution through subsequent line
numbers until a Return instruction is encountered. The Return instruction then causes program control
to transfer back to the line which immediately follows the line which initiated the GoSub in the first
place. (i.e. the GoSub instruction causes the execution of a subroutine and then execution returns to
the statement following the GoSub instruction.) Be sure to always end each subroutine with Return.
Doing so directs program execution to return to the line following the GoSub instruction.

Potential Errors

Branching to Non-Existent Statement

If the GoSub instruction attempts to branch control to a non-existent label then an Error 3108 will be
issued.

Return Found Without GoSub

A Return instruction is used to "return" from a subroutine back to the original program which issued
the GoSub instruction. If a Return instruction is encountered without a GoSub having first been
issued then an Error 2383 will occur. A stand alone Return instruction has no meaning because the
system doesn't know where to Return to.

See Also
GoTo, OnErr, Return

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 151

GoSub...Return

GoSub Statement Example
The following example shows a simple function which uses a GoSub instruction to branch to a label
and execute some |I/O instructions then return.

Function main
Integer varl, var2

GoSub checkio 'GoSub using Label

On 1
On 2
Exit Function
checkio: 'Subroutine starts here
varl = In(0)
var2 = In(1)
If varl = 1 And var2 = 1 Then
On 1
Else
Ooff 1
EndIf
Return 'Subroutine ends here
Fend

152 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

GoTo Statement

GoTo Statement

The GoTo instruction causes program control to branch unconditionally to a designated @
statement label.

Syntax
GoTo {/abel}

Parameters
label Program execution will jump to the line on which the label resides. The label can
be up to 32 characters. However, the first character must be an alphabetic
character (not numeric).
Description

The GoTo instruction causes program control to branch to the user specified label. The program then
executes the statement on that line and continues execution from that line on. GoTo is most
commonly used for jumping to an exit label because of an error.

Notes

Using Too Many GoTo's

Please be careful with the GoTo instruction since using too many GoTo's in a program can make the
program difficult to understand. The general rule is to try to use as few GoTo instructions as possible.
Some GoTo's are almost always necessary. However, jumping all over the source code through
using too many GoTo statements is an easy way to cause problems.

See Also
GoSub, OnErr

GoTo Statement Example
The following example shows a simple function which uses a GoTo instruction to branch to a line label.

Function main

If Sw(l) = Off Then
GoTo mainAbort
EndIf
Print "Input 1 was On, continuing cycle"

Exit Function
mainAbort:

Print "Input 1 was OFF, cycle aborted!"
Fend

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 153

Halt Statement

Halt Statement

Temporarily suspends execution of a specified task. @

Syntax
Halt taskidentifier

Parameters
taskldentifier Task name or integer expression representing the task number.
A task name is the function name used in an Xqt statement or a function started
from the Run window or Operator window. If an integer expression is used, the
range is from 1 to 16 for normal tasks and from 257 to 261 for trap tasks.
Description

Halt temporarily suspends the task being executed as specified by the task name or number.

To continue the task where it was left off, use Resume. To stop execution of the task completely, use
Quit. To display the task status, click the Task Manager Icon on the EPSON RC+ Toolbar to run the
Task manager.

Halt also pauses the task when the specified task is NoPause task or NoEmgAbort task (special task
using NoPause or NoEmgAbort at Xqt).

See Also
Quit, Resume, Xqt

Halt Statement Example

The example below shows a function named "flicker" that is started by Xaqt, then is temporarily
stopped by Halt and continued again by Resume.

Function main
Xgt flicker 'Execute flicker function

Do

Wait 3 'Execute task flicker for 3 seconds
Halt flicker

Wait 3 'Halt task flicker for 3 seconds
Resume flicker

Loop
Fend

Function flicker
Do
On 1
Wait 0.2
Off 1
Wait 0.2
Loop
Fend

154 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Hand Statement

Hand Statement
Sets the hand orientation of a point. @

Syntax
(1) Hand point, [Lefty | Righty]
(2) Hand
Parameters
point Pnumber or P(expr) or point label.

Lefty | Righty =~ Hand orientation.

Return Values

When both parameters are omitted, the hand orientation is displayed for the current robot position.
If Lefty | Righty is ommited, the hand orientation for the specified point is displayed.

See Also
Elbow, Hand Function, J4Flag, J6Flag, Wrist, J1Flag, J2Flag

Hand Statement Example

Hand PO, Lefty
Hand pick, Righty
Hand P (myPoint), myHand

Pl = -364.474, 120.952, 469.384, 72.414, 1.125, -79.991

Hand P1, Righty
Go P1

Hand P11, Lefty
Go P1

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 155

Hand Function

Hand Function

Returns the hand orientation of a point. @

Syntax
Hand [(point)]

Parameters
point Optional. Point expression. If point is omitted, then the hand orientation of the current
robot position is returned.

Return Values
1 Righty (/R)
2 Lefty (/L)

See Also
Elbow, Wrist, J4Flag, J6Flag, J1Flag, J2Flag

Hand Function Example

Print Hand (pick)
Print Hand (P1)
Print Hand

Print Hand (Pl + P2)

156 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Here Statement

Here Statement

Teach a robot point at the current position. @

Syntax
Here point

Parameters
point Pnumber or P(expr) or point label.

See Also
Here Function

Here Statement Example

Here P1
Here pick

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 157

Here Function

Returns current robot position as a point. @

Syntax
Here

Return Values
A point representing the current robot position.

Description
Use Here to retrieve the current position of the current manipulator.

See Also
Here Statement

Here Function Example

P1 = Here

158 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Hex$ Function

Hex$ Function
Returns a string representing a specified number in hexadecimal format. @

Syntax
Hex$(number)
Parameters
number Integer expression.

Return Values
Returns a string containing the ASCII representation of the number in hexadecimal format.

Description

Hex$ returns a string representing the specified number in hexadecimal format. Each character is
from 0-9 or A-F. HexS$ is especially useful for examining the results of the Stat function.

See Also
Str$, Stat, Val

Hex$ Function Example

> print hex$ (stat (0))
AQ0000

> print hex$ (255)

FF

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 159

Home Statement

Home Statement
Moves the robot arm to the user defined home position. @

Syntax
Home

Description

Executes low speed Point to Point motion to the Home (standby) position specified by HomeSet, in
the homing order defined by Hordr.

Normally, for SCARA robots (including RS series), the Z joint (J3) returns first to the HomeSet position,

then the J1, J2 and J4 joints simultaneously return to their respective HomeSet coordinate positions.
The Hordr instruction can change this order of the axes returning to their home positions.

Note

Home Status Output:
When the robot is in its Home position, the controller's system Home output is turned ON.

Potential Errors

Attempting to Home without HomeSet Values Defined

Attempting to Home the robot without setting the HomeSet values will result in an Error 143 being
issued.

See Also
HomeClr, HomeDef, HomeSet, Hordr

Home Example
The Home instruction can be used in a program such as this:

Function InitRobot
Reset
If Motor = Off Then
Motor On
EndIf
Home
Fend

Or it can be issued from the Command window like this:

> home
>

160 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

HomeClr Function

HomeClr Function

Clears the home position definition. @

Syntax
HomeClir

Description

Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

See Also
HomeDef, HomeSet

HomeClr Function Example
This example uses the HomeClr function in a program:
Function ClearHome
If HomeDef = True Then
HomeClr

EndIf
Fend

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 161

HomeDef Function

HomeDef Function

Returns whether home position has been defined or not. @

Syntax
HomeDef

Return Values
True if home position has been defined, otherwise False.

See Also
HomeClr, HomeSet

HomeDef Function Example
This example uses the HomeDef function in a program:

Function DisplayHomeSet
Integer i

If HomeDef = False Then
Print "Home is not defined"

Else
Print "Home values:"
For i = 1 To 4

Print "J", i, " = ", HomeSet (i)

Next 1

EndIf

Fend

162 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

HomeSet Statement

HomeSet Statement
Specifies and displays the Home position. @

Syntax

(1) HomeSet j1Pulses, j2Pulses, j3Pulses, j4Pulses, [j5Pulses], [j6Pulses]
(2) HomeSet

Parameters
Jj1Pulses The home position encoder pulse value for joint 1.

j2Pulses The home position encoder pulse value for joint 2.
Jj3Pulses The home position encoder pulse value for joint 3.
Jj4Pulses The home position encoder pulse value for joint 4.
Jj5Pulses Optional for 6-axis robots. The home position encoder pulse value for joint 5.
Jj6Pulses Optional for 6-axis robots. The home position encoder pulse value for joint 6.

Return Values
Displays the pulse values defined for the current Home position when parameters are omitted.

Description

Allows the user to define a new home (standby) position by specifying the encoder pulse values for
each of the robot joints.

Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

Potential Errors

Attempting to Home without HomeSet Values Defined:
Attempting to Home the robot without setting the HomeSet values will result in an Error 2228 being
issued.

Attempting to Display HomeSet Values without HomeSet Values Defined:

Attempting to display home position pulse values without HomeSet values defined causes an Error
2228.

See Also
Home, HomeClr, HomeDef, Hordr, Pls

HomeSet Example
The following examples are done from the command window:

> homeset 0,0,0,0 'Set Home position at 0,0,0,0
> homeset

0 O

0 O
> home 'Robot homes to 0,0,0,0 position

Using the PlIs function, specify the current position of the arm as the Home position.

> homeset Pls (1), Pls(2), Pls(3), Pls(4)

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 163

HomeSet Function

HomeSet Function

Returns pulse values of the home position for the specified joint. @

Syntax
HomeSet(jointNumber)

Parameters
jointNumber Integer expression representing the joint number to retrieve the HomeSet value for.

Return Values

Returns pulse value of joint home position. When jointNumber is 0, returns 1 when HomeSet has
been set or 0 if not.

See Also
HomeSet Statement

HomeSet Function Example
This example uses the HomeSet function in a program:

Function DisplayHomeSet

Integer i

If HomeSet (0) = 0 Then
Print "HomeSet is not defined"
Else

Print "HomeSet values:"
For i = 1 To 4
Print "J", i, " = ", HomeSet (i)
Next i
EndIf
Fend

164 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Hordr Statement

Hordr Statement
Specifies or displays the order of the axes returning to their Home positions. @

Syntax
(1) Hordr step1, step2, step3, step4, [stepb] ,[stepb]
(2) Hordr
Parameters
step1 Bit pattern that defines which joints should home during the 1st step of the homing
process.
step2 Bit pattern that defines which joints should home during the 2nd step of the homing
process.
step3 Bit pattern that defines which joints should home during the 3rd step of the homing
process.
step4 Bit pattern that defines which joints should home during the 4th step of the homing
process.
stepb For 6 axis robots. Bit pattern that defines which joints should home during the 5th step of
the homing process.
step6 For 6 axis robots. Bit pattern that defines which joints should home during the 6th step of

the homing process.

Return Values
Displays current Home Order settings when parameters are omitted.

Description

Hordr specifies joint motion order for the Home command. (i.e. Defines which joint will home 1st,
which joint will home 2nd, 3rd, etc.)

The purpose of the Hordr instruction is to allow the user to change the homing order. The homing
order is broken into 4 or 6 separate steps, depending on robot type. The user then uses Hordr to
define the specific joints which will move to the Home position during each step. It is important to
realize that more than one joint can be defined to move to the Home position during a single step.
This means that all joints can potentially be homed at the same time. For SCARA robots (including
RS series, 4 axis robots), it is recommended that the Z joint normally be defined to move to the Home
position first (in Step 1) and then allow the other joints to follow in subsequent steps.

The Hordr instruction expects that a bit pattern be defined for each of the steps. Each joint is assigned
a specific bit. When the bit is set to 1 for a specific step, then the corresponding joint will home. When
the bit is cleared to 0, then the corresponding axis will not home during that step. The joint bit patterns
are assigned as follows:

Joint: 1 2 3 4 5 6
Bit Number: bit 0 bit 1 bit 2 bit 3 bit 4 bit 5
Binary Code: &B0001 &B0010 &B0100 &B1000 &B10000 &B100000

Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 165

Hordr Statement

See Also
Home, HomeSet

Hordr Statement Example
Following are some command window examples for SCARA robots (including RS series, 4 axis
robots):

This example defines the home order as J3 in the first step, J1 in second step, J2 in third step, and J4
in the fourth step. The order is specified with binary values.

>hordr &B0100, &B0001, &B0010, &B1000

This example defines the home order as J3 in the first step, then J1, J2 and J4 joints simultaneously in
the second step. The order is specified with decimal values.

shordr 4, 11, 0, O
This example displays the current home order in decimal numbers.
shordr

4, 11, 0, O
>

166 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Hordr Function

Hordr Function
Returns Hordr value for a specified step. @

Syntax
Hordr(stepNumber)

Parameters
stepNumber Integer expression representing which Hordr step to retrieve.

Return Values
Integer containing the Hordr value for the specified step.

See Also
Home, HomeSet

Hordr Function Example

Integer a
a = Hordr (1)

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 167

Hour Statement

Hour Statement
Displays the accumulated controller operating time.

Syntax
Hour

Description

Displays the amount of time the controller has been turned on and running SPEL. (Accumulated
Operating Time) Time is always displayed in units of hours.

See Also
Time

Hour Example
The following example is done from the Command window:

> hour
2560
>

168 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Hour Function

Returns the accumulated controller operating time. @

Syntax
Hour

Return Values
Returns accumulated operating time of the controller (real number, in hours).

See Also
Time

Hour Function Example

Print "Number of controller operating hours: ", Hour

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 169

If...Then...Else...EndIf Statement

If...Then...Else...EndIlf Statement

Executes instructions based on a specified condition. @

Syntax

(1) If condition Then
stmtT1

[Elself condition Then]
stmtT1

[Else]
stmtF1
EndIf

(2) If condition Then stmtT1[; stmtT2...] [Else stmtF1 [; stmtF2...]]

Parameters

condition Any valid test condition which returns a True (any number besides 0) or False result
(returned as a 0). (See sample conditions below)

stmtT1 Executed when the condition is True. (Multiple statements may be put here in a blocked
If...Then...Else style.)
stmtF1 Executed when the condition is False. (Multiple statements may be put here in a blocked

If...Then...Else style.)

Description

(1) If..Then...Else executes stmtT1, etc. when the conditional statement is True. If the condition is
False then stmtF1, etc. are executed. The Else portion of the If...Then...Else instruction is optional.
If you omit the Else statement and the conditional statement is False, the statement following the
EndIf statement will be executed. For blocked If...Then...Else statements the EndIf statement is
required to close the block regardless of whether an Else is used or not.

(2) If...Then...Else can also be used in a non blocked fashion. This allows all statements for the
If...Then...Else to be put on the same line. Please note that when using If...Then...Else in a non
blocked fashion, the EndIf statement is not required. If the If condition specified in this line is
satisfied (True), the statements between the Then and Else are executed. If the condition is not
satisfied (False), the statements following Else are executed. The Else section of the
If...Then...Else is not required. If there is no Else keyword then control passes on to the next
statement in the program if the If condition is False.

The logical output of the conditional statement is any number excluding 1 when it is True, and 0 when
it is false.

170 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

If...Then...Else...EndIf Statement

Notes

Sample Conditions:

a=b :aisequaltob

a<b :bis larger than a

a>=b :a is greater than or equal to b
a<>b :aisnotequaltob

a>b :b is smaller than a

a<=b :ais less than or equal to b

Logical operations And, Or and Xor may also be used.

See Also
Else, Select...Case, Do...Loop

If/Then/Else Statement Example

<Single Line If...Then...Else>

The following example shows a simple function which checks an input to determine whether to turn a

specific output on or off. This task could be a background 1/O task which runs continuously.

Function main
Do
If Sw(0) = 1 Then On 1 Else Off 1
Loop
Fend

<Blocked If...Then...Else>

The following example shows a simple function which checks a few inputs and prints the status of

these inputs

If Sw(0) = 1 Then Print "InputO ON" Else Print "InputO OFF"
1
If Sw(l) = 1 Then
If Sw(2) = 1 Then
Print "Inputl On and Input2 ON"
Else
Print "Inputl On and Input2 OFF"
EndIf
Else
If Sw(2) = 1 Then
Print "Inputl Off and Input2 ON"
Else
Print "Inputl Off and Input2 OFF"
EndIf
EndIf

<Other Syntax Examples>

If x = 10 And y = 3 Then GoTo 50
If test <= 10 Then Print "Test Failed"
If Sw(0) = 1 Or Sw(l) = 1 Then Print "Everything OK"

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

171

In Function

In Function

Returns the status of the specified Byte port. Each port contains 8 input channels. @

Syntax
In(byteportNumber)

Parameters
byteportNumber Integer number representing one eight bit port (one byte).

Return Values

Returns an integer value between 0-255. The return value is 8 bits, with each bit corresponding to 1
input channel.

Description

In provides the ability to look at the value of 8 input channels at the same time. The In instruction can
be used to store the 8 I/O channels status into a variable or it can be used with the Wait instruction to
Wait until a specific condition which involves more than 1 I/O channel is met.

Since 8 channels are checked at a time, the return values range from 0-255. Please review the chart
below to see how the integer return values correspond to individual input channels.

Input Channel Result (Using Byte port #0

Return Value 7 6 5 4 3 2 1 0
1 Off | Off | Off | Off | Off | Off | Off | On
5 Off | Off | Off | Off | Off | On | Off | On
15 Off | Off | Off | Off | On | On | On | On
255 On | On | On | On [On | On | On | On

Input Channel Result (Using Byte port #2
Return Value 23 | 22121120 19| 18 | 17 | 16

3 Off | Off | Off | Off | Off | Off | On | On
7 Off | Off | Off | Off | Off | On | On | On
32 Off | Off | On | Off | Off | Off | Off | Off
255 On | On | On [On [On | On | On | On

See Also
InBCD, MemIn, MemOff, MemOn, MemSw, Off, On, OpBCD, Oport, Out, Sw, Wait

172 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

In Function

In Function Example

For the example below lets assume that input channels 20, 21, 22, and 23 are all connected to
sensory devices such that the application should not start until each of these devices are returning an
On signal indicating everything is OK to start. The program example gets the 8 input channels status
of byte port 2 and makes sure that channels 20, 21, 22, and 23 are each On before proceeding. If
they are not On (i.e. returning a value of 1) an error message is given to the operator and the task is
stopped.

In the program, the variable "var1" is compared against the number 239 because in order for inputs 20,
21, 22, and 23 to all be On, then the result of In(2) will be 240 or larger. (We don't care about Inputs
16, 17, 18, and 19 in this case so any values between 240-255 will allow the program to proceed.)

Function main
Integer varl

varl = In(2) 'Get 8 input channels status of byte port 2
If varl > 239 Then

Go P1

Go P2

'Execute other motion statements here
1
'

Else
Print "Error in initialization!"
Print "Sensory Inputs not ready for cycle start"
Print "Please check inputs 20,21,22, and 23 for"
Print "proper state for cycle start and then"
Print "start program again"

EndIf

Fend

We cannot set inputs from the command window but we can check them. For the examples shown
below, we will assume that the Input channels 1, 5, and 15 are On. All other inputs are Off.

> print In(0)
34

> print In(1)
128

> print In(2)
0

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 173

INBCD Function

INBCD Function

Returns the input status of 8 inputs using BCD format. (Binary Coded Decimal) @

Syntax
InBCD(portNumber)

Parameters
portNumber Integer number representing one eight bit port (one byte).

Return Values
Returns as a Binary Coded Decimal (0-9), the input status of the input port (0-99).

Description

InBCD simultaneously reads 8 input lines using the BCD format. The portNumber parameter for the
INBCD instruction defines which group of 8 inputs to read where portNumber = 0 means inputs 0-7,
portNumber = 1 means inputs 8-15, etc.

The resulting value of the 8 inputs is returned in BCD format. The return value may have 1 or 2 digits
between 0 and 99. The 1st digit (or 10's digit) corresponds to the upper 4 outputs of the group of 8
outputs selected by portNumber. The 2nd digit (or 1's digit) corresponds to the lower 4 outputs of the
group of 8 outputs selected by portNumber.

Since valid entries in BCD format range from 0-9 for each digit, every 1/0O combination cannot be met.
The table below shows some of the possible I/O combinations and their associated return values
assuming that portNumber is 0.

Input Settings (Input number)
6

Return Value 7 5 4 3 2 1 0
01 Off Off Off Off Off Off Off On
02 Off Off Off Off Off Off On Off
03 Off Off Off Off Off Off On On
08 Off Off Off Off On Off Off Off
09 Off Off Off Off On Off Off On
10 Off Off Off On Off Off Off Off
11 Off Off Off On Off Off Off On
99 On Off Off On On Off Off On

Notice that the Binary Coded Decimal format only allows decimal values to be specified. This means
that through using Binary Coded Decimal format it is impossible to retrieve a valid value if all inputs for
a specific port are turned on at the same time when using the InBCD instruction. The largest value
possible to be returned by InBCD is 99. In the table above it is easy to see that when 99 is the return
value for INBCD, all inputs are not on. In the case of a return value of 99, inputs 0, 3, 4, and 7 are On
and all the others are Off.

INBCD function cannot be used for the Wait command or wait condition of Till, Find, Sense.

174 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

InBCD Function

Notes

Difference between InBCD and In

The InBCD and In instructions are very similar in the SPEL" language. However, there is one major
difference between the two. This difference is shown below:
- The InBCD instruction uses the Binary Coded Decimal format for specifying the return value
format for the 8 inputs. Since Binary Coded Decimal format precludes the values of &HA, &HB,
&HC, &HD, &HE or &HF from being used, all combinations for the 8 inputs cannot be satisfied.
- The In instruction works very similarly to the InBCD instruction except that In allows the return
value for all 8 inputs to be used. (i.e. 0-255 vs. 0-99 for INBCD) This allows all possible
combinations for the 8 bit input groups to be read.

See Also
In, MemOff, MemOn, MemOut, MemSw, Off, On, OpBCD, Oport, Out, Sw, Wait

InBCD Example
Some simple examples from the Command window are as follows:

Assume that inputs 0, 4, 10, 16, 17, and 18 are all On (The rest of the inputs are Off).

> Print InBCD(0)
11

> Print InBCD(1)
04

> Print InBCD(2)
07

>

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 175

Inertia Statement

Inertia Statement
Specifies load inertia and eccentricity for current robot.

Syntax

Inertia [/oadlnertia], [eccentricity]
Inertia

Parameters
loadinertia Optional. Real expression that specifies total moment of inertia in kgm?around the center
of the end effector joint, including end effector and part.

eccentricity Optional. Real expression that specifies eccentricity in mm around the center of the end
effector joint, including end effector and part.

Return Values
When parameters are omitted, the current Inertia parameters are displayed.

Description

Use the Inertia statement to specify the total moment of inertia for the load on the end effector joint.
This allows the system to more accurately compensate acceleration, deceleration, and servo gains for
end effector joint. You can also specify the distance from the center of end effector joint to the center
of gravity of the end effector and part using the eccentricity parameter.

Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may

shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

See Also
Inertia Function

Inertia Statement Example

Inertia 0.02, 1

176 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Inertia Function

Inertia Function
Returns inertia parameter value. @

Syntax
Inertia(paramNumber)

Parameters
paramNumber Integer expression which can have the following values:
0: Causes function to return 1 if robot supports inertia parameters or 0 if not.
1: Causes function to return load inertia in kgm2.
2: Causes function to return eccentricity in mm.

Return Values
Real value of the specified setting.

See Also
Inertia Statement

Inertia Function Example

Real loadInertia, eccentricity

loadInertia = Inertia(1l)
eccentricity = Inertia(2)

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 177

InPos Function

InPos Function

Returns the position status of the specified robot. @

Syntax
InPos

Return Values
True if position has been completed successfully, otherwise False.

See Also
CurPos, FindPos, WaitPos

InPos Function Example

Function main

PO = XY (0, -100, 0O, O0)
Pl = XY (0, 100, 0, 0)

Xgt MonitorPosition
Do

Jump PO

Wait .5

Jump P1

Wait .5
Loop

Fend

Function MonitorPosgition
Boolean oldInPos, pos
Do

Pos = InPos
If pos <> oldInPos Then

Print "InPos = ", pos
EndIf
0ldInPos = pos
Loop

Fend

178 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Input Statement

Input Statement
Allows numeric data to be received from the keyboard and stored in a variable(s). @

Syntax
Input varName [, varName, varName,...]

Parameters
varName Variable name. Multiple variables can be used with the Input command as long
as they are separated by commas.
Description

Input receives numeric data from the display device and assigns the data to the variable(s) used with
the Input instruction.

When executing the Input instruction, a (?) prompt appears at the display device. After inputting data
press the return key (Enter) on the keyboard.

Notes

Rules for Numeric Input

When inputting numeric values and non-numeric data is found in the input other than the delimiter
(comma), the Input instruction discards the non-numeric data and all data following that non-numeric
data.

Rules for String Input
When inputting strings, numeric and alpha characters are permitted as data.

Other Rules for the Input Instruction
- When more than one variable is specified in the instruction, the numeric data input intended for each

variable has to be separated by a comma (",") character.
- Numeric variable names and string variable names are allowed. However, the input data type must

match the variable type.

Potential Errors

Number of variables and input data differ
For multiple variables, the number of input data must match the number of Input variable names.

When the number of the variables specified in the instruction is different from the number of numeric
data received from the keyboard, an Error 2505 will occur.

See Also
Input #, Line Input, Line Input #, Print, String

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 179

Input Statement

Input Statement Example
This is a simple program example using Input statement.

180

Function InputNumbers
Integer A, B, C

Print "Please enter

Input A

Print "Please enter

Input B, C

Print "A = ", A

Print "B = ", B, "C
Fend

A sample session of the
(Use the Run menu or F5

Please enter 1 number

?-10000

1 number"

2 numbers separated by a comma"

above program running is shown below:
key to start the program)

Please enter 2 numbers separated by a comma

?25.1, -99

-10000
25.1 -99

B=25.1C¢C

>

= -99

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Input # Statement

Input # Statement
Allows string or numeric data to be received from a communications port or a device @

and stored in a variable(s).

Syntax
Input PortNum, varName [, varName, varName,...]

Parameters
PortNum The communications handle or the device ID. Communication handles can be
specified in OpenCom (RS232) and OpenNet (TCP/IP) statements.
Device ID integers are as follows.
21 RC+
23 OP
24 TP
varName Variable name to receive the data.
Description

The Input # instruction receives numeric or string data from the device specified by PortNum, and
assigns the data to the variable(s).

Notes

Rules for Numeric Input

When inputting numeric values and non-numeric data is found in the input other than the delimiter
(comma), the Input instruction discards the non-numeric data and all data following that non-numeric
data.

Rules for String Input
When inputting strings, numeric and alpha characters are permitted as data.

Other Rules for the Input Instruction
- When more than one variable is specified in the instruction, the numeric data input intended for each

variable has to be separated by a comma (",") character.
- Numeric variable names and string variable names are allowed. However, the input data type must

match the variable type.

Potential Errors

Number of variables and input data differ

When the number of the variables specified in the instruction is different from the number of numeric
data received from the device, an Error 2505 will occur.

See Also
Input, Line Input, Line Input #

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 181

Input # Statement

Input # Statement Example
This is a simple program example using Input # statement.

Function GetData
Integer A
String BS

OpenCom #1
Print #1, "Send"
Input #1, A 'Accept numeric data from port #1
Input #1, B$S 'Get string data from port #1
CloseCom #1

Fend

182 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

InReal Function

InReal Function

Returns the input data of 2 words (32 bits) as the floating-point data (IEEE754 compliant) @
of 32 bits.

Syntax
InReal(WordPortNumber)

Parameter
WordPortNumber Integer expression representing the I/O Input Word.

Return Values
Returns the input port status in Real type number.

Description

From the input word port specified by the word port number, retrieve the 2 input word values as
IEEE754 Real type value. Input word label can be used for the word port number parameter.
InReal Function cannot be used for the Wait command, or the condition of Till, Find, Sense.

See Also
In, InW, InBCD, Out, OutW, OpBCD, OutReal

InW Function Example

Real realVal

realVal = InReal (0)

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 183

InsideBox Function

InsideBox Function

Returns the check status of the approach check area. @

Syntax
InsideBox(AreaNum)

Parameters

AreaNum Integer expression from 1 to 15 representing which approach check area to
return status for.

Return Values
True if the robot end effector approaches the specified approach check area, otherwise False.

See Also
Box, BoxClr, BoxDef, InsidePlane

InsideBox Function Example

This is an example to start up different task from Main function and display the approach check status.

Function Main
Xgt PrintInsideBox

Fend

Function PrintInsideBox

Do
Wait InsideBox (1) = True
Print “Inside Boxl”
Wait InsideBox (1) = False
Print “Outside Box1”
Loop
Fend

This is a program example to parallel process the motion command. 1/O turns ON when the robot
approaches the specific approach check area at running.

Function Main
Motor On
Power High
Speed 30; Accel 30, 30

Go P1 !DO; Wait InsideBox (1) = True; On 1!

Fend

Notes

Do not exclude DO in this program.

184 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

InsidePlane Function

InsidePlane Function

Returns the check status of the approach check plane. @

Syntax
InsidePlane(PlaneNum)

Parameters

PlaneNum Integer expression from 1 to 15 representing which approach check plane to
return status for.

Return Values
True if the robot end effector approaches the specified approach check plane, otherwise False.

See Also
InsideBox, Plane, PlaneClr, PlaneDef

InsidePlane Function Example

This is an example to start up different task from Main function and display the approach check status.

Function Main
Xgt PrintInsidePlane

Fend

Function PrintInsidePlane
Do
Wait InsidePlane(l) = True
Print “Inside Planel”
Wait InsidePlane(l) = False
Print “Outside Planel”
Loop
Fend

This is a program example to parallel process the motion command. 1/O turns ON when the robot
comes through the specific approach check plane at running.

Function Main
Motor On

Power High
Speed 30; Accel 30, 30

Go P1 !DO; Wait InsidePlane(l) = True; On 1!

Fend

Notes

Do not exclude DO in this program.

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 185

InStr Function

InStr Function

Returns position of one string within another. @

Syntax
InStr(string, searchString)

Parameters
string String expression to be searched.
searchString String expression to be searched for within string.

Return Values
Returns the position of the search string if the location is found, otherwise -1.

See Also
Mid$

Instr Function Example

Integer pos

pos = InStr("abc", "b")

186 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Int Function

Int Function

Converts a Real number to Integer. Returns the largest integer that is less than or equal to the @
specified value.

Syntax
Int(number)

Parameters
number A real number expression.

Return Values
Returns an Integer value of the real number used in number.

Description

Int(number) takes the value of number and returns the largest integer that is less than or equal to
number.

Note

For Values Less than 1 (Negative Numbers)

If the parameter number has a value of less than 1 then the return value have a larger absolute value
than number. (For example, if number = -1.35 then -2 will be returned.)

See Also
Abs, Atan, Atan2, Cos, Mod, Not, Sgn, Sin, Sqr, Str$, Tan, Val

Int Function Example

Some simple examples from the Command window are as follows:
Print Int(5.1)
Print Int(0.2)

Print Int(-5.1)
6

vV IV OV ulv

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 187

Integer Statement

Integer Statement

Declares variables of type Integer. (2 byte whole number). @

Syntax
Integer varName [(subscripts)] [, varName [(subscripts)]...]

Parameters
varName Variable name which the user wants to declare as type integer.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared.
The subscripts syntax is as follows
(ubound1, [ubound?2], [ubound3])
ubound1, ubound2, ubound3 each specify the maximum upper bound for the
associated dimension.
The elements in each dimension of an array are numbered from 0 to the upper
bound value.
The total available number of array elements for local and global preserve
variables is 1000.
The total available number of array elements for global and module variables is
10000.
To calculate the total elements used in an array, use the following formula. (If a
dimension is not used, substitute 0 for the ubound value.)
total elements = (ubound1 + 1) * (ubound2 + 1) * (ubound3 + 1)
Description

Integer is used to declare variables as type integer. Variables of type integer can contain whole
numbers with values from -32768 to 32767. Local variables should be declared at the top of a function.
Global and module variables must be declared outside of functions.

See Also
Boolean, Byte, Double, Global, Long, Real, String

Integer Statement Example
The following example shows a simple program that declares some variables using Integer.

Function inttest

Integer A(10) 'Single dimension array of integer
Integer B(10, 10) 'Two dimension array of integer
Integer C(5, 5, 5) 'Three dimension array of integer

Integer varl, arrayvar(10)
Integer i
Print "Please enter an Integer Number"
Input wvarl
Print "The Integer variable varl = ", varl
For i = 1 To 5
Print "Please enter an Integer Number"
Input arrayvar (i)
Print "Value Entered was ", arrayvar(i)
Next I
Fend

188 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

InW Function

INW Function

Returns the status of the specified input word port. Each word port contains 16 input bits. @

Syntax
InW(WordPortNum)

Parameters
WordPortNum Integer expression representing the I/O Input Word.

Return Values
Returns the current status of inputs (long integers from 0 to 65535).

See Also
In, Out, OutW

InW Function Example

Long word0

word0 = InWw(0)

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 189

IOLabel$ Function

IOLabel$ Function

Returns the 1/0O label for a specified input or output bit, byte, or word. @

Syntax
I0Label$(/OType, IOWidth, portNumber)

Parameters
10Type Integer expression representing the type of 1/0.
0 - Input
1 - Output
2 - Memory

1OWidth Integer expression representing the width of the port: 1(bit), 8 (byte), or 16 (word).
portNumber Integer expression representing the bit, byte, or word port number to return the label for.

Return Values
String containing the label.

See Also
PLabel$, IONumber
IOLabel$ Function Example

Integer i
For i = 0 To 15

Print "Input ", i, ": ", IOLabel$ (0, 1, i)
Next i

190 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

IONumber Function

IONumber Function

Returns the 1/0 number of the specified I/O label. @

Syntax
IONumber(/Olabel)

Parameters
IOlabel String expression that specifies the standard I1/O or memory 1/O label.

Return Values

Returns the 1/0O port number (bit, byte, word) of the specified 1/O label. If there is no such I/O label, an
error will be generated.

See Also
IOLabel$

IONumber Function Example

Integer IObit
IObit = IONumber ("myIO")

IObit = IONUmber ("Station" + Str$(station) + "InCycle")

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 191

J1Flag Statement

J1Flag Statement
Specifies the J1Flag attribute of a point. @

Syntax
(1) J1Flag point, [value]
(2) J1Flag
Parameters
point Pnumber or P(expr) or point label.
value Optional. Integer expression.

0 (/J1F0) J1 range is -90 to +270 degrees
1 (/JJ1F1) J1 range is from -270 to -90 or +270 to +450 degrees

Return Values

The J1Flag attribute specifies the range of values for joint 1 for one point. If value is ommited, the
J1Flag value for the specified point is displayed. When both parameters are omitted, the J1Flag value
is displayed for the current robot position.

See Also
Hand, J1Flag Function, J2Flag

J1Flag Statement Example

JlFlag PO, 1
JlFlag P (mypoint), O

192 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

J1Flag Function

J1Flag Function

Returns the J1Flag attribute of a point.

Syntax
J1Flag [(point)]

Parameters

point Optional. Point expression.

robot position is returned.

Return Values

0 MI1FO
1 /J1F1
See Also

Hand, J1Flag Statement, J2Flag

J1Flag Function Example

Print JlFlag(pick)

Print JlFlag(P1)

Print JlFlag

Print JlFlag(Pallet (1, 1))

[F)

If point is omitted, then the J1Flag setting of the current

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 193

J2Flag Statement

J2Flag Statement
Sets the J2Flag attribute of a point. @

Syntax
(1) J2Flag point, [value]
(2) J2Flag
Parameters
point Pnumber or P(expr) or point label.
value Optional. Integer expression.

0 (/J2F0) J2 range is -180 to +180 degrees
1 (/J2F1) J2 range is from -360 to -180 or +180 to +360 degrees

Return Values

The J2Flag attribute specifies the range of values for joint 2 for one point. If value is ommited, the
J2Flag value for the specified point is displayed. When both parameters are omitted, the J2Flag value
is displayed for the current robot position.

See Also
Hand, J1Flag, J2Flag Function

J2Flag Statement Example

J2Flag PO, 1
J2Flag P (mypoint), 0

194 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

J2Flag Function

J2Flag Function

Returns the J2Flag attribute of a point.

Syntax
J2Flag [(point)]

Parameters

point Optional. Point expression.

robot position is returned.

Return Values

0 /J2F0
1 /J2F1
See Also

Hand, J1Flag, J2Flag Statement

J2Flag Function Example

Print J2Flag(pick)
Print J2Flag(P1)
Print J2Flag

Print J2Flag (Pl + P2)

LF)

If point is omitted, then the J2Flag setting of the current

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 195

J4Flag Statement

J4Flag Statement
Sets the J4Flag attribute of a point. @

Syntax
(1) J4Flag point, [value]
(2) J4Flag
Parameters
point Pnumber or P(expr) or point label.
value Optional. Integer expression.

0 (/J4F0) J4 range is -180 to +180 degrees
1 (/JJ4F1) J4 range is from -360 to -180 or +180 to +360 degrees

Return Values

The J4Flag attribute specifies the range of values for joint 4 for one point. If value is ommited, the
J4Flag value for the specified point is displayed. When both parameters are omitted, the J4Flag value
is displayed for the current robot position.

See Also
Elbow, Hand, J4Flag Function, J6Flag, Wrist

J4Flag Statement Example

J4Flag PO, 1
J4Flag P (mypoint), O

196 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

J4Flag Function

J4Flag Function

Returns the J4Flag attribute of a point.

Syntax
J4Flag [(point)]

Parameters

point Optional. Point expression.

robot position is returned.

Return Values

0 /J4FO0
1 /J4F1
See Also

LF)

If point is omitted, then the J4Flag setting of the current

Elbow, Hand, Wrist, J4Flag Statement, J6Flag

J4Flag Function Example

Print J4Flag(pick)

Print J4Flag(P1l)

Print J4Flag

Print J4Flag(Pallet (1, 1))

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 197

J6Flag Statement

J6Flag Statement
Sets the J6Flag attribute of a point. @

Syntax
(1) J6Flag point, [value]
(2) J6Flag
Parameters
point Pnumber or P(expr) or point label.
value Integer expression. Range is 0 - 127 (/J6FO0 - /J6F127). J6 range for the specified point

is as follows:
(-180 * (value+1) < J6 <= 180 * value) and (180 * value < J6 <= 180 * (value+1))

Return Values

The J6Flag attribute specifies the range of values for joint 6 for one point. If value is ommited, the
J6Flag value for the specified point is displayed. When both parameters are omitted, the J6Flag value
is displayed for the current robot position.

See Also
Elbow, Hand, J4Flag, J6Flag Function, Wrist

J6Flag Statement Example

J6Flag PO, 1
J6Flag P (mypoint), O

198 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

J6Flag Function

J6Flag Function

Returns the J6Flag attribute of a point. @

Syntax
J6Flag [(point)]

Parameters

point Optional. Point expression. If point is omitted, then the J6Flag setting of the current
robot position is returned.

Return Values
0-127 /J6FO - /J6F127

See Also
Elbow, Hand, Wrist, J4Flag, J6Flag Statement

J6Flag Function Example

Print J6Flag (pick)
Print J6Flag(P1l)
Print J6Flag

Print J6Flag (Pl + P2)

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 199

JA Function

JA Function

Returns a robot point specified in joint angles. @

Syntax
JA(1, j2, j3, j4, /8], [j6])

Parameters
j1-j6 Real expressions representing joint angles.

Return Values
A robot point whose location is determined by the specified joint angles.

Description
Use JA to specify a robot point using joint angles.

When the points returned from JA function specify a singularity of the robot, the joint angles of the robot
do not always agree with the joint angles supplied to the JA function as arguments during the execution
of a motion command for the points. To operate the robot using the joint angles specified for the JA
function, avoid a singularity of the robot.

For example:

> goja(0,0,0,90,0,-90)

> where

WORLD: X: 0.000 mm Y: 655.000 mm Z: 675.000 mm U: 0.000 deg V: -90.000 deg W: -90.000 deg
JOINT: 1: 0.000deg2: 0.000deg3: 0.000deg4: 0.000deg5: 0.000deg6: 0.000deg

PULSE: 1: 0 pls 2: 0 pls 3: 0 pls 4: 0 pls 5: 0 pls 6: 0 pls

> go ja(0,0,0,90,0.001,-90)
> where

WORLD: X: -0.004 mm Y: 655.000 mm Z: 675.000 mm U: 0.000 deg V: -90.000 deg W: -89.999 deg
JOINT: 1: 0.000deg2: 0.000deg3: 0.000deg4: 90.000deg5: 0.001deg6: -90.000 deg
PULSE: 1: O pls 2: 0 pls 3: 0 pls 4: 2621440 pls 5: 29 pls 6: -1638400 pls

See Also
AgIToPIs, XY

JA Function Example
P10 = JA(60, 30, -50, 45)

Go JA (135, 90, -50, 90)
P3 = JA(O, 0, O, O, 0O, 0)

200 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Joint Statement

Joint Statement

Displays the current position for the robot in joint coordinates.

Syntax
Joint

See Also
Pulse, Where

Joint Statement Example

>joint
JOINT: 1: -6.905deg 2: 23.437 deg 3: -1.999 mm 4: -16.529 deg

>

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 201

JRange Statement

JRange Statement
Defines the permissible working range of the specified joint in pulses. @

Syntax
JRange jointNumber, lowerLimit, upperLmit

Parameters
jointNumber Integer expression between 1-6 representing the joint for which JRange will be
specified.
lowerLmit Long integer expression representing the encoder pulse count position for the lower

limit range of the specified joint.

upperLmit Long Integer expression representing the encoder pulse count position for the upper
limit range of the specified joint.

Description
Defines the permissible working range for the specified joint with upper and lower limits in encoder
pulse counts. JRange is similar to the Range command. However, the Range command requires
that all joint range limits be set while the JRange command can be used to set each joint working
limits individually thus reducing the number of parameters required. To confirm the defined working
range, use the Range command.

Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

Notes

Lower Limits Must Not Exceed Upper Limits:
The Lower limit defined in the JRange command must not exceed the Upper limit. A lower limit in
excess of the Upper limit will cause an error, making it impossible to execute a motion command.
Factors Which can Change JRange:

Once JRange values are set they remain in place until the user modifies the values either by the
Range or JRange commands. Turning controller power off will not change the JRange joint limit
values.

Maximum and Minimum Working Ranges:

Refer to the specifications in the Robot manual for maximum working ranges for each robot model
since these vary from model to model.

See Also
Range, JRange Function

JRange Statement Example
The following examples are done from the Command window:

> JRange 2, -6000, 7000 'Define the 2nd joint range

> JRange 1, 0, 7000 'Define the 1lst joint range

202 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

JRange Function

JRange Function

Returns the permissible working range of the specified joint in pulses. @

Syntax
JRange(jointNumber, paramNumber)

Parameters
JjointNumber Specifies reference joint number (integer from 1 - 6) by an expression or numeric
value.
paramNumber Integer expression containing one of two values:

1: Specifies lower limit value.
2: Specifies upper limit value.

Return Values
Range setting (integer value, pulses) of the specified joint.

See Also
Range, JRange Statement

JRange Function Example

Long i, oldRanges(3, 1)

For i = 0 To 3
oldRanges (i, 0)
oldRanges (i, 1)

Next i

JRange (i + 1, 1)
JRange (i + 1, 2)

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 203

JS Function

JS Function

Jump Sense detects whether the arm stopped prior to completing a Jump, Jump3, or Jump3CP @
instruction which used a Sense input or if the arm completed the move.

Syntax
JS

Return Values

Returns a True or a False.
True :When the arm was stopped prior to reaching its target destination because a Sense
Input condition was met JS returns a True.
False :When the arm completes the normal move and reaches the target destination as
defined in the Jump instruction JS returns a False.

Description
JS is used in conjunction with the Jump and Sense instructions. The purpose of the JS instruction is
to provide a status result as to whether an input condition (as defined by the Sense instruction) is met
during motion caused by the Jump instruction or not. When the input condition is met, JS returns a
True. When the input condition is not met and the arm reaches the target position, JS returns a False.

JS is simply a status check instruction and does not cause motion or specify which Input to check

during motion. The Jump instruction is used to initiate motion and the Sense instruction is used to
specify which Input (if any) to check during Jump initiated motion.

Note

JS Works only with the Most Recent Jump, Jump3, Jump3CP Instruction:

JS can only be used to check the most recent Jump instruction's input check (which is initiated by the
Sense instruction.) Once a 2nd Jump instruction is initiated, the JS instruction can only return the
status for the 2nd Jump instruction. The JS status for the first Jump is gone forever. So be sure to
always do any JS status check for Jump instructions immediately following the Jump instruction to be
checked.

See Also
JT, Jump, Jump3, Jump3CP, Sense

JS Function Example

Function SearchSensor As Boolean
Sense Sw(5) = On

Jump PO
Jump Pl Sense
If JS = TRUE Then
Print "Sensor was found"
SearchSensor = TRUE
EndIf
Fend

204 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

JT Function

JT Function

Returns the status of the most recent Jump, Jump3, or Jump3CP instruction for the current @
robot.

Syntax
JT

Return Values
JT returns a long with the following bits set or clear:

Bit 0 Set to 1 when rising motion has started or rising distance is 0.

Bit 1 Set to 1 when horizontal motion has started or horizontal distance is 0.

Bit 2 Set to 1 when descent motion has started or descent distance is 0.

Bit 16 Set to 1 when rising motion has completed or rising distance is 0.

Bit 17 Set to 1 when horizontal motion has completed or horizontal distance is 0.

Bit 18 Set to 1 when descent motion has completed or descent distance is 0.
Description

Use JT to determine the status of the most recent Jump command that was stopped before
completion by Sense, Till, abort, etc.

See Also
JS, Jump, Jump3, Jump3CP, Sense, Till

JT Function Example

Function SearchTill As Boolean
Till Sw(5) = On

Jump PO
Jump P1 Till
If JT And 4 Then
Print "Motion stopped during descent"
SearchTill = TRUE
EndIf
Fend

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 205

JTran Statement

JTran Statement

Perform a relative move of one joint. @

Syntax
JTran jointNumber, distance

Parameters
JointNumber Integer expression representing which joint to move.
distance Real expression representing the distance to move in degrees for rotational joints
or millimeters for linear joints.
Description

Use JTran to move one joint a specified distance from the current position.

See Also
Go, Jump, Move, Ptran

JTran Statement Example

JTran 1, 20

206 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Jump Statement

Jump Statement
Moves the arm from the current position to the specified destination point using @

point to point motion by first moving in a vertical direction up, then horizontally and then
finally vertically downward to arrive on the final destination point.

Syntax
Jump destination [CarchNumber] [LimZ zLimit] [CP] [searchExpr] [!...]]

Parameters
destination The target destination of the motion using a point expression.

archNumber Optional. The arch number (archNumber) specifies which Arch Table entry to use for
the Arch type motion caused by the Jump instruction. archNumber must always be
proceeded by the letter C. (Valid entries are C0-C7.)

zLimit Optional. This is a Z limit value which represents the maximum position the Z joint
will travel to during the Jump motion. This can be thought of as the Z Height Ceiling
for the Jump instruction. Any valid Z joint Coordinate value is acceptable.

CP Optional. Specifies continuous path motion.

searchExpr Optional. A Sense, Till or Find expression.
Sense | Till | Find
Sense Sw(expr) = {On | Off}
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

L..! Optional. Parallel Processing statements can be added to the Jump instruction to
cause /O and other commands to execute during motion.

Description

Jump moves the arm from the current position to destination using what is called Arch Motion. Jump
can be thought of as 3 motions in 1. For example, when the Arch table entry defined by archNumber is
7, the following 3 motions will occur.

1) The move begins with only Z-joint motion until it reaches the Z joint height calculated by the
Arch number used for the Jump command.

2) Next the arm moves horizontally (while still moving upward in Z) towards the target point
position until the upper Z Limit (defined by LimZ) is reached. Then the arm begins to move
downward in the Z direction (while continuing X, Y and U joint motion) until the final X, and Y
and U joint positions are reached.

3) The Jump instruction is then completed by moving the arm down with only Z-joint motion until
the target Z-joint position is reached.

The coordinates of destination (the target position for the move) must be taught previously before
executing the Jump instruction. The coordinates cannot be specified in the Jump instruction itself.
Acceleration and deceleration for the Jump is controlled by the Accel instruction. Speed for the move
is controlled by the Speed instruction.

archNumber Details

The Arch for the Jump instruction can be modified based on the archNumber value optionally
specified with the Jump instruction. This allows the user to define how much Z to move before
beginning the X, Y, and U joint motion. (This allows the user to move the arm up and out of the way of
parts, feeders and other objects before beginning horizontal motion.) Valid archNumber entries for the
Jump instruction are between C0-C7. The Arch table entries for C0-C6 are user definable with the
Arch instruction. However, C7 is a special Arch entry which always defines what is called Gate Motion.
Gate Motion means that the robot first moves Z all the way to the coordinate defined by LimZ before
beginning any X, Y, or U joint motion. Once the LimZ Z limit is reached, X, Y and U joint motion
begins. After the X, Y, and U joints each reaches its final destination position, then the Z joint can
begin moving downward towards the final Z joint coordinate position as defined by destination (the
target point). Gate Motion looks as follows:

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 207

Jump Statement

LIMZ

Origin Pt.

Destination Pt.
Pend

LimZ Details

LimZ zLimit specifies the upper Z coordinate value for the horizontal movement plane in the current
local coordinate system. The specified arch settings can cause the X, Y, and U joints to begin
movement before reaching LimZ, but LimZ is always the maximum Z height for the move. When the
LimZ optional parameter is omitted, the previous value specified by the LimZ instruction is used for the
horizontal movement plane definition.

It is important to note that the LimZ zLimit height limit specification is the Z value for the local robot
coordinate system. It is not the Z value for Arm or Tool. Therefore take the necessary precautions
when using tools or hands with different operating heights.

Sense Details

The Sense optional parameter allows the user to check for an input condition or memory 1/O condition
before beginning the final Z motion downward. If satisfied, this command completes with the robot
stopped above the target position where only Z motion is required to reach the target position. It is
important to note that the robot arm does not stop immediately upon sensing the Sense input modifier.

Check for a condition
\,_

> Command complete

Target ;;osilion

The JS or Stat commands can then be used to verify whether the Sense condition was satisfied and
the robot stopped prior to its target position or that the Sense condition was not satisfied and the robot
continued until stopping at its target position.

Till Details

The optional Till qualifier allows the user to specify a condition to cause the robot to decelerate to a
stop prior to completing the Jump. The condition specified is simply a check against one of the I/O
inputs or one of the memory I/O. This is accomplished through using either the Sw or MemSw function.
The user can check if the input is On or Off and cause the arm to decelerate and stop based on the
condition specified.

The Stat function can be used to verify whether the Till condition has been satisfied and this command

has been completed, or the Till condition has not been satisfied and the robot stopped at the target
position.

208 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Jump Statement

Notes

Jump cannot be executed for 6-axis robots
Use Jump3 or Jump3CP for 6-axis robots.

Jump Motion trajectory changes depending on motion and speed

Jump motion trajectory is comprised of vertical motion and horizontal motion. It is not a continuous
path trajectory. The actual Jump trajectory of arch motion is not determined by Arch parameters alone.
It also depends on motion and speed.

Always use care when optimizing Jump trajectory in your applications. Execute Jump with the desired
motion and speed to verify the actual trajectory.

When speed is lower, the trajectory will be lower. If Jump is executed with high speed to verify an
arch motion trajectory, the end effector may crash into an obstacle with lower speed.

In a Jump trajectory, the depart distance increases and the approach distance decreases when the
motion speed is set high. When the fall distance of the trajectory is shorter than the expected, lower
the speed and/or the deceleration, or change the fall distance to be larger.

Even if Jump commands with the same distance and speed are executed, the trajectory is affected by
motion of the robot arms. As a general example, for a SCARA robot the vertical upward distance
increases and the vertical downward distance decreases when the movement of the first arm is large.
When the vertical fall distance decreases and the trajectory is shorter than the expected, lower the
speed and/or the deceleration, or change the fall distance to be larger.

Omitting archNumber Parameter

If the archnum optional parameter is omitted, the default Arch entry for use with the Jump instruction is
C7. This will cause Gate Motion, as described above.

Difference between Jump and Jump3, Jump3CP

The Jump3 and Jump3CP instructions can be used for 6-axis robots. On the other hand the Jump
instruction cannot be used for 6-axis robots. For SCARA robots (including RS series), using the Jump
instruction shortens the joint motion time for depart and approach motion. The depart and approach
motions in Jump3 can be executed along the Z axis and in other directions.

Difference between Jump and Go

The Go instruction is similar to Jump in that they both cause Point to Point type motion, however there
are many differences. The most important difference is that the Go instruction simply causes Point to
Point motion where all joints start and stop at the same time (they are synchronized). Jump is different
since it causes vertical Z movement at the beginning and end of the move. Jump is ideal for pick and
place type applications.

Decelerating to a Stop With the Jump Instruction

The Jump instruction always causes the arm to decelerate to a stop prior to reaching the destination
point.

Proper Speed and Acceleration Instructions with Jump:

The Speed and Accel instructions are used to specify the speed and acceleration of the robot during
Jump motion. Pay close attention to the fact that Speed and Accel apply to point to point type motion
(Go, Jump, Etc.). while linear and circular interpolated motion instructions such as Move or Arc use
the SpeedS and AccelS instructions. For the Jump instruction, it is possible to separately specify
speeds and accelerations for Z joint upward motion, horizontal travel including U joint rotation, and Z
joint downward motion.

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 209

Jump Statement

Pa

ss function of Jump

When the CP parameter is specified for Jump with 0 downward motion, the Jump horizontal travel
does not decelerate to a stop but goes on smoothly to the next PTP motion.
When the CP parameter is specified for a PTP motion command right before a Jump with 0 upward
motion, the PTP motion does not decelerate to a stop but connects smoothly with the Jump horizontal
travel.
This is useful when you want to replace the horizontal travel of Jump (a PTP motion) with several PTP
motions. e
(Example) '
Go P1
Jump P2 :Z(-50) CO LimZ -50 CP
Go P3 :Z(0) CP |)
Jump P4 CO LimZ O Tt =

P4

P1

Potential Errors

LimZ Value Not High Enough

When the current arm position of the Z joint is higher than the value set for LimZ and a Jump
instruction is attempted, an Error 4005 will occur.

See Also

Accel, Arc, Arch, Go, JS, JT, LimZ, Point Expression, Pulse, Sense, Speed, Stat, Till

Jump Statement Example

210

The example shown below shows a simple point to point move between points PO and P1 and then
moves back to PO using the Jump instruction. Later in the program the arm moves using the Jump
instruction. If input #4 never goes high then the arm starts the approach motion and moves to P1. If
input #4 goes high then the arm does not execute the approach motion.

Function jumptest

Home

Go PO

Go P1

Sense Sw(4) = On

Jump PO LimZ -10

Jump P1 LimZ -10 Sense 'Check input #4
If Js(0) = 1 Then

Print "Input #4 came on during the move and"
Print "the robot stopped prior to arriving on"
Print "point P1."

Else
Print "The move to Pl completed successfully."
Print "Input #4 never came on during the move."

EndIf

Fend

> Jump P10+X50 CO LimZ-20 Sense !D50;0n 0;D80;0n 1!

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Jump3, Jump3CP Statements

Jump3, Jump3CP Statements
3D gate motion. Jump3 is a combination of two CP motions and one PTP motion. @

Jump3CP is a combination of three CP motions.

Syntax
(1) Jump3 depart, approach, destination [CarchNumber] [CP] [LUM [orientationFlag]] [searchExpr]
!

(2) Jump3CP depart, approach, destination [ROT] [CarchNumber] [CP] [LJM [orientationFlag]]
[searchExpr] [!...1]

Parameters
depart The departure point above the current position using a point expression.
approach The approach point above the destination position a point expression.
destination The target destination of the motion using a point expression.
ROT Optional. :Decides the speed/acceleration/deceleration in favor of tool rotation.

archNumber Optional. The arch number (archNumber) specifies which Arch Table entry to use for
the Arch type motion caused by the Jump instruction. archNumber must always be
proceeded by the letter C. (Valid entries are C0-C7.)

CP Optional. Specifies continuous path motion.
LJM Optional. Convert the target destination using LJM function.
orientationFlag Optional. Specifies a parameter that selects an orientation flag for LJM function.

searchExpr Optional. A Sense, Till or Find expression.
Sense | Till | Find
Sense Sw(expr) = {On | Off}
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}
L. Optional. Parallel Processing statements can be added to the Jump instruction to
cause /0O and other commands to execute during motion.

Description

Moves the arm from the current position to the destination point with 3D gate motion. 3D gate motion
consists of depart motion, span motion, and approach motion. The depart motion form the current
position to the depart point is always CP motion. The span motion from the depart point to the start
approach point is PTP motion in Jump3, and the CP motion in Jump3CP.

The approach motion from the starting approach point to the target point is always CP motion.

Span motion
PTP/CP Approach point
Depart point Approach motion
CP
Depart
motion Destination point
CP

Current position

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 211

Jump3, Jump3CP Statements

Arch motion is achieved by specifying the arch number. The arch motion for Jump3, Jump3CP is as
shown in the figure below. For arch motion to occur, the Depart distance must be greater than the
arch upward distance and the Approach distance must be greater than the arch downward distance.

Start approach point

Depart point

Approach distance

ARCH downward

Depart distance

ARCH Upward

Jump3CP uses the SpeedS speed value and AccelS acceleration and deceleration values. Refer to
Using Jump3CP with CP below on the relation between the speed/acceleration and the
acceleration/deceleration. If, however, the ROT modifier parameter is used, Jump3CP uses the
SpeedR speed value and AccelR acceleration and deceleration values. In this case SpeedS speed
value and AccelS acceleration and deceleration value have no effect.

Usually, when the move distance is 0 and only the tool orientation is changed, an error will occur.
However, by using the ROT parameter and giving priority to the acceleration and the deceleration of
the tool rotation, it is possible to move without an error. When there is not an orientational change with
the ROT modifier parameter and movement distance is not 0, an error will occur.

Also, when the tool rotation is large as compared to move distance, and when the rotation speed
exceeds the specified speed of the manipulator, an error will occur. In this case, please reduce the
speed or append the ROT modifier parameter to give priority to the rotational
speed/acceleration/deceleration.

Notes

Jump3 span motion is PTP (point to point)

It is difficult to predict Jump3 span motion trajectory. Therefore, be careful that the robot doesn't
collide with peripheral equipment and that robot arms don’t collide with the robot.

Jump3 Motion trajectory changes depending on motion and speed
Jump3 motion trajectory is comprised of depart, span, and approach motions. It is not a continuous
path trajectory. The actual Jump3 trajectory of arch motion is not determined by Arch parameters
alone. It also depends on motion and speed.

Always use care when optimizing Jump3 trajectory in your applications. Execute Jump3 with the
desired motion and speed to verify the actual trajectory.

When speed is lower, the trajectory will be lower. If Jump3 is executed with high speed to verify an
arch motion trajectory, the end effector may crash into an obstacle with lower speed.

In a Jump3 trajectory, the depart distance increases and the approach distance decreases when the

motion speed is set high. When the approach distance of the trajectory is shorter than the expected,
lower the speed and/or the deceleration, or change the approach distance to be larger.

212 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Jump3, Jump3CP Statements

Even if Jump commands with the same distance and speed are executed, the trajectory is affected by
motion of the robot arms. As a general example, for a SCARA robot the depart distance increases
and the approach distance decreases when the movement of the first arm is large. When the
approach distance decreases and the trajectory is shorter than the expected, lower the speed and/or
the deceleration, or change the approach distance to be larger.

LimZ does not affect Jump3 and Jump3CP

LimZ has no affect on Jump3 or Jump3CP since the span motion is not necessarily perpendicular to
the Z axis of the coordinate system.

Potential acceleration errors

An acceleration error may occur during an arch motion execution by the Jump3 andJump3CP
commands. This error is issued frequently when the majority of the motion during depart or approach
uses the same joint as the span motion. To avoid this error, reduce the acceleration/deceleration
speed of the span motion using Accel command for Jump3 or using AccelS command for Jump3CP.
Depending on the motion and orientation of the robot, it may also help to reduce the acceleration and
deceleration of the depart motion (approach motion) using the AccelS command.

Using Jump3, Jump3CP with CP

The CP parameter causes the arm to move to destination without decelerating or stopping at the point
defined by destination. This is done to allow the user to string a series of motion instructions together
to cause the arm to move along a continuous path while maintaining a specified speed throughout all
the motion. The Jump3 and Jump3CP instructions without CP always cause the arm to decelerate to
a stop prior to reaching the point desination.

Pass function of Jump3

When the CP parameter is specified for Jump3 with 0 approach motion, the Jump3 span motion does
not decelerate to a stop but goes on smoothly to the next PTP motion.

When the CP parameter is specified for a PTP motion command right before Jump3 with 0 depart
motion, the PTP motion does not decelerate to a stop but connects smoothly with the Jump3 span
motion.

This is useful when you want to replace the span motion of Jump3 (a PTP motion) with several PTP
motions.

Pass function of Jump3CP

When the CP parameter is specified for Jump3CP with 0 approach motion, the Jump3CP span motion
does not decelerate to a stop but goes on smoothly to the next CP motion.
When the CP parameter is specified for a CP motion command right before Jump3CP with O depart
motion, the CP motion does not decelerate to a stop but connects smoothly with the Jump3CP span
motion.
This is useful when you want to replace the span motion of Jump3CP (a CP motion) with several CP
motions.
(Example 1) P2 fl‘b

Jump3 P1,P2,P2 CP 8] P5

Go P3,P4 CP R1 @-

Jump3 P4,P5,P5+t1z(50)

(Example 2)
Jump3CP P1,P2,P2 CP
Move P3,P4 CP
Jump3CP P4,P5,P5+t1z(50)
Start End

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 213

Jump3, Jump3CP Statements

Use Jump3, Jump3CP with LUIM

With LJM parameter, the program using LJM function can be more simple.
For ecample, the following four-line program
P11 = LUM(P1, Here, 2)
P12 = LUIM(P2, P11, 2)
P13 = LUM(P3, P12, 2)
Jump3 P11, P12, P13
can be... the one-line program.
Jump3 P1, P2, P3 LJM 2
LJM parameter is available for 6-axis and RS series robots.
Jump3CP span motion is straight line (CP) motion and it cannot switch the wrist orientation along the

way. Therefore, do not use the orientationFlag (LJM 1) of LJM function which is able to switch the
wrist orientation.

See Also

Accel, Arc, Arch, Go, JS, JT, Point Expression, Pulse, Sense, Speed, Stat, Till

Jump3 Statement Example

214

6 axis robot motion which works like Jump of SCARA robot
Jump3 Here :Z(100), P3 :Z(100), P3

' Depart and approach use Z tool coordinates
Jump3 Here -TLZ(100), P3 -TLZ(100), P3

' Depart uses base Z and approach uses tool Z
Jump3 Here +Z(100), P3 -TLZ(100), P3

Example for the depart motion from Pl in Tool 1 and the approach
motion to P3 in Tool 2

Arch 0,20,20
Tool 1
Go P1

P2 = P1 -TLZ(100)

Tool 2
Jump3 P2, P3-TLZ(100), P3 CO

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

LCase$ Function

LCase$ Function

Returns a string that has been converted to lowercase. @

Syntax
LCase$(string)

Parameters
string A valid string expression.

Return Values
The converted lower case string.

See Also
LTrim$, Trim$, RTrim$, UCase$

LCase$ Function Example

strs
strs

IIDataII
LCase$ (strS) ' str$ = "data"

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 215

Left$ Function

Left$ Function

Returns a substring from the left side of a string expression. @

Syntax
Left$(string, count)

Parameters
string String expression from which the leftmost characters are copied.
count The number of characters to copy from string starting with the leftmost character.

Return Values
Returns a string of the leftmost number characters from the character string specified by the user.

Description

Left$ returns the leftmost number characters of a string specified by the user. Left$ can return up to
as many characters as are in the character string.

See Also
Asc, Chr$, InStr, Len, Mid$, Right$, Space$, Str$, Val

Left$ Function Example

The example shown below shows a program which takes a part data string as its input and parses out
the part number, part name, and part count.

Function ParsePartData(DataIn$ As String, ByRef PartNum$ As String,
ByRef PartName$ As String, ByRef PartCount As Integer)

Integer pos
String temp$

pos = Instr(DatalIns, ",")
PartNum$ = Left$ (DataIn$, pos - 1)

DataIn$ = Right$(datain$, Len(DataIn$) - pos)
pos = Instr(DataIns, ",")

PartName$ = Left$ (DatalIn$, pos - 1)
PartCount = Val (Rights$ (datain$, Len(DataIn$) - pos))
Fend
Some other example results from the Left$ instruction from the Command window.

> Print Left$ ("ABCDEFG", 2)
AB

> Print Left$ ("ABC", 3)
ABC

216 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5

Len Function

Returns the number of characters in a character string. @
Syntax

Len(string)
Parameters

string String expression.

Return Values

Returns an integer number representing the number of characters in the string string which was given
as an argument to the Len instruction.

Description

Len returns an integer number representing the number of characters in a string specified by the user.
Len will return values between 0-255 (since a string can contain between 0-255 characters).

See Also
Asc, Chr$, InStr, Left$, Mid$, Right$, Space$, Str$, Val

Len Function Example

The example shown below shows a program which takes a part data string as its input and parses out
the part number, part name, and part count.

Function ParsePartData(DataIn$ As String, ByRef PartNum$ As String,
ByRef PartName$ As String, ByRef PartCount As Integer)

Integer pos
String temps$S

pos = Instr(DatalIns, ",")

PartNum$ = Left$ (DataIn$, pos - 1)

DataIn$ = Right$(datain$, Len(DataIn$) - pos)
pos = Instr(DatalIns, ",")

PartName$ = Left$ (DatalIn$, pos - 1)

PartCount = Val (Right$ (datain$, Len(DatalIn$) - pos))
Fend
Some other example results from the Len instruction from the command window.

> ? len ("ABCDEFG")
7

> ? len("ABC")
3

? len(uu)

\%

(@)

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.5 217

LimZ Statement

LimZ Statement
Determines the default value of the Z joint height for Jump commands. @

Syntax
(1) LimZ zLimit
(2) Limz

Parameters
zLimit A coordinate value within the movable range of the Z joint.

Return Values
Displays the current LimZ value when parameter is omitted.

Description

LimZ determines the maximum Z joint height which the arm move to when using the Jump instruction,
wherein the robot arm raises on the Z joint, moves in the X-Y plane, then lowers on the Z joint. LimZ
is simply a default Z joint value used to define the Z joint ceiling position for use during motion caused
by the Jump instruction. When a specific LimZ value is not specified in the Jump instruction, the last
LimZ setting is used for the Jump instruction.

Note

Resetting LimZ to 0
Restarting the controller, or executing the SFree, SLock, Motor On commands will initialize LimZ to 0.

LimZ Value is Not Valid for Arm, Tool, or Local Coordinates:

LimZ Z joint height limit specification is the Z joint value for the robot coordinate system. It is not the Z
joint value for Arm, Tool, or Local coordinates. Therefore take the necessary precautions when using
tools or end effectors with different operating heights.

LimZ does not affect Jump3 and Jump3CP

LimZ has no affect on Jump3 or Jump3CP since the span motion is not necessarily perpendicular to
the Z axis of the coordinate system.

See Also
Jump

LimZ Statement Example
The example below shows the use of LimZ in Jump operations.

Function main

LimZ -10